Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 #define SAD_LIMIT(reg)          ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg)          GET_BITFIELD(reg, 2,  3)
70 #define INTERLEAVE_MODE(reg)    GET_BITFIELD(reg, 1,  1)
71 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
72 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
73
74 static char *get_dram_attr(u32 reg)
75 {
76         switch(DRAM_ATTR(reg)) {
77                 case 0:
78                         return "DRAM";
79                 case 1:
80                         return "MMCFG";
81                 case 2:
82                         return "NXM";
83                 default:
84                         return "unknown";
85         }
86 }
87
88 static const u32 sbridge_interleave_list[] = {
89         0x84, 0x8c, 0x94, 0x9c, 0xa4,
90         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92
93 static const u32 ibridge_interleave_list[] = {
94         0x64, 0x6c, 0x74, 0x7c, 0x84,
95         0x8c, 0x94, 0x9c, 0xa4, 0xac,
96         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99
100 struct interleave_pkg {
101         unsigned char start;
102         unsigned char end;
103 };
104
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106         { 0, 2 },
107         { 3, 5 },
108         { 8, 10 },
109         { 11, 13 },
110         { 16, 18 },
111         { 19, 21 },
112         { 24, 26 },
113         { 27, 29 },
114 };
115
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117         { 0, 3 },
118         { 4, 7 },
119         { 8, 11 },
120         { 12, 15 },
121         { 16, 19 },
122         { 20, 23 },
123         { 24, 27 },
124         { 28, 31 },
125 };
126
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128                           int interleave)
129 {
130         return GET_BITFIELD(reg, table[interleave].start,
131                             table[interleave].end);
132 }
133
134 /* Devices 12 Function 7 */
135
136 #define TOLM            0x80
137 #define TOHM            0x84
138 #define HASWELL_TOLM    0xd0
139 #define HASWELL_TOHM_0  0xd4
140 #define HASWELL_TOHM_1  0xd8
141
142 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
144
145 /* Device 13 Function 6 */
146
147 #define SAD_TARGET      0xf0
148
149 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
150
151 #define SAD_CONTROL     0xf4
152
153 /* Device 14 function 0 */
154
155 static const u32 tad_dram_rule[] = {
156         0x40, 0x44, 0x48, 0x4c,
157         0x50, 0x54, 0x58, 0x5c,
158         0x60, 0x64, 0x68, 0x6c,
159 };
160 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
161
162 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
165 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
166 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
167 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
168 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
169
170 /* Device 15, function 0 */
171
172 #define MCMTR                   0x7c
173
174 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
177
178 /* Device 15, function 1 */
179
180 #define RASENABLES              0xac
181 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
182
183 /* Device 15, functions 2-5 */
184
185 static const int mtr_regs[] = {
186         0x80, 0x84, 0x88,
187 };
188
189 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
194
195 static const u32 tad_ch_nilv_offset[] = {
196         0x90, 0x94, 0x98, 0x9c,
197         0xa0, 0xa4, 0xa8, 0xac,
198         0xb0, 0xb4, 0xb8, 0xbc,
199 };
200 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
202
203 static const u32 rir_way_limit[] = {
204         0x108, 0x10c, 0x110, 0x114, 0x118,
205 };
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
207
208 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
210
211 #define MAX_RIR_WAY     8
212
213 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
214         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
219 };
220
221 #define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
222 #define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
223
224 /* Device 16, functions 2-7 */
225
226 /*
227  * FIXME: Implement the error count reads directly
228  */
229
230 static const u32 correrrcnt[] = {
231         0x104, 0x108, 0x10c, 0x110,
232 };
233
234 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
235 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
236 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
237 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
238
239 static const u32 correrrthrsld[] = {
240         0x11c, 0x120, 0x124, 0x128,
241 };
242
243 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
244 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
245
246
247 /* Device 17, function 0 */
248
249 #define SB_RANK_CFG_A           0x0328
250
251 #define IB_RANK_CFG_A           0x0320
252
253 /*
254  * sbridge structs
255  */
256
257 #define NUM_CHANNELS            4
258 #define MAX_DIMMS               3       /* Max DIMMS per channel */
259 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
260
261 enum type {
262         SANDY_BRIDGE,
263         IVY_BRIDGE,
264         HASWELL,
265         BROADWELL,
266 };
267
268 struct sbridge_pvt;
269 struct sbridge_info {
270         enum type       type;
271         u32             mcmtr;
272         u32             rankcfgr;
273         u64             (*get_tolm)(struct sbridge_pvt *pvt);
274         u64             (*get_tohm)(struct sbridge_pvt *pvt);
275         u64             (*rir_limit)(u32 reg);
276         const u32       *dram_rule;
277         const u32       *interleave_list;
278         const struct interleave_pkg *interleave_pkg;
279         u8              max_sad;
280         u8              max_interleave;
281         u8              (*get_node_id)(struct sbridge_pvt *pvt);
282         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
283         struct pci_dev  *pci_vtd;
284 };
285
286 struct sbridge_channel {
287         u32             ranks;
288         u32             dimms;
289 };
290
291 struct pci_id_descr {
292         int                     dev_id;
293         int                     optional;
294 };
295
296 struct pci_id_table {
297         const struct pci_id_descr       *descr;
298         int                             n_devs;
299 };
300
301 struct sbridge_dev {
302         struct list_head        list;
303         u8                      bus, mc;
304         u8                      node_id, source_id;
305         struct pci_dev          **pdev;
306         int                     n_devs;
307         struct mem_ctl_info     *mci;
308 };
309
310 struct sbridge_pvt {
311         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
312         struct pci_dev          *pci_sad0, *pci_sad1;
313         struct pci_dev          *pci_ha0, *pci_ha1;
314         struct pci_dev          *pci_br0, *pci_br1;
315         struct pci_dev          *pci_ha1_ta;
316         struct pci_dev          *pci_tad[NUM_CHANNELS];
317
318         struct sbridge_dev      *sbridge_dev;
319
320         struct sbridge_info     info;
321         struct sbridge_channel  channel[NUM_CHANNELS];
322
323         /* Memory type detection */
324         bool                    is_mirrored, is_lockstep, is_close_pg;
325
326         /* Fifo double buffers */
327         struct mce              mce_entry[MCE_LOG_LEN];
328         struct mce              mce_outentry[MCE_LOG_LEN];
329
330         /* Fifo in/out counters */
331         unsigned                mce_in, mce_out;
332
333         /* Count indicator to show errors not got */
334         unsigned                mce_overrun;
335
336         /* Memory description */
337         u64                     tolm, tohm;
338 };
339
340 #define PCI_DESCR(device_id, opt)       \
341         .dev_id = (device_id),          \
342         .optional = opt
343
344 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
345                 /* Processor Home Agent */
346         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
347
348                 /* Memory controller */
349         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
350         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
351         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
352         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
353         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
354         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
355         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
356
357                 /* System Address Decoder */
358         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
359         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
360
361                 /* Broadcast Registers */
362         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
363 };
364
365 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
366 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
367         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
368         {0,}                    /* 0 terminated list. */
369 };
370
371 /* This changes depending if 1HA or 2HA:
372  * 1HA:
373  *      0x0eb8 (17.0) is DDRIO0
374  * 2HA:
375  *      0x0ebc (17.4) is DDRIO0
376  */
377 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
378 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
379
380 /* pci ids */
381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
396
397 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
398                 /* Processor Home Agent */
399         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
400
401                 /* Memory controller */
402         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
403         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
404         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
405         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
406         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
407         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
408
409                 /* System Address Decoder */
410         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
411
412                 /* Broadcast Registers */
413         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
414         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
415
416                 /* Optional, mode 2HA */
417         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
418 #if 0
419         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
421 #endif
422         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
423         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
424
425         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
426         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
427 };
428
429 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
430         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
431         {0,}                    /* 0 terminated list. */
432 };
433
434 /* Haswell support */
435 /* EN processor:
436  *      - 1 IMC
437  *      - 3 DDR3 channels, 2 DPC per channel
438  * EP processor:
439  *      - 1 or 2 IMC
440  *      - 4 DDR4 channels, 3 DPC per channel
441  * EP 4S processor:
442  *      - 2 IMC
443  *      - 4 DDR4 channels, 3 DPC per channel
444  * EX processor:
445  *      - 2 IMC
446  *      - each IMC interfaces with a SMI 2 channel
447  *      - each SMI channel interfaces with a scalable memory buffer
448  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
449  */
450 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
451 #define HASWELL_HASYSDEFEATURE2 0x84
452 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
453 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
454 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
455 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
456 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
470 static const struct pci_id_descr pci_dev_descr_haswell[] = {
471         /* first item must be the HA */
472         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
473
474         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
475         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
476
477         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
478
479         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
480         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
481         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
485
486         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
487
488         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
489         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
490         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
491         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
492         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
493         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
494 };
495
496 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
497         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
498         {0,}                    /* 0 terminated list. */
499 };
500
501 /*
502  * Broadwell support
503  *
504  * DE processor:
505  *      - 1 IMC
506  *      - 2 DDR3 channels, 2 DPC per channel
507  */
508 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
509 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
510 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
511 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
512 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
513 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
514 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
515 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
516 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
517 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
518 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
519
520 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
521         /* first item must be the HA */
522         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
523
524         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
525         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
526
527         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
528         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
529         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
530         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
531         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 0)      },
532         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 0)      },
533         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
534 };
535
536 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
537         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
538         {0,}                    /* 0 terminated list. */
539 };
540
541 /*
542  *      pci_device_id   table for which devices we are looking for
543  */
544 static const struct pci_device_id sbridge_pci_tbl[] = {
545         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
546         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
547         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
548         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
549         {0,}                    /* 0 terminated list. */
550 };
551
552
553 /****************************************************************************
554                         Ancillary status routines
555  ****************************************************************************/
556
557 static inline int numrank(enum type type, u32 mtr)
558 {
559         int ranks = (1 << RANK_CNT_BITS(mtr));
560         int max = 4;
561
562         if (type == HASWELL)
563                 max = 8;
564
565         if (ranks > max) {
566                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
567                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
568                 return -EINVAL;
569         }
570
571         return ranks;
572 }
573
574 static inline int numrow(u32 mtr)
575 {
576         int rows = (RANK_WIDTH_BITS(mtr) + 12);
577
578         if (rows < 13 || rows > 18) {
579                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
580                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
581                 return -EINVAL;
582         }
583
584         return 1 << rows;
585 }
586
587 static inline int numcol(u32 mtr)
588 {
589         int cols = (COL_WIDTH_BITS(mtr) + 10);
590
591         if (cols > 12) {
592                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
593                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
594                 return -EINVAL;
595         }
596
597         return 1 << cols;
598 }
599
600 static struct sbridge_dev *get_sbridge_dev(u8 bus)
601 {
602         struct sbridge_dev *sbridge_dev;
603
604         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
605                 if (sbridge_dev->bus == bus)
606                         return sbridge_dev;
607         }
608
609         return NULL;
610 }
611
612 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
613                                            const struct pci_id_table *table)
614 {
615         struct sbridge_dev *sbridge_dev;
616
617         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
618         if (!sbridge_dev)
619                 return NULL;
620
621         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
622                                    GFP_KERNEL);
623         if (!sbridge_dev->pdev) {
624                 kfree(sbridge_dev);
625                 return NULL;
626         }
627
628         sbridge_dev->bus = bus;
629         sbridge_dev->n_devs = table->n_devs;
630         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
631
632         return sbridge_dev;
633 }
634
635 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
636 {
637         list_del(&sbridge_dev->list);
638         kfree(sbridge_dev->pdev);
639         kfree(sbridge_dev);
640 }
641
642 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
643 {
644         u32 reg;
645
646         /* Address range is 32:28 */
647         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
648         return GET_TOLM(reg);
649 }
650
651 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
652 {
653         u32 reg;
654
655         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
656         return GET_TOHM(reg);
657 }
658
659 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
660 {
661         u32 reg;
662
663         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
664
665         return GET_TOLM(reg);
666 }
667
668 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
669 {
670         u32 reg;
671
672         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
673
674         return GET_TOHM(reg);
675 }
676
677 static u64 rir_limit(u32 reg)
678 {
679         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
680 }
681
682 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
683 {
684         u32 reg;
685         enum mem_type mtype;
686
687         if (pvt->pci_ddrio) {
688                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
689                                       &reg);
690                 if (GET_BITFIELD(reg, 11, 11))
691                         /* FIXME: Can also be LRDIMM */
692                         mtype = MEM_RDDR3;
693                 else
694                         mtype = MEM_DDR3;
695         } else
696                 mtype = MEM_UNKNOWN;
697
698         return mtype;
699 }
700
701 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
702 {
703         u32 reg;
704         bool registered = false;
705         enum mem_type mtype = MEM_UNKNOWN;
706
707         if (!pvt->pci_ddrio)
708                 goto out;
709
710         pci_read_config_dword(pvt->pci_ddrio,
711                               HASWELL_DDRCRCLKCONTROLS, &reg);
712         /* Is_Rdimm */
713         if (GET_BITFIELD(reg, 16, 16))
714                 registered = true;
715
716         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
717         if (GET_BITFIELD(reg, 14, 14)) {
718                 if (registered)
719                         mtype = MEM_RDDR4;
720                 else
721                         mtype = MEM_DDR4;
722         } else {
723                 if (registered)
724                         mtype = MEM_RDDR3;
725                 else
726                         mtype = MEM_DDR3;
727         }
728
729 out:
730         return mtype;
731 }
732
733 static u8 get_node_id(struct sbridge_pvt *pvt)
734 {
735         u32 reg;
736         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
737         return GET_BITFIELD(reg, 0, 2);
738 }
739
740 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
741 {
742         u32 reg;
743
744         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
745         return GET_BITFIELD(reg, 0, 3);
746 }
747
748 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
749 {
750         u32 reg;
751
752         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
753         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
754 }
755
756 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
757 {
758         u64 rc;
759         u32 reg;
760
761         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
762         rc = GET_BITFIELD(reg, 26, 31);
763         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
764         rc = ((reg << 6) | rc) << 26;
765
766         return rc | 0x1ffffff;
767 }
768
769 static u64 haswell_rir_limit(u32 reg)
770 {
771         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
772 }
773
774 static inline u8 sad_pkg_socket(u8 pkg)
775 {
776         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
777         return ((pkg >> 3) << 2) | (pkg & 0x3);
778 }
779
780 static inline u8 sad_pkg_ha(u8 pkg)
781 {
782         return (pkg >> 2) & 0x1;
783 }
784
785 /****************************************************************************
786                         Memory check routines
787  ****************************************************************************/
788 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
789 {
790         struct pci_dev *pdev = NULL;
791
792         do {
793                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
794                 if (pdev && pdev->bus->number == bus)
795                         break;
796         } while (pdev);
797
798         return pdev;
799 }
800
801 /**
802  * check_if_ecc_is_active() - Checks if ECC is active
803  * @bus:        Device bus
804  * @type:       Memory controller type
805  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
806  *          disabled
807  */
808 static int check_if_ecc_is_active(const u8 bus, enum type type)
809 {
810         struct pci_dev *pdev = NULL;
811         u32 mcmtr, id;
812
813         switch (type) {
814         case IVY_BRIDGE:
815                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
816                 break;
817         case HASWELL:
818                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
819                 break;
820         case SANDY_BRIDGE:
821                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
822                 break;
823         case BROADWELL:
824                 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
825                 break;
826         default:
827                 return -ENODEV;
828         }
829
830         pdev = get_pdev_same_bus(bus, id);
831         if (!pdev) {
832                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
833                                         "%04x:%04x! on bus %02d\n",
834                                         PCI_VENDOR_ID_INTEL, id, bus);
835                 return -ENODEV;
836         }
837
838         pci_read_config_dword(pdev, MCMTR, &mcmtr);
839         if (!IS_ECC_ENABLED(mcmtr)) {
840                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
841                 return -ENODEV;
842         }
843         return 0;
844 }
845
846 static int get_dimm_config(struct mem_ctl_info *mci)
847 {
848         struct sbridge_pvt *pvt = mci->pvt_info;
849         struct dimm_info *dimm;
850         unsigned i, j, banks, ranks, rows, cols, npages;
851         u64 size;
852         u32 reg;
853         enum edac_type mode;
854         enum mem_type mtype;
855
856         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
857                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
858         else
859                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
860
861         pvt->sbridge_dev->source_id = SOURCE_ID(reg);
862
863         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
864         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
865                  pvt->sbridge_dev->mc,
866                  pvt->sbridge_dev->node_id,
867                  pvt->sbridge_dev->source_id);
868
869         pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
870         if (IS_MIRROR_ENABLED(reg)) {
871                 edac_dbg(0, "Memory mirror is enabled\n");
872                 pvt->is_mirrored = true;
873         } else {
874                 edac_dbg(0, "Memory mirror is disabled\n");
875                 pvt->is_mirrored = false;
876         }
877
878         pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
879         if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
880                 edac_dbg(0, "Lockstep is enabled\n");
881                 mode = EDAC_S8ECD8ED;
882                 pvt->is_lockstep = true;
883         } else {
884                 edac_dbg(0, "Lockstep is disabled\n");
885                 mode = EDAC_S4ECD4ED;
886                 pvt->is_lockstep = false;
887         }
888         if (IS_CLOSE_PG(pvt->info.mcmtr)) {
889                 edac_dbg(0, "address map is on closed page mode\n");
890                 pvt->is_close_pg = true;
891         } else {
892                 edac_dbg(0, "address map is on open page mode\n");
893                 pvt->is_close_pg = false;
894         }
895
896         mtype = pvt->info.get_memory_type(pvt);
897         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
898                 edac_dbg(0, "Memory is registered\n");
899         else if (mtype == MEM_UNKNOWN)
900                 edac_dbg(0, "Cannot determine memory type\n");
901         else
902                 edac_dbg(0, "Memory is unregistered\n");
903
904         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
905                 banks = 16;
906         else
907                 banks = 8;
908
909         for (i = 0; i < NUM_CHANNELS; i++) {
910                 u32 mtr;
911
912                 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
913                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
914                                        i, j, 0);
915                         pci_read_config_dword(pvt->pci_tad[i],
916                                               mtr_regs[j], &mtr);
917                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
918                         if (IS_DIMM_PRESENT(mtr)) {
919                                 pvt->channel[i].dimms++;
920
921                                 ranks = numrank(pvt->info.type, mtr);
922                                 rows = numrow(mtr);
923                                 cols = numcol(mtr);
924
925                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
926                                 npages = MiB_TO_PAGES(size);
927
928                                 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
929                                          pvt->sbridge_dev->mc, i, j,
930                                          size, npages,
931                                          banks, ranks, rows, cols);
932
933                                 dimm->nr_pages = npages;
934                                 dimm->grain = 32;
935                                 switch (banks) {
936                                 case 16:
937                                         dimm->dtype = DEV_X16;
938                                         break;
939                                 case 8:
940                                         dimm->dtype = DEV_X8;
941                                         break;
942                                 case 4:
943                                         dimm->dtype = DEV_X4;
944                                         break;
945                                 }
946                                 dimm->mtype = mtype;
947                                 dimm->edac_mode = mode;
948                                 snprintf(dimm->label, sizeof(dimm->label),
949                                          "CPU_SrcID#%u_Channel#%u_DIMM#%u",
950                                          pvt->sbridge_dev->source_id, i, j);
951                         }
952                 }
953         }
954
955         return 0;
956 }
957
958 static void get_memory_layout(const struct mem_ctl_info *mci)
959 {
960         struct sbridge_pvt *pvt = mci->pvt_info;
961         int i, j, k, n_sads, n_tads, sad_interl;
962         u32 reg;
963         u64 limit, prv = 0;
964         u64 tmp_mb;
965         u32 gb, mb;
966         u32 rir_way;
967
968         /*
969          * Step 1) Get TOLM/TOHM ranges
970          */
971
972         pvt->tolm = pvt->info.get_tolm(pvt);
973         tmp_mb = (1 + pvt->tolm) >> 20;
974
975         gb = div_u64_rem(tmp_mb, 1024, &mb);
976         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
977                 gb, (mb*1000)/1024, (u64)pvt->tolm);
978
979         /* Address range is already 45:25 */
980         pvt->tohm = pvt->info.get_tohm(pvt);
981         tmp_mb = (1 + pvt->tohm) >> 20;
982
983         gb = div_u64_rem(tmp_mb, 1024, &mb);
984         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
985                 gb, (mb*1000)/1024, (u64)pvt->tohm);
986
987         /*
988          * Step 2) Get SAD range and SAD Interleave list
989          * TAD registers contain the interleave wayness. However, it
990          * seems simpler to just discover it indirectly, with the
991          * algorithm bellow.
992          */
993         prv = 0;
994         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
995                 /* SAD_LIMIT Address range is 45:26 */
996                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
997                                       &reg);
998                 limit = SAD_LIMIT(reg);
999
1000                 if (!DRAM_RULE_ENABLE(reg))
1001                         continue;
1002
1003                 if (limit <= prv)
1004                         break;
1005
1006                 tmp_mb = (limit + 1) >> 20;
1007                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1008                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1009                          n_sads,
1010                          get_dram_attr(reg),
1011                          gb, (mb*1000)/1024,
1012                          ((u64)tmp_mb) << 20L,
1013                          INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
1014                          reg);
1015                 prv = limit;
1016
1017                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1018                                       &reg);
1019                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1020                 for (j = 0; j < 8; j++) {
1021                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1022                         if (j > 0 && sad_interl == pkg)
1023                                 break;
1024
1025                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1026                                  n_sads, j, pkg);
1027                 }
1028         }
1029
1030         /*
1031          * Step 3) Get TAD range
1032          */
1033         prv = 0;
1034         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1035                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1036                                       &reg);
1037                 limit = TAD_LIMIT(reg);
1038                 if (limit <= prv)
1039                         break;
1040                 tmp_mb = (limit + 1) >> 20;
1041
1042                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1043                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1044                          n_tads, gb, (mb*1000)/1024,
1045                          ((u64)tmp_mb) << 20L,
1046                          (u32)TAD_SOCK(reg),
1047                          (u32)TAD_CH(reg),
1048                          (u32)TAD_TGT0(reg),
1049                          (u32)TAD_TGT1(reg),
1050                          (u32)TAD_TGT2(reg),
1051                          (u32)TAD_TGT3(reg),
1052                          reg);
1053                 prv = limit;
1054         }
1055
1056         /*
1057          * Step 4) Get TAD offsets, per each channel
1058          */
1059         for (i = 0; i < NUM_CHANNELS; i++) {
1060                 if (!pvt->channel[i].dimms)
1061                         continue;
1062                 for (j = 0; j < n_tads; j++) {
1063                         pci_read_config_dword(pvt->pci_tad[i],
1064                                               tad_ch_nilv_offset[j],
1065                                               &reg);
1066                         tmp_mb = TAD_OFFSET(reg) >> 20;
1067                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1068                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1069                                  i, j,
1070                                  gb, (mb*1000)/1024,
1071                                  ((u64)tmp_mb) << 20L,
1072                                  reg);
1073                 }
1074         }
1075
1076         /*
1077          * Step 6) Get RIR Wayness/Limit, per each channel
1078          */
1079         for (i = 0; i < NUM_CHANNELS; i++) {
1080                 if (!pvt->channel[i].dimms)
1081                         continue;
1082                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1083                         pci_read_config_dword(pvt->pci_tad[i],
1084                                               rir_way_limit[j],
1085                                               &reg);
1086
1087                         if (!IS_RIR_VALID(reg))
1088                                 continue;
1089
1090                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1091                         rir_way = 1 << RIR_WAY(reg);
1092                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1093                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1094                                  i, j,
1095                                  gb, (mb*1000)/1024,
1096                                  ((u64)tmp_mb) << 20L,
1097                                  rir_way,
1098                                  reg);
1099
1100                         for (k = 0; k < rir_way; k++) {
1101                                 pci_read_config_dword(pvt->pci_tad[i],
1102                                                       rir_offset[j][k],
1103                                                       &reg);
1104                                 tmp_mb = RIR_OFFSET(reg) << 6;
1105
1106                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1107                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1108                                          i, j, k,
1109                                          gb, (mb*1000)/1024,
1110                                          ((u64)tmp_mb) << 20L,
1111                                          (u32)RIR_RNK_TGT(reg),
1112                                          reg);
1113                         }
1114                 }
1115         }
1116 }
1117
1118 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1119 {
1120         struct sbridge_dev *sbridge_dev;
1121
1122         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1123                 if (sbridge_dev->node_id == node_id)
1124                         return sbridge_dev->mci;
1125         }
1126         return NULL;
1127 }
1128
1129 static int get_memory_error_data(struct mem_ctl_info *mci,
1130                                  u64 addr,
1131                                  u8 *socket,
1132                                  long *channel_mask,
1133                                  u8 *rank,
1134                                  char **area_type, char *msg)
1135 {
1136         struct mem_ctl_info     *new_mci;
1137         struct sbridge_pvt *pvt = mci->pvt_info;
1138         struct pci_dev          *pci_ha;
1139         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1140         int                     sad_interl, idx, base_ch;
1141         int                     interleave_mode, shiftup = 0;
1142         unsigned                sad_interleave[pvt->info.max_interleave];
1143         u32                     reg, dram_rule;
1144         u8                      ch_way, sck_way, pkg, sad_ha = 0;
1145         u32                     tad_offset;
1146         u32                     rir_way;
1147         u32                     mb, gb;
1148         u64                     ch_addr, offset, limit = 0, prv = 0;
1149
1150
1151         /*
1152          * Step 0) Check if the address is at special memory ranges
1153          * The check bellow is probably enough to fill all cases where
1154          * the error is not inside a memory, except for the legacy
1155          * range (e. g. VGA addresses). It is unlikely, however, that the
1156          * memory controller would generate an error on that range.
1157          */
1158         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1159                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1160                 return -EINVAL;
1161         }
1162         if (addr >= (u64)pvt->tohm) {
1163                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1164                 return -EINVAL;
1165         }
1166
1167         /*
1168          * Step 1) Get socket
1169          */
1170         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1171                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1172                                       &reg);
1173
1174                 if (!DRAM_RULE_ENABLE(reg))
1175                         continue;
1176
1177                 limit = SAD_LIMIT(reg);
1178                 if (limit <= prv) {
1179                         sprintf(msg, "Can't discover the memory socket");
1180                         return -EINVAL;
1181                 }
1182                 if  (addr <= limit)
1183                         break;
1184                 prv = limit;
1185         }
1186         if (n_sads == pvt->info.max_sad) {
1187                 sprintf(msg, "Can't discover the memory socket");
1188                 return -EINVAL;
1189         }
1190         dram_rule = reg;
1191         *area_type = get_dram_attr(dram_rule);
1192         interleave_mode = INTERLEAVE_MODE(dram_rule);
1193
1194         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1195                               &reg);
1196
1197         if (pvt->info.type == SANDY_BRIDGE) {
1198                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1199                 for (sad_way = 0; sad_way < 8; sad_way++) {
1200                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1201                         if (sad_way > 0 && sad_interl == pkg)
1202                                 break;
1203                         sad_interleave[sad_way] = pkg;
1204                         edac_dbg(0, "SAD interleave #%d: %d\n",
1205                                  sad_way, sad_interleave[sad_way]);
1206                 }
1207                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1208                          pvt->sbridge_dev->mc,
1209                          n_sads,
1210                          addr,
1211                          limit,
1212                          sad_way + 7,
1213                          !interleave_mode ? "" : "XOR[18:16]");
1214                 if (interleave_mode)
1215                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1216                 else
1217                         idx = (addr >> 6) & 7;
1218                 switch (sad_way) {
1219                 case 1:
1220                         idx = 0;
1221                         break;
1222                 case 2:
1223                         idx = idx & 1;
1224                         break;
1225                 case 4:
1226                         idx = idx & 3;
1227                         break;
1228                 case 8:
1229                         break;
1230                 default:
1231                         sprintf(msg, "Can't discover socket interleave");
1232                         return -EINVAL;
1233                 }
1234                 *socket = sad_interleave[idx];
1235                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1236                          idx, sad_way, *socket);
1237         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1238                 int bits, a7mode = A7MODE(dram_rule);
1239
1240                 if (a7mode) {
1241                         /* A7 mode swaps P9 with P6 */
1242                         bits = GET_BITFIELD(addr, 7, 8) << 1;
1243                         bits |= GET_BITFIELD(addr, 9, 9);
1244                 } else
1245                         bits = GET_BITFIELD(addr, 7, 9);
1246
1247                 if (interleave_mode) {
1248                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
1249                         idx = GET_BITFIELD(addr, 16, 18);
1250                         idx ^= bits;
1251                 } else
1252                         idx = bits;
1253
1254                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1255                 *socket = sad_pkg_socket(pkg);
1256                 sad_ha = sad_pkg_ha(pkg);
1257
1258                 if (a7mode) {
1259                         /* MCChanShiftUpEnable */
1260                         pci_read_config_dword(pvt->pci_ha0,
1261                                               HASWELL_HASYSDEFEATURE2, &reg);
1262                         shiftup = GET_BITFIELD(reg, 22, 22);
1263                 }
1264
1265                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1266                          idx, *socket, sad_ha, shiftup);
1267         } else {
1268                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1269                 idx = (addr >> 6) & 7;
1270                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1271                 *socket = sad_pkg_socket(pkg);
1272                 sad_ha = sad_pkg_ha(pkg);
1273                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1274                          idx, *socket, sad_ha);
1275         }
1276
1277         /*
1278          * Move to the proper node structure, in order to access the
1279          * right PCI registers
1280          */
1281         new_mci = get_mci_for_node_id(*socket);
1282         if (!new_mci) {
1283                 sprintf(msg, "Struct for socket #%u wasn't initialized",
1284                         *socket);
1285                 return -EINVAL;
1286         }
1287         mci = new_mci;
1288         pvt = mci->pvt_info;
1289
1290         /*
1291          * Step 2) Get memory channel
1292          */
1293         prv = 0;
1294         if (pvt->info.type == SANDY_BRIDGE)
1295                 pci_ha = pvt->pci_ha0;
1296         else {
1297                 if (sad_ha)
1298                         pci_ha = pvt->pci_ha1;
1299                 else
1300                         pci_ha = pvt->pci_ha0;
1301         }
1302         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1303                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1304                 limit = TAD_LIMIT(reg);
1305                 if (limit <= prv) {
1306                         sprintf(msg, "Can't discover the memory channel");
1307                         return -EINVAL;
1308                 }
1309                 if  (addr <= limit)
1310                         break;
1311                 prv = limit;
1312         }
1313         if (n_tads == MAX_TAD) {
1314                 sprintf(msg, "Can't discover the memory channel");
1315                 return -EINVAL;
1316         }
1317
1318         ch_way = TAD_CH(reg) + 1;
1319         sck_way = TAD_SOCK(reg) + 1;
1320
1321         if (ch_way == 3)
1322                 idx = addr >> 6;
1323         else
1324                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1325         idx = idx % ch_way;
1326
1327         /*
1328          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1329          */
1330         switch (idx) {
1331         case 0:
1332                 base_ch = TAD_TGT0(reg);
1333                 break;
1334         case 1:
1335                 base_ch = TAD_TGT1(reg);
1336                 break;
1337         case 2:
1338                 base_ch = TAD_TGT2(reg);
1339                 break;
1340         case 3:
1341                 base_ch = TAD_TGT3(reg);
1342                 break;
1343         default:
1344                 sprintf(msg, "Can't discover the TAD target");
1345                 return -EINVAL;
1346         }
1347         *channel_mask = 1 << base_ch;
1348
1349         pci_read_config_dword(pvt->pci_tad[base_ch],
1350                                 tad_ch_nilv_offset[n_tads],
1351                                 &tad_offset);
1352
1353         if (pvt->is_mirrored) {
1354                 *channel_mask |= 1 << ((base_ch + 2) % 4);
1355                 switch(ch_way) {
1356                 case 2:
1357                 case 4:
1358                         sck_xch = 1 << sck_way * (ch_way >> 1);
1359                         break;
1360                 default:
1361                         sprintf(msg, "Invalid mirror set. Can't decode addr");
1362                         return -EINVAL;
1363                 }
1364         } else
1365                 sck_xch = (1 << sck_way) * ch_way;
1366
1367         if (pvt->is_lockstep)
1368                 *channel_mask |= 1 << ((base_ch + 1) % 4);
1369
1370         offset = TAD_OFFSET(tad_offset);
1371
1372         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1373                  n_tads,
1374                  addr,
1375                  limit,
1376                  (u32)TAD_SOCK(reg),
1377                  ch_way,
1378                  offset,
1379                  idx,
1380                  base_ch,
1381                  *channel_mask);
1382
1383         /* Calculate channel address */
1384         /* Remove the TAD offset */
1385
1386         if (offset > addr) {
1387                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1388                         offset, addr);
1389                 return -EINVAL;
1390         }
1391         addr -= offset;
1392         /* Store the low bits [0:6] of the addr */
1393         ch_addr = addr & 0x7f;
1394         /* Remove socket wayness and remove 6 bits */
1395         addr >>= 6;
1396         addr = div_u64(addr, sck_xch);
1397 #if 0
1398         /* Divide by channel way */
1399         addr = addr / ch_way;
1400 #endif
1401         /* Recover the last 6 bits */
1402         ch_addr |= addr << 6;
1403
1404         /*
1405          * Step 3) Decode rank
1406          */
1407         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1408                 pci_read_config_dword(pvt->pci_tad[base_ch],
1409                                       rir_way_limit[n_rir],
1410                                       &reg);
1411
1412                 if (!IS_RIR_VALID(reg))
1413                         continue;
1414
1415                 limit = pvt->info.rir_limit(reg);
1416                 gb = div_u64_rem(limit >> 20, 1024, &mb);
1417                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1418                          n_rir,
1419                          gb, (mb*1000)/1024,
1420                          limit,
1421                          1 << RIR_WAY(reg));
1422                 if  (ch_addr <= limit)
1423                         break;
1424         }
1425         if (n_rir == MAX_RIR_RANGES) {
1426                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1427                         ch_addr);
1428                 return -EINVAL;
1429         }
1430         rir_way = RIR_WAY(reg);
1431
1432         if (pvt->is_close_pg)
1433                 idx = (ch_addr >> 6);
1434         else
1435                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
1436         idx %= 1 << rir_way;
1437
1438         pci_read_config_dword(pvt->pci_tad[base_ch],
1439                               rir_offset[n_rir][idx],
1440                               &reg);
1441         *rank = RIR_RNK_TGT(reg);
1442
1443         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1444                  n_rir,
1445                  ch_addr,
1446                  limit,
1447                  rir_way,
1448                  idx);
1449
1450         return 0;
1451 }
1452
1453 /****************************************************************************
1454         Device initialization routines: put/get, init/exit
1455  ****************************************************************************/
1456
1457 /*
1458  *      sbridge_put_all_devices 'put' all the devices that we have
1459  *                              reserved via 'get'
1460  */
1461 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1462 {
1463         int i;
1464
1465         edac_dbg(0, "\n");
1466         for (i = 0; i < sbridge_dev->n_devs; i++) {
1467                 struct pci_dev *pdev = sbridge_dev->pdev[i];
1468                 if (!pdev)
1469                         continue;
1470                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1471                          pdev->bus->number,
1472                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1473                 pci_dev_put(pdev);
1474         }
1475 }
1476
1477 static void sbridge_put_all_devices(void)
1478 {
1479         struct sbridge_dev *sbridge_dev, *tmp;
1480
1481         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1482                 sbridge_put_devices(sbridge_dev);
1483                 free_sbridge_dev(sbridge_dev);
1484         }
1485 }
1486
1487 static int sbridge_get_onedevice(struct pci_dev **prev,
1488                                  u8 *num_mc,
1489                                  const struct pci_id_table *table,
1490                                  const unsigned devno)
1491 {
1492         struct sbridge_dev *sbridge_dev;
1493         const struct pci_id_descr *dev_descr = &table->descr[devno];
1494         struct pci_dev *pdev = NULL;
1495         u8 bus = 0;
1496
1497         sbridge_printk(KERN_DEBUG,
1498                 "Seeking for: PCI ID %04x:%04x\n",
1499                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1500
1501         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1502                               dev_descr->dev_id, *prev);
1503
1504         if (!pdev) {
1505                 if (*prev) {
1506                         *prev = pdev;
1507                         return 0;
1508                 }
1509
1510                 if (dev_descr->optional)
1511                         return 0;
1512
1513                 /* if the HA wasn't found */
1514                 if (devno == 0)
1515                         return -ENODEV;
1516
1517                 sbridge_printk(KERN_INFO,
1518                         "Device not found: %04x:%04x\n",
1519                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1520
1521                 /* End of list, leave */
1522                 return -ENODEV;
1523         }
1524         bus = pdev->bus->number;
1525
1526         sbridge_dev = get_sbridge_dev(bus);
1527         if (!sbridge_dev) {
1528                 sbridge_dev = alloc_sbridge_dev(bus, table);
1529                 if (!sbridge_dev) {
1530                         pci_dev_put(pdev);
1531                         return -ENOMEM;
1532                 }
1533                 (*num_mc)++;
1534         }
1535
1536         if (sbridge_dev->pdev[devno]) {
1537                 sbridge_printk(KERN_ERR,
1538                         "Duplicated device for %04x:%04x\n",
1539                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1540                 pci_dev_put(pdev);
1541                 return -ENODEV;
1542         }
1543
1544         sbridge_dev->pdev[devno] = pdev;
1545
1546         /* Be sure that the device is enabled */
1547         if (unlikely(pci_enable_device(pdev) < 0)) {
1548                 sbridge_printk(KERN_ERR,
1549                         "Couldn't enable %04x:%04x\n",
1550                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1551                 return -ENODEV;
1552         }
1553
1554         edac_dbg(0, "Detected %04x:%04x\n",
1555                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1556
1557         /*
1558          * As stated on drivers/pci/search.c, the reference count for
1559          * @from is always decremented if it is not %NULL. So, as we need
1560          * to get all devices up to null, we need to do a get for the device
1561          */
1562         pci_dev_get(pdev);
1563
1564         *prev = pdev;
1565
1566         return 0;
1567 }
1568
1569 /*
1570  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1571  *                           devices we want to reference for this driver.
1572  * @num_mc: pointer to the memory controllers count, to be incremented in case
1573  *          of success.
1574  * @table: model specific table
1575  *
1576  * returns 0 in case of success or error code
1577  */
1578 static int sbridge_get_all_devices(u8 *num_mc,
1579                                    const struct pci_id_table *table)
1580 {
1581         int i, rc;
1582         struct pci_dev *pdev = NULL;
1583
1584         while (table && table->descr) {
1585                 for (i = 0; i < table->n_devs; i++) {
1586                         pdev = NULL;
1587                         do {
1588                                 rc = sbridge_get_onedevice(&pdev, num_mc,
1589                                                            table, i);
1590                                 if (rc < 0) {
1591                                         if (i == 0) {
1592                                                 i = table->n_devs;
1593                                                 break;
1594                                         }
1595                                         sbridge_put_all_devices();
1596                                         return -ENODEV;
1597                                 }
1598                         } while (pdev);
1599                 }
1600                 table++;
1601         }
1602
1603         return 0;
1604 }
1605
1606 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1607                                  struct sbridge_dev *sbridge_dev)
1608 {
1609         struct sbridge_pvt *pvt = mci->pvt_info;
1610         struct pci_dev *pdev;
1611         int i;
1612
1613         for (i = 0; i < sbridge_dev->n_devs; i++) {
1614                 pdev = sbridge_dev->pdev[i];
1615                 if (!pdev)
1616                         continue;
1617
1618                 switch (pdev->device) {
1619                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1620                         pvt->pci_sad0 = pdev;
1621                         break;
1622                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1623                         pvt->pci_sad1 = pdev;
1624                         break;
1625                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1626                         pvt->pci_br0 = pdev;
1627                         break;
1628                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1629                         pvt->pci_ha0 = pdev;
1630                         break;
1631                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1632                         pvt->pci_ta = pdev;
1633                         break;
1634                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1635                         pvt->pci_ras = pdev;
1636                         break;
1637                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1638                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1639                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1640                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1641                 {
1642                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1643                         pvt->pci_tad[id] = pdev;
1644                 }
1645                         break;
1646                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1647                         pvt->pci_ddrio = pdev;
1648                         break;
1649                 default:
1650                         goto error;
1651                 }
1652
1653                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1654                          pdev->vendor, pdev->device,
1655                          sbridge_dev->bus,
1656                          pdev);
1657         }
1658
1659         /* Check if everything were registered */
1660         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1661             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1662                 goto enodev;
1663
1664         for (i = 0; i < NUM_CHANNELS; i++) {
1665                 if (!pvt->pci_tad[i])
1666                         goto enodev;
1667         }
1668         return 0;
1669
1670 enodev:
1671         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1672         return -ENODEV;
1673
1674 error:
1675         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1676                        PCI_VENDOR_ID_INTEL, pdev->device);
1677         return -EINVAL;
1678 }
1679
1680 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1681                                  struct sbridge_dev *sbridge_dev)
1682 {
1683         struct sbridge_pvt *pvt = mci->pvt_info;
1684         struct pci_dev *pdev, *tmp;
1685         int i;
1686         bool mode_2ha = false;
1687
1688         tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1689                              PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1690         if (tmp) {
1691                 mode_2ha = true;
1692                 pci_dev_put(tmp);
1693         }
1694
1695         for (i = 0; i < sbridge_dev->n_devs; i++) {
1696                 pdev = sbridge_dev->pdev[i];
1697                 if (!pdev)
1698                         continue;
1699
1700                 switch (pdev->device) {
1701                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1702                         pvt->pci_ha0 = pdev;
1703                         break;
1704                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1705                         pvt->pci_ta = pdev;
1706                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1707                         pvt->pci_ras = pdev;
1708                         break;
1709                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1710                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1711                         /* if we have 2 HAs active, channels 2 and 3
1712                          * are in other device */
1713                         if (mode_2ha)
1714                                 break;
1715                         /* fall through */
1716                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1717                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1718                 {
1719                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1720                         pvt->pci_tad[id] = pdev;
1721                 }
1722                         break;
1723                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1724                         pvt->pci_ddrio = pdev;
1725                         break;
1726                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1727                         if (!mode_2ha)
1728                                 pvt->pci_ddrio = pdev;
1729                         break;
1730                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1731                         pvt->pci_sad0 = pdev;
1732                         break;
1733                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1734                         pvt->pci_br0 = pdev;
1735                         break;
1736                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1737                         pvt->pci_br1 = pdev;
1738                         break;
1739                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1740                         pvt->pci_ha1 = pdev;
1741                         break;
1742                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1743                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1744                 {
1745                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
1746
1747                         /* we shouldn't have this device if we have just one
1748                          * HA present */
1749                         WARN_ON(!mode_2ha);
1750                         pvt->pci_tad[id] = pdev;
1751                 }
1752                         break;
1753                 default:
1754                         goto error;
1755                 }
1756
1757                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1758                          sbridge_dev->bus,
1759                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1760                          pdev);
1761         }
1762
1763         /* Check if everything were registered */
1764         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1765             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1766             !pvt->pci_ta)
1767                 goto enodev;
1768
1769         for (i = 0; i < NUM_CHANNELS; i++) {
1770                 if (!pvt->pci_tad[i])
1771                         goto enodev;
1772         }
1773         return 0;
1774
1775 enodev:
1776         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1777         return -ENODEV;
1778
1779 error:
1780         sbridge_printk(KERN_ERR,
1781                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1782                         pdev->device);
1783         return -EINVAL;
1784 }
1785
1786 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1787                                  struct sbridge_dev *sbridge_dev)
1788 {
1789         struct sbridge_pvt *pvt = mci->pvt_info;
1790         struct pci_dev *pdev, *tmp;
1791         int i;
1792         bool mode_2ha = false;
1793
1794         tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1795                              PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
1796         if (tmp) {
1797                 mode_2ha = true;
1798                 pci_dev_put(tmp);
1799         }
1800
1801         /* there's only one device per system; not tied to any bus */
1802         if (pvt->info.pci_vtd == NULL)
1803                 /* result will be checked later */
1804                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1805                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1806                                                    NULL);
1807
1808         for (i = 0; i < sbridge_dev->n_devs; i++) {
1809                 pdev = sbridge_dev->pdev[i];
1810                 if (!pdev)
1811                         continue;
1812
1813                 switch (pdev->device) {
1814                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1815                         pvt->pci_sad0 = pdev;
1816                         break;
1817                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1818                         pvt->pci_sad1 = pdev;
1819                         break;
1820                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1821                         pvt->pci_ha0 = pdev;
1822                         break;
1823                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1824                         pvt->pci_ta = pdev;
1825                         break;
1826                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1827                         pvt->pci_ras = pdev;
1828                         break;
1829                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1830                         pvt->pci_tad[0] = pdev;
1831                         break;
1832                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1833                         pvt->pci_tad[1] = pdev;
1834                         break;
1835                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1836                         if (!mode_2ha)
1837                                 pvt->pci_tad[2] = pdev;
1838                         break;
1839                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1840                         if (!mode_2ha)
1841                                 pvt->pci_tad[3] = pdev;
1842                         break;
1843                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1844                         pvt->pci_ddrio = pdev;
1845                         break;
1846                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1847                         pvt->pci_ha1 = pdev;
1848                         break;
1849                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1850                         pvt->pci_ha1_ta = pdev;
1851                         break;
1852                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1853                         if (mode_2ha)
1854                                 pvt->pci_tad[2] = pdev;
1855                         break;
1856                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1857                         if (mode_2ha)
1858                                 pvt->pci_tad[3] = pdev;
1859                         break;
1860                 default:
1861                         break;
1862                 }
1863
1864                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1865                          sbridge_dev->bus,
1866                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1867                          pdev);
1868         }
1869
1870         /* Check if everything were registered */
1871         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1872             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1873                 goto enodev;
1874
1875         for (i = 0; i < NUM_CHANNELS; i++) {
1876                 if (!pvt->pci_tad[i])
1877                         goto enodev;
1878         }
1879         return 0;
1880
1881 enodev:
1882         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1883         return -ENODEV;
1884 }
1885
1886 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
1887                                  struct sbridge_dev *sbridge_dev)
1888 {
1889         struct sbridge_pvt *pvt = mci->pvt_info;
1890         struct pci_dev *pdev;
1891         int i;
1892
1893         /* there's only one device per system; not tied to any bus */
1894         if (pvt->info.pci_vtd == NULL)
1895                 /* result will be checked later */
1896                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1897                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
1898                                                    NULL);
1899
1900         for (i = 0; i < sbridge_dev->n_devs; i++) {
1901                 pdev = sbridge_dev->pdev[i];
1902                 if (!pdev)
1903                         continue;
1904
1905                 switch (pdev->device) {
1906                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
1907                         pvt->pci_sad0 = pdev;
1908                         break;
1909                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
1910                         pvt->pci_sad1 = pdev;
1911                         break;
1912                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
1913                         pvt->pci_ha0 = pdev;
1914                         break;
1915                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
1916                         pvt->pci_ta = pdev;
1917                         break;
1918                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
1919                         pvt->pci_ras = pdev;
1920                         break;
1921                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
1922                         pvt->pci_tad[0] = pdev;
1923                         break;
1924                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
1925                         pvt->pci_tad[1] = pdev;
1926                         break;
1927                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
1928                         pvt->pci_tad[2] = pdev;
1929                         break;
1930                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
1931                         pvt->pci_tad[3] = pdev;
1932                         break;
1933                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
1934                         pvt->pci_ddrio = pdev;
1935                         break;
1936                 default:
1937                         break;
1938                 }
1939
1940                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1941                          sbridge_dev->bus,
1942                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1943                          pdev);
1944         }
1945
1946         /* Check if everything were registered */
1947         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1948             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1949                 goto enodev;
1950
1951         for (i = 0; i < NUM_CHANNELS; i++) {
1952                 if (!pvt->pci_tad[i])
1953                         goto enodev;
1954         }
1955         return 0;
1956
1957 enodev:
1958         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1959         return -ENODEV;
1960 }
1961
1962 /****************************************************************************
1963                         Error check routines
1964  ****************************************************************************/
1965
1966 /*
1967  * While Sandy Bridge has error count registers, SMI BIOS read values from
1968  * and resets the counters. So, they are not reliable for the OS to read
1969  * from them. So, we have no option but to just trust on whatever MCE is
1970  * telling us about the errors.
1971  */
1972 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1973                                     const struct mce *m)
1974 {
1975         struct mem_ctl_info *new_mci;
1976         struct sbridge_pvt *pvt = mci->pvt_info;
1977         enum hw_event_mc_err_type tp_event;
1978         char *type, *optype, msg[256];
1979         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1980         bool overflow = GET_BITFIELD(m->status, 62, 62);
1981         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1982         bool recoverable;
1983         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1984         u32 mscod = GET_BITFIELD(m->status, 16, 31);
1985         u32 errcode = GET_BITFIELD(m->status, 0, 15);
1986         u32 channel = GET_BITFIELD(m->status, 0, 3);
1987         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1988         long channel_mask, first_channel;
1989         u8  rank, socket;
1990         int rc, dimm;
1991         char *area_type = NULL;
1992
1993         if (pvt->info.type == IVY_BRIDGE)
1994                 recoverable = true;
1995         else
1996                 recoverable = GET_BITFIELD(m->status, 56, 56);
1997
1998         if (uncorrected_error) {
1999                 if (ripv) {
2000                         type = "FATAL";
2001                         tp_event = HW_EVENT_ERR_FATAL;
2002                 } else {
2003                         type = "NON_FATAL";
2004                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2005                 }
2006         } else {
2007                 type = "CORRECTED";
2008                 tp_event = HW_EVENT_ERR_CORRECTED;
2009         }
2010
2011         /*
2012          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2013          * memory errors should fit in this mask:
2014          *      000f 0000 1mmm cccc (binary)
2015          * where:
2016          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2017          *          won't be shown
2018          *      mmm = error type
2019          *      cccc = channel
2020          * If the mask doesn't match, report an error to the parsing logic
2021          */
2022         if (! ((errcode & 0xef80) == 0x80)) {
2023                 optype = "Can't parse: it is not a mem";
2024         } else {
2025                 switch (optypenum) {
2026                 case 0:
2027                         optype = "generic undef request error";
2028                         break;
2029                 case 1:
2030                         optype = "memory read error";
2031                         break;
2032                 case 2:
2033                         optype = "memory write error";
2034                         break;
2035                 case 3:
2036                         optype = "addr/cmd error";
2037                         break;
2038                 case 4:
2039                         optype = "memory scrubbing error";
2040                         break;
2041                 default:
2042                         optype = "reserved";
2043                         break;
2044                 }
2045         }
2046
2047         /* Only decode errors with an valid address (ADDRV) */
2048         if (!GET_BITFIELD(m->status, 58, 58))
2049                 return;
2050
2051         rc = get_memory_error_data(mci, m->addr, &socket,
2052                                    &channel_mask, &rank, &area_type, msg);
2053         if (rc < 0)
2054                 goto err_parsing;
2055         new_mci = get_mci_for_node_id(socket);
2056         if (!new_mci) {
2057                 strcpy(msg, "Error: socket got corrupted!");
2058                 goto err_parsing;
2059         }
2060         mci = new_mci;
2061         pvt = mci->pvt_info;
2062
2063         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2064
2065         if (rank < 4)
2066                 dimm = 0;
2067         else if (rank < 8)
2068                 dimm = 1;
2069         else
2070                 dimm = 2;
2071
2072
2073         /*
2074          * FIXME: On some memory configurations (mirror, lockstep), the
2075          * Memory Controller can't point the error to a single DIMM. The
2076          * EDAC core should be handling the channel mask, in order to point
2077          * to the group of dimm's where the error may be happening.
2078          */
2079         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2080                 channel = first_channel;
2081
2082         snprintf(msg, sizeof(msg),
2083                  "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
2084                  overflow ? " OVERFLOW" : "",
2085                  (uncorrected_error && recoverable) ? " recoverable" : "",
2086                  area_type,
2087                  mscod, errcode,
2088                  socket,
2089                  channel_mask,
2090                  rank);
2091
2092         edac_dbg(0, "%s\n", msg);
2093
2094         /* FIXME: need support for channel mask */
2095
2096         if (channel == CHANNEL_UNSPECIFIED)
2097                 channel = -1;
2098
2099         /* Call the helper to output message */
2100         edac_mc_handle_error(tp_event, mci, core_err_cnt,
2101                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2102                              channel, dimm, -1,
2103                              optype, msg);
2104         return;
2105 err_parsing:
2106         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2107                              -1, -1, -1,
2108                              msg, "");
2109
2110 }
2111
2112 /*
2113  *      sbridge_check_error     Retrieve and process errors reported by the
2114  *                              hardware. Called by the Core module.
2115  */
2116 static void sbridge_check_error(struct mem_ctl_info *mci)
2117 {
2118         struct sbridge_pvt *pvt = mci->pvt_info;
2119         int i;
2120         unsigned count = 0;
2121         struct mce *m;
2122
2123         /*
2124          * MCE first step: Copy all mce errors into a temporary buffer
2125          * We use a double buffering here, to reduce the risk of
2126          * loosing an error.
2127          */
2128         smp_rmb();
2129         count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
2130                 % MCE_LOG_LEN;
2131         if (!count)
2132                 return;
2133
2134         m = pvt->mce_outentry;
2135         if (pvt->mce_in + count > MCE_LOG_LEN) {
2136                 unsigned l = MCE_LOG_LEN - pvt->mce_in;
2137
2138                 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2139                 smp_wmb();
2140                 pvt->mce_in = 0;
2141                 count -= l;
2142                 m += l;
2143         }
2144         memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2145         smp_wmb();
2146         pvt->mce_in += count;
2147
2148         smp_rmb();
2149         if (pvt->mce_overrun) {
2150                 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2151                               pvt->mce_overrun);
2152                 smp_wmb();
2153                 pvt->mce_overrun = 0;
2154         }
2155
2156         /*
2157          * MCE second step: parse errors and display
2158          */
2159         for (i = 0; i < count; i++)
2160                 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2161 }
2162
2163 /*
2164  * sbridge_mce_check_error      Replicates mcelog routine to get errors
2165  *                              This routine simply queues mcelog errors, and
2166  *                              return. The error itself should be handled later
2167  *                              by sbridge_check_error.
2168  * WARNING: As this routine should be called at NMI time, extra care should
2169  * be taken to avoid deadlocks, and to be as fast as possible.
2170  */
2171 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2172                                    void *data)
2173 {
2174         struct mce *mce = (struct mce *)data;
2175         struct mem_ctl_info *mci;
2176         struct sbridge_pvt *pvt;
2177         char *type;
2178
2179         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2180                 return NOTIFY_DONE;
2181
2182         mci = get_mci_for_node_id(mce->socketid);
2183         if (!mci)
2184                 return NOTIFY_BAD;
2185         pvt = mci->pvt_info;
2186
2187         /*
2188          * Just let mcelog handle it if the error is
2189          * outside the memory controller. A memory error
2190          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2191          * bit 12 has an special meaning.
2192          */
2193         if ((mce->status & 0xefff) >> 7 != 1)
2194                 return NOTIFY_DONE;
2195
2196         if (mce->mcgstatus & MCG_STATUS_MCIP)
2197                 type = "Exception";
2198         else
2199                 type = "Event";
2200
2201         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2202
2203         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2204                           "Bank %d: %016Lx\n", mce->extcpu, type,
2205                           mce->mcgstatus, mce->bank, mce->status);
2206         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2207         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2208         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2209
2210         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2211                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2212                           mce->time, mce->socketid, mce->apicid);
2213
2214         smp_rmb();
2215         if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2216                 smp_wmb();
2217                 pvt->mce_overrun++;
2218                 return NOTIFY_DONE;
2219         }
2220
2221         /* Copy memory error at the ringbuffer */
2222         memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2223         smp_wmb();
2224         pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2225
2226         /* Handle fatal errors immediately */
2227         if (mce->mcgstatus & 1)
2228                 sbridge_check_error(mci);
2229
2230         /* Advice mcelog that the error were handled */
2231         return NOTIFY_STOP;
2232 }
2233
2234 static struct notifier_block sbridge_mce_dec = {
2235         .notifier_call      = sbridge_mce_check_error,
2236 };
2237
2238 /****************************************************************************
2239                         EDAC register/unregister logic
2240  ****************************************************************************/
2241
2242 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2243 {
2244         struct mem_ctl_info *mci = sbridge_dev->mci;
2245         struct sbridge_pvt *pvt;
2246
2247         if (unlikely(!mci || !mci->pvt_info)) {
2248                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2249
2250                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2251                 return;
2252         }
2253
2254         pvt = mci->pvt_info;
2255
2256         edac_dbg(0, "MC: mci = %p, dev = %p\n",
2257                  mci, &sbridge_dev->pdev[0]->dev);
2258
2259         /* Remove MC sysfs nodes */
2260         edac_mc_del_mc(mci->pdev);
2261
2262         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2263         kfree(mci->ctl_name);
2264         edac_mc_free(mci);
2265         sbridge_dev->mci = NULL;
2266 }
2267
2268 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2269 {
2270         struct mem_ctl_info *mci;
2271         struct edac_mc_layer layers[2];
2272         struct sbridge_pvt *pvt;
2273         struct pci_dev *pdev = sbridge_dev->pdev[0];
2274         int rc;
2275
2276         /* Check the number of active and not disabled channels */
2277         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2278         if (unlikely(rc < 0))
2279                 return rc;
2280
2281         /* allocate a new MC control structure */
2282         layers[0].type = EDAC_MC_LAYER_CHANNEL;
2283         layers[0].size = NUM_CHANNELS;
2284         layers[0].is_virt_csrow = false;
2285         layers[1].type = EDAC_MC_LAYER_SLOT;
2286         layers[1].size = MAX_DIMMS;
2287         layers[1].is_virt_csrow = true;
2288         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2289                             sizeof(*pvt));
2290
2291         if (unlikely(!mci))
2292                 return -ENOMEM;
2293
2294         edac_dbg(0, "MC: mci = %p, dev = %p\n",
2295                  mci, &pdev->dev);
2296
2297         pvt = mci->pvt_info;
2298         memset(pvt, 0, sizeof(*pvt));
2299
2300         /* Associate sbridge_dev and mci for future usage */
2301         pvt->sbridge_dev = sbridge_dev;
2302         sbridge_dev->mci = mci;
2303
2304         mci->mtype_cap = MEM_FLAG_DDR3;
2305         mci->edac_ctl_cap = EDAC_FLAG_NONE;
2306         mci->edac_cap = EDAC_FLAG_NONE;
2307         mci->mod_name = "sbridge_edac.c";
2308         mci->mod_ver = SBRIDGE_REVISION;
2309         mci->dev_name = pci_name(pdev);
2310         mci->ctl_page_to_phys = NULL;
2311
2312         /* Set the function pointer to an actual operation function */
2313         mci->edac_check = sbridge_check_error;
2314
2315         pvt->info.type = type;
2316         switch (type) {
2317         case IVY_BRIDGE:
2318                 pvt->info.rankcfgr = IB_RANK_CFG_A;
2319                 pvt->info.get_tolm = ibridge_get_tolm;
2320                 pvt->info.get_tohm = ibridge_get_tohm;
2321                 pvt->info.dram_rule = ibridge_dram_rule;
2322                 pvt->info.get_memory_type = get_memory_type;
2323                 pvt->info.get_node_id = get_node_id;
2324                 pvt->info.rir_limit = rir_limit;
2325                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2326                 pvt->info.interleave_list = ibridge_interleave_list;
2327                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2328                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2329                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2330
2331                 /* Store pci devices at mci for faster access */
2332                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2333                 if (unlikely(rc < 0))
2334                         goto fail0;
2335                 break;
2336         case SANDY_BRIDGE:
2337                 pvt->info.rankcfgr = SB_RANK_CFG_A;
2338                 pvt->info.get_tolm = sbridge_get_tolm;
2339                 pvt->info.get_tohm = sbridge_get_tohm;
2340                 pvt->info.dram_rule = sbridge_dram_rule;
2341                 pvt->info.get_memory_type = get_memory_type;
2342                 pvt->info.get_node_id = get_node_id;
2343                 pvt->info.rir_limit = rir_limit;
2344                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2345                 pvt->info.interleave_list = sbridge_interleave_list;
2346                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2347                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
2348                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2349
2350                 /* Store pci devices at mci for faster access */
2351                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2352                 if (unlikely(rc < 0))
2353                         goto fail0;
2354                 break;
2355         case HASWELL:
2356                 /* rankcfgr isn't used */
2357                 pvt->info.get_tolm = haswell_get_tolm;
2358                 pvt->info.get_tohm = haswell_get_tohm;
2359                 pvt->info.dram_rule = ibridge_dram_rule;
2360                 pvt->info.get_memory_type = haswell_get_memory_type;
2361                 pvt->info.get_node_id = haswell_get_node_id;
2362                 pvt->info.rir_limit = haswell_rir_limit;
2363                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2364                 pvt->info.interleave_list = ibridge_interleave_list;
2365                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2366                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2367                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2368
2369                 /* Store pci devices at mci for faster access */
2370                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
2371                 if (unlikely(rc < 0))
2372                         goto fail0;
2373                 break;
2374         case BROADWELL:
2375                 /* rankcfgr isn't used */
2376                 pvt->info.get_tolm = haswell_get_tolm;
2377                 pvt->info.get_tohm = haswell_get_tohm;
2378                 pvt->info.dram_rule = ibridge_dram_rule;
2379                 pvt->info.get_memory_type = haswell_get_memory_type;
2380                 pvt->info.get_node_id = haswell_get_node_id;
2381                 pvt->info.rir_limit = haswell_rir_limit;
2382                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2383                 pvt->info.interleave_list = ibridge_interleave_list;
2384                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2385                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2386                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
2387
2388                 /* Store pci devices at mci for faster access */
2389                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
2390                 if (unlikely(rc < 0))
2391                         goto fail0;
2392                 break;
2393         }
2394
2395         /* Get dimm basic config and the memory layout */
2396         get_dimm_config(mci);
2397         get_memory_layout(mci);
2398
2399         /* record ptr to the generic device */
2400         mci->pdev = &pdev->dev;
2401
2402         /* add this new MC control structure to EDAC's list of MCs */
2403         if (unlikely(edac_mc_add_mc(mci))) {
2404                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2405                 rc = -EINVAL;
2406                 goto fail0;
2407         }
2408
2409         return 0;
2410
2411 fail0:
2412         kfree(mci->ctl_name);
2413         edac_mc_free(mci);
2414         sbridge_dev->mci = NULL;
2415         return rc;
2416 }
2417
2418 /*
2419  *      sbridge_probe   Probe for ONE instance of device to see if it is
2420  *                      present.
2421  *      return:
2422  *              0 for FOUND a device
2423  *              < 0 for error code
2424  */
2425
2426 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2427 {
2428         int rc = -ENODEV;
2429         u8 mc, num_mc = 0;
2430         struct sbridge_dev *sbridge_dev;
2431         enum type type = SANDY_BRIDGE;
2432
2433         /* get the pci devices we want to reserve for our use */
2434         mutex_lock(&sbridge_edac_lock);
2435
2436         /*
2437          * All memory controllers are allocated at the first pass.
2438          */
2439         if (unlikely(probed >= 1)) {
2440                 mutex_unlock(&sbridge_edac_lock);
2441                 return -ENODEV;
2442         }
2443         probed++;
2444
2445         switch (pdev->device) {
2446         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2447                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2448                 type = IVY_BRIDGE;
2449                 break;
2450         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2451                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2452                 type = SANDY_BRIDGE;
2453                 break;
2454         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2455                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2456                 type = HASWELL;
2457                 break;
2458         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2459                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
2460                 type = BROADWELL;
2461                 break;
2462         }
2463         if (unlikely(rc < 0)) {
2464                 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2465                 goto fail0;
2466         }
2467
2468         mc = 0;
2469
2470         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2471                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2472                          mc, mc + 1, num_mc);
2473
2474                 sbridge_dev->mc = mc++;
2475                 rc = sbridge_register_mci(sbridge_dev, type);
2476                 if (unlikely(rc < 0))
2477                         goto fail1;
2478         }
2479
2480         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2481
2482         mutex_unlock(&sbridge_edac_lock);
2483         return 0;
2484
2485 fail1:
2486         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2487                 sbridge_unregister_mci(sbridge_dev);
2488
2489         sbridge_put_all_devices();
2490 fail0:
2491         mutex_unlock(&sbridge_edac_lock);
2492         return rc;
2493 }
2494
2495 /*
2496  *      sbridge_remove  destructor for one instance of device
2497  *
2498  */
2499 static void sbridge_remove(struct pci_dev *pdev)
2500 {
2501         struct sbridge_dev *sbridge_dev;
2502
2503         edac_dbg(0, "\n");
2504
2505         /*
2506          * we have a trouble here: pdev value for removal will be wrong, since
2507          * it will point to the X58 register used to detect that the machine
2508          * is a Nehalem or upper design. However, due to the way several PCI
2509          * devices are grouped together to provide MC functionality, we need
2510          * to use a different method for releasing the devices
2511          */
2512
2513         mutex_lock(&sbridge_edac_lock);
2514
2515         if (unlikely(!probed)) {
2516                 mutex_unlock(&sbridge_edac_lock);
2517                 return;
2518         }
2519
2520         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2521                 sbridge_unregister_mci(sbridge_dev);
2522
2523         /* Release PCI resources */
2524         sbridge_put_all_devices();
2525
2526         probed--;
2527
2528         mutex_unlock(&sbridge_edac_lock);
2529 }
2530
2531 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2532
2533 /*
2534  *      sbridge_driver  pci_driver structure for this module
2535  *
2536  */
2537 static struct pci_driver sbridge_driver = {
2538         .name     = "sbridge_edac",
2539         .probe    = sbridge_probe,
2540         .remove   = sbridge_remove,
2541         .id_table = sbridge_pci_tbl,
2542 };
2543
2544 /*
2545  *      sbridge_init            Module entry function
2546  *                      Try to initialize this module for its devices
2547  */
2548 static int __init sbridge_init(void)
2549 {
2550         int pci_rc;
2551
2552         edac_dbg(2, "\n");
2553
2554         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2555         opstate_init();
2556
2557         pci_rc = pci_register_driver(&sbridge_driver);
2558         if (pci_rc >= 0) {
2559                 mce_register_decode_chain(&sbridge_mce_dec);
2560                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2561                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2562                 return 0;
2563         }
2564
2565         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2566                       pci_rc);
2567
2568         return pci_rc;
2569 }
2570
2571 /*
2572  *      sbridge_exit()  Module exit function
2573  *                      Unregister the driver
2574  */
2575 static void __exit sbridge_exit(void)
2576 {
2577         edac_dbg(2, "\n");
2578         pci_unregister_driver(&sbridge_driver);
2579         mce_unregister_decode_chain(&sbridge_mce_dec);
2580 }
2581
2582 module_init(sbridge_init);
2583 module_exit(sbridge_exit);
2584
2585 module_param(edac_op_state, int, 0444);
2586 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2587
2588 MODULE_LICENSE("GPL");
2589 MODULE_AUTHOR("Mauro Carvalho Chehab");
2590 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2591 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2592                    SBRIDGE_REVISION);