Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         unsigned long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = kstrtoul(val, 0, &l);
62         if (ret)
63                 return ret;
64
65         if (l < 1000)
66                 return -EINVAL;
67
68         *((unsigned long *)kp->arg) = l;
69
70         /* notify edac_mc engine to reset the poll period */
71         edac_mc_reset_delay_period(l);
72
73         return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81                  "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84                  "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86                   &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95         [MEM_EMPTY] = "Empty",
96         [MEM_RESERVED] = "Reserved",
97         [MEM_UNKNOWN] = "Unknown",
98         [MEM_FPM] = "FPM",
99         [MEM_EDO] = "EDO",
100         [MEM_BEDO] = "BEDO",
101         [MEM_SDR] = "Unbuffered-SDR",
102         [MEM_RDR] = "Registered-SDR",
103         [MEM_DDR] = "Unbuffered-DDR",
104         [MEM_RDDR] = "Registered-DDR",
105         [MEM_RMBS] = "RMBS",
106         [MEM_DDR2] = "Unbuffered-DDR2",
107         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108         [MEM_RDDR2] = "Registered-DDR2",
109         [MEM_XDR] = "XDR",
110         [MEM_DDR3] = "Unbuffered-DDR3",
111         [MEM_RDDR3] = "Registered-DDR3",
112         [MEM_DDR4] = "Unbuffered-DDR4",
113         [MEM_RDDR4] = "Registered-DDR4"
114 };
115
116 static const char * const dev_types[] = {
117         [DEV_UNKNOWN] = "Unknown",
118         [DEV_X1] = "x1",
119         [DEV_X2] = "x2",
120         [DEV_X4] = "x4",
121         [DEV_X8] = "x8",
122         [DEV_X16] = "x16",
123         [DEV_X32] = "x32",
124         [DEV_X64] = "x64"
125 };
126
127 static const char * const edac_caps[] = {
128         [EDAC_UNKNOWN] = "Unknown",
129         [EDAC_NONE] = "None",
130         [EDAC_RESERVED] = "Reserved",
131         [EDAC_PARITY] = "PARITY",
132         [EDAC_EC] = "EC",
133         [EDAC_SECDED] = "SECDED",
134         [EDAC_S2ECD2ED] = "S2ECD2ED",
135         [EDAC_S4ECD4ED] = "S4ECD4ED",
136         [EDAC_S8ECD8ED] = "S8ECD8ED",
137         [EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152         static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153
154 struct dev_ch_attribute {
155         struct device_attribute attr;
156         int channel;
157 };
158
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160         static struct dev_ch_attribute dev_attr_legacy_##_name = \
161                 { __ATTR(_name, _mode, _show, _store), (_var) }
162
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167                                    struct device_attribute *mattr, char *data)
168 {
169         struct csrow_info *csrow = to_csrow(dev);
170
171         return sprintf(data, "%u\n", csrow->ue_count);
172 }
173
174 static ssize_t csrow_ce_count_show(struct device *dev,
175                                    struct device_attribute *mattr, char *data)
176 {
177         struct csrow_info *csrow = to_csrow(dev);
178
179         return sprintf(data, "%u\n", csrow->ce_count);
180 }
181
182 static ssize_t csrow_size_show(struct device *dev,
183                                struct device_attribute *mattr, char *data)
184 {
185         struct csrow_info *csrow = to_csrow(dev);
186         int i;
187         u32 nr_pages = 0;
188
189         for (i = 0; i < csrow->nr_channels; i++)
190                 nr_pages += csrow->channels[i]->dimm->nr_pages;
191         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193
194 static ssize_t csrow_mem_type_show(struct device *dev,
195                                    struct device_attribute *mattr, char *data)
196 {
197         struct csrow_info *csrow = to_csrow(dev);
198
199         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201
202 static ssize_t csrow_dev_type_show(struct device *dev,
203                                    struct device_attribute *mattr, char *data)
204 {
205         struct csrow_info *csrow = to_csrow(dev);
206
207         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211                                     struct device_attribute *mattr,
212                                     char *data)
213 {
214         struct csrow_info *csrow = to_csrow(dev);
215
216         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221                                        struct device_attribute *mattr,
222                                        char *data)
223 {
224         struct csrow_info *csrow = to_csrow(dev);
225         unsigned chan = to_channel(mattr);
226         struct rank_info *rank = csrow->channels[chan];
227
228         /* if field has not been initialized, there is nothing to send */
229         if (!rank->dimm->label[0])
230                 return 0;
231
232         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
233                         rank->dimm->label);
234 }
235
236 static ssize_t channel_dimm_label_store(struct device *dev,
237                                         struct device_attribute *mattr,
238                                         const char *data, size_t count)
239 {
240         struct csrow_info *csrow = to_csrow(dev);
241         unsigned chan = to_channel(mattr);
242         struct rank_info *rank = csrow->channels[chan];
243
244         ssize_t max_size = 0;
245
246         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
247         strncpy(rank->dimm->label, data, max_size);
248         rank->dimm->label[max_size] = '\0';
249
250         return max_size;
251 }
252
253 /* show function for dynamic chX_ce_count attribute */
254 static ssize_t channel_ce_count_show(struct device *dev,
255                                      struct device_attribute *mattr, char *data)
256 {
257         struct csrow_info *csrow = to_csrow(dev);
258         unsigned chan = to_channel(mattr);
259         struct rank_info *rank = csrow->channels[chan];
260
261         return sprintf(data, "%u\n", rank->ce_count);
262 }
263
264 /* cwrow<id>/attribute files */
265 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
266 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
267 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
268 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
269 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
270 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
271
272 /* default attributes of the CSROW<id> object */
273 static struct attribute *csrow_attrs[] = {
274         &dev_attr_legacy_dev_type.attr,
275         &dev_attr_legacy_mem_type.attr,
276         &dev_attr_legacy_edac_mode.attr,
277         &dev_attr_legacy_size_mb.attr,
278         &dev_attr_legacy_ue_count.attr,
279         &dev_attr_legacy_ce_count.attr,
280         NULL,
281 };
282
283 static struct attribute_group csrow_attr_grp = {
284         .attrs  = csrow_attrs,
285 };
286
287 static const struct attribute_group *csrow_attr_groups[] = {
288         &csrow_attr_grp,
289         NULL
290 };
291
292 static void csrow_attr_release(struct device *dev)
293 {
294         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
295
296         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
297         kfree(csrow);
298 }
299
300 static struct device_type csrow_attr_type = {
301         .groups         = csrow_attr_groups,
302         .release        = csrow_attr_release,
303 };
304
305 /*
306  * possible dynamic channel DIMM Label attribute files
307  *
308  */
309
310 #define EDAC_NR_CHANNELS        6
311
312 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
313         channel_dimm_label_show, channel_dimm_label_store, 0);
314 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
315         channel_dimm_label_show, channel_dimm_label_store, 1);
316 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
317         channel_dimm_label_show, channel_dimm_label_store, 2);
318 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
319         channel_dimm_label_show, channel_dimm_label_store, 3);
320 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
321         channel_dimm_label_show, channel_dimm_label_store, 4);
322 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
323         channel_dimm_label_show, channel_dimm_label_store, 5);
324
325 /* Total possible dynamic DIMM Label attribute file table */
326 static struct attribute *dynamic_csrow_dimm_attr[] = {
327         &dev_attr_legacy_ch0_dimm_label.attr.attr,
328         &dev_attr_legacy_ch1_dimm_label.attr.attr,
329         &dev_attr_legacy_ch2_dimm_label.attr.attr,
330         &dev_attr_legacy_ch3_dimm_label.attr.attr,
331         &dev_attr_legacy_ch4_dimm_label.attr.attr,
332         &dev_attr_legacy_ch5_dimm_label.attr.attr,
333         NULL
334 };
335
336 /* possible dynamic channel ce_count attribute files */
337 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
338                    channel_ce_count_show, NULL, 0);
339 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
340                    channel_ce_count_show, NULL, 1);
341 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
342                    channel_ce_count_show, NULL, 2);
343 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
344                    channel_ce_count_show, NULL, 3);
345 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
346                    channel_ce_count_show, NULL, 4);
347 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
348                    channel_ce_count_show, NULL, 5);
349
350 /* Total possible dynamic ce_count attribute file table */
351 static struct attribute *dynamic_csrow_ce_count_attr[] = {
352         &dev_attr_legacy_ch0_ce_count.attr.attr,
353         &dev_attr_legacy_ch1_ce_count.attr.attr,
354         &dev_attr_legacy_ch2_ce_count.attr.attr,
355         &dev_attr_legacy_ch3_ce_count.attr.attr,
356         &dev_attr_legacy_ch4_ce_count.attr.attr,
357         &dev_attr_legacy_ch5_ce_count.attr.attr,
358         NULL
359 };
360
361 static umode_t csrow_dev_is_visible(struct kobject *kobj,
362                                     struct attribute *attr, int idx)
363 {
364         struct device *dev = kobj_to_dev(kobj);
365         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
366
367         if (idx >= csrow->nr_channels)
368                 return 0;
369         /* Only expose populated DIMMs */
370         if (!csrow->channels[idx]->dimm->nr_pages)
371                 return 0;
372         return attr->mode;
373 }
374
375
376 static const struct attribute_group csrow_dev_dimm_group = {
377         .attrs = dynamic_csrow_dimm_attr,
378         .is_visible = csrow_dev_is_visible,
379 };
380
381 static const struct attribute_group csrow_dev_ce_count_group = {
382         .attrs = dynamic_csrow_ce_count_attr,
383         .is_visible = csrow_dev_is_visible,
384 };
385
386 static const struct attribute_group *csrow_dev_groups[] = {
387         &csrow_dev_dimm_group,
388         &csrow_dev_ce_count_group,
389         NULL
390 };
391
392 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
393 {
394         int chan, nr_pages = 0;
395
396         for (chan = 0; chan < csrow->nr_channels; chan++)
397                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
398
399         return nr_pages;
400 }
401
402 /* Create a CSROW object under specifed edac_mc_device */
403 static int edac_create_csrow_object(struct mem_ctl_info *mci,
404                                     struct csrow_info *csrow, int index)
405 {
406         if (csrow->nr_channels > EDAC_NR_CHANNELS)
407                 return -ENODEV;
408
409         csrow->dev.type = &csrow_attr_type;
410         csrow->dev.bus = mci->bus;
411         csrow->dev.groups = csrow_dev_groups;
412         device_initialize(&csrow->dev);
413         csrow->dev.parent = &mci->dev;
414         csrow->mci = mci;
415         dev_set_name(&csrow->dev, "csrow%d", index);
416         dev_set_drvdata(&csrow->dev, csrow);
417
418         edac_dbg(0, "creating (virtual) csrow node %s\n",
419                  dev_name(&csrow->dev));
420
421         return device_add(&csrow->dev);
422 }
423
424 /* Create a CSROW object under specifed edac_mc_device */
425 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
426 {
427         int err, i;
428         struct csrow_info *csrow;
429
430         for (i = 0; i < mci->nr_csrows; i++) {
431                 csrow = mci->csrows[i];
432                 if (!nr_pages_per_csrow(csrow))
433                         continue;
434                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
435                 if (err < 0) {
436                         edac_dbg(1,
437                                  "failure: create csrow objects for csrow %d\n",
438                                  i);
439                         goto error;
440                 }
441         }
442         return 0;
443
444 error:
445         for (--i; i >= 0; i--) {
446                 csrow = mci->csrows[i];
447                 if (!nr_pages_per_csrow(csrow))
448                         continue;
449                 put_device(&mci->csrows[i]->dev);
450         }
451
452         return err;
453 }
454
455 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
456 {
457         int i;
458         struct csrow_info *csrow;
459
460         for (i = mci->nr_csrows - 1; i >= 0; i--) {
461                 csrow = mci->csrows[i];
462                 if (!nr_pages_per_csrow(csrow))
463                         continue;
464                 device_unregister(&mci->csrows[i]->dev);
465         }
466 }
467 #endif
468
469 /*
470  * Per-dimm (or per-rank) devices
471  */
472
473 #define to_dimm(k) container_of(k, struct dimm_info, dev)
474
475 /* show/store functions for DIMM Label attributes */
476 static ssize_t dimmdev_location_show(struct device *dev,
477                                      struct device_attribute *mattr, char *data)
478 {
479         struct dimm_info *dimm = to_dimm(dev);
480
481         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
482 }
483
484 static ssize_t dimmdev_label_show(struct device *dev,
485                                   struct device_attribute *mattr, char *data)
486 {
487         struct dimm_info *dimm = to_dimm(dev);
488
489         /* if field has not been initialized, there is nothing to send */
490         if (!dimm->label[0])
491                 return 0;
492
493         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
494 }
495
496 static ssize_t dimmdev_label_store(struct device *dev,
497                                    struct device_attribute *mattr,
498                                    const char *data,
499                                    size_t count)
500 {
501         struct dimm_info *dimm = to_dimm(dev);
502
503         ssize_t max_size = 0;
504
505         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
506         strncpy(dimm->label, data, max_size);
507         dimm->label[max_size] = '\0';
508
509         return max_size;
510 }
511
512 static ssize_t dimmdev_size_show(struct device *dev,
513                                  struct device_attribute *mattr, char *data)
514 {
515         struct dimm_info *dimm = to_dimm(dev);
516
517         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
518 }
519
520 static ssize_t dimmdev_mem_type_show(struct device *dev,
521                                      struct device_attribute *mattr, char *data)
522 {
523         struct dimm_info *dimm = to_dimm(dev);
524
525         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
526 }
527
528 static ssize_t dimmdev_dev_type_show(struct device *dev,
529                                      struct device_attribute *mattr, char *data)
530 {
531         struct dimm_info *dimm = to_dimm(dev);
532
533         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
534 }
535
536 static ssize_t dimmdev_edac_mode_show(struct device *dev,
537                                       struct device_attribute *mattr,
538                                       char *data)
539 {
540         struct dimm_info *dimm = to_dimm(dev);
541
542         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
543 }
544
545 /* dimm/rank attribute files */
546 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
547                    dimmdev_label_show, dimmdev_label_store);
548 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
549 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
550 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
551 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
552 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
553
554 /* attributes of the dimm<id>/rank<id> object */
555 static struct attribute *dimm_attrs[] = {
556         &dev_attr_dimm_label.attr,
557         &dev_attr_dimm_location.attr,
558         &dev_attr_size.attr,
559         &dev_attr_dimm_mem_type.attr,
560         &dev_attr_dimm_dev_type.attr,
561         &dev_attr_dimm_edac_mode.attr,
562         NULL,
563 };
564
565 static struct attribute_group dimm_attr_grp = {
566         .attrs  = dimm_attrs,
567 };
568
569 static const struct attribute_group *dimm_attr_groups[] = {
570         &dimm_attr_grp,
571         NULL
572 };
573
574 static void dimm_attr_release(struct device *dev)
575 {
576         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
577
578         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
579         kfree(dimm);
580 }
581
582 static struct device_type dimm_attr_type = {
583         .groups         = dimm_attr_groups,
584         .release        = dimm_attr_release,
585 };
586
587 /* Create a DIMM object under specifed memory controller device */
588 static int edac_create_dimm_object(struct mem_ctl_info *mci,
589                                    struct dimm_info *dimm,
590                                    int index)
591 {
592         int err;
593         dimm->mci = mci;
594
595         dimm->dev.type = &dimm_attr_type;
596         dimm->dev.bus = mci->bus;
597         device_initialize(&dimm->dev);
598
599         dimm->dev.parent = &mci->dev;
600         if (mci->csbased)
601                 dev_set_name(&dimm->dev, "rank%d", index);
602         else
603                 dev_set_name(&dimm->dev, "dimm%d", index);
604         dev_set_drvdata(&dimm->dev, dimm);
605         pm_runtime_forbid(&mci->dev);
606
607         err =  device_add(&dimm->dev);
608
609         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
610
611         return err;
612 }
613
614 /*
615  * Memory controller device
616  */
617
618 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
619
620 static ssize_t mci_reset_counters_store(struct device *dev,
621                                         struct device_attribute *mattr,
622                                         const char *data, size_t count)
623 {
624         struct mem_ctl_info *mci = to_mci(dev);
625         int cnt, row, chan, i;
626         mci->ue_mc = 0;
627         mci->ce_mc = 0;
628         mci->ue_noinfo_count = 0;
629         mci->ce_noinfo_count = 0;
630
631         for (row = 0; row < mci->nr_csrows; row++) {
632                 struct csrow_info *ri = mci->csrows[row];
633
634                 ri->ue_count = 0;
635                 ri->ce_count = 0;
636
637                 for (chan = 0; chan < ri->nr_channels; chan++)
638                         ri->channels[chan]->ce_count = 0;
639         }
640
641         cnt = 1;
642         for (i = 0; i < mci->n_layers; i++) {
643                 cnt *= mci->layers[i].size;
644                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
645                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
646         }
647
648         mci->start_time = jiffies;
649         return count;
650 }
651
652 /* Memory scrubbing interface:
653  *
654  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
655  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
656  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
657  *
658  * Negative value still means that an error has occurred while setting
659  * the scrub rate.
660  */
661 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
662                                           struct device_attribute *mattr,
663                                           const char *data, size_t count)
664 {
665         struct mem_ctl_info *mci = to_mci(dev);
666         unsigned long bandwidth = 0;
667         int new_bw = 0;
668
669         if (kstrtoul(data, 10, &bandwidth) < 0)
670                 return -EINVAL;
671
672         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
673         if (new_bw < 0) {
674                 edac_printk(KERN_WARNING, EDAC_MC,
675                             "Error setting scrub rate to: %lu\n", bandwidth);
676                 return -EINVAL;
677         }
678
679         return count;
680 }
681
682 /*
683  * ->get_sdram_scrub_rate() return value semantics same as above.
684  */
685 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
686                                          struct device_attribute *mattr,
687                                          char *data)
688 {
689         struct mem_ctl_info *mci = to_mci(dev);
690         int bandwidth = 0;
691
692         bandwidth = mci->get_sdram_scrub_rate(mci);
693         if (bandwidth < 0) {
694                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
695                 return bandwidth;
696         }
697
698         return sprintf(data, "%d\n", bandwidth);
699 }
700
701 /* default attribute files for the MCI object */
702 static ssize_t mci_ue_count_show(struct device *dev,
703                                  struct device_attribute *mattr,
704                                  char *data)
705 {
706         struct mem_ctl_info *mci = to_mci(dev);
707
708         return sprintf(data, "%d\n", mci->ue_mc);
709 }
710
711 static ssize_t mci_ce_count_show(struct device *dev,
712                                  struct device_attribute *mattr,
713                                  char *data)
714 {
715         struct mem_ctl_info *mci = to_mci(dev);
716
717         return sprintf(data, "%d\n", mci->ce_mc);
718 }
719
720 static ssize_t mci_ce_noinfo_show(struct device *dev,
721                                   struct device_attribute *mattr,
722                                   char *data)
723 {
724         struct mem_ctl_info *mci = to_mci(dev);
725
726         return sprintf(data, "%d\n", mci->ce_noinfo_count);
727 }
728
729 static ssize_t mci_ue_noinfo_show(struct device *dev,
730                                   struct device_attribute *mattr,
731                                   char *data)
732 {
733         struct mem_ctl_info *mci = to_mci(dev);
734
735         return sprintf(data, "%d\n", mci->ue_noinfo_count);
736 }
737
738 static ssize_t mci_seconds_show(struct device *dev,
739                                 struct device_attribute *mattr,
740                                 char *data)
741 {
742         struct mem_ctl_info *mci = to_mci(dev);
743
744         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
745 }
746
747 static ssize_t mci_ctl_name_show(struct device *dev,
748                                  struct device_attribute *mattr,
749                                  char *data)
750 {
751         struct mem_ctl_info *mci = to_mci(dev);
752
753         return sprintf(data, "%s\n", mci->ctl_name);
754 }
755
756 static ssize_t mci_size_mb_show(struct device *dev,
757                                 struct device_attribute *mattr,
758                                 char *data)
759 {
760         struct mem_ctl_info *mci = to_mci(dev);
761         int total_pages = 0, csrow_idx, j;
762
763         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
764                 struct csrow_info *csrow = mci->csrows[csrow_idx];
765
766                 for (j = 0; j < csrow->nr_channels; j++) {
767                         struct dimm_info *dimm = csrow->channels[j]->dimm;
768
769                         total_pages += dimm->nr_pages;
770                 }
771         }
772
773         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
774 }
775
776 static ssize_t mci_max_location_show(struct device *dev,
777                                      struct device_attribute *mattr,
778                                      char *data)
779 {
780         struct mem_ctl_info *mci = to_mci(dev);
781         int i;
782         char *p = data;
783
784         for (i = 0; i < mci->n_layers; i++) {
785                 p += sprintf(p, "%s %d ",
786                              edac_layer_name[mci->layers[i].type],
787                              mci->layers[i].size - 1);
788         }
789
790         return p - data;
791 }
792
793 #ifdef CONFIG_EDAC_DEBUG
794 static ssize_t edac_fake_inject_write(struct file *file,
795                                       const char __user *data,
796                                       size_t count, loff_t *ppos)
797 {
798         struct device *dev = file->private_data;
799         struct mem_ctl_info *mci = to_mci(dev);
800         static enum hw_event_mc_err_type type;
801         u16 errcount = mci->fake_inject_count;
802
803         if (!errcount)
804                 errcount = 1;
805
806         type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
807                                    : HW_EVENT_ERR_CORRECTED;
808
809         printk(KERN_DEBUG
810                "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
811                 errcount,
812                 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
813                 errcount > 1 ? "s" : "",
814                 mci->fake_inject_layer[0],
815                 mci->fake_inject_layer[1],
816                 mci->fake_inject_layer[2]
817                );
818         edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
819                              mci->fake_inject_layer[0],
820                              mci->fake_inject_layer[1],
821                              mci->fake_inject_layer[2],
822                              "FAKE ERROR", "for EDAC testing only");
823
824         return count;
825 }
826
827 static const struct file_operations debug_fake_inject_fops = {
828         .open = simple_open,
829         .write = edac_fake_inject_write,
830         .llseek = generic_file_llseek,
831 };
832 #endif
833
834 /* default Control file */
835 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
836
837 /* default Attribute files */
838 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
839 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
840 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
841 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
842 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
843 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
844 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
845 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
846
847 /* memory scrubber attribute file */
848 DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
849             mci_sdram_scrub_rate_store); /* umode set later in is_visible */
850
851 static struct attribute *mci_attrs[] = {
852         &dev_attr_reset_counters.attr,
853         &dev_attr_mc_name.attr,
854         &dev_attr_size_mb.attr,
855         &dev_attr_seconds_since_reset.attr,
856         &dev_attr_ue_noinfo_count.attr,
857         &dev_attr_ce_noinfo_count.attr,
858         &dev_attr_ue_count.attr,
859         &dev_attr_ce_count.attr,
860         &dev_attr_max_location.attr,
861         &dev_attr_sdram_scrub_rate.attr,
862         NULL
863 };
864
865 static umode_t mci_attr_is_visible(struct kobject *kobj,
866                                    struct attribute *attr, int idx)
867 {
868         struct device *dev = kobj_to_dev(kobj);
869         struct mem_ctl_info *mci = to_mci(dev);
870         umode_t mode = 0;
871
872         if (attr != &dev_attr_sdram_scrub_rate.attr)
873                 return attr->mode;
874         if (mci->get_sdram_scrub_rate)
875                 mode |= S_IRUGO;
876         if (mci->set_sdram_scrub_rate)
877                 mode |= S_IWUSR;
878         return mode;
879 }
880
881 static struct attribute_group mci_attr_grp = {
882         .attrs  = mci_attrs,
883         .is_visible = mci_attr_is_visible,
884 };
885
886 static const struct attribute_group *mci_attr_groups[] = {
887         &mci_attr_grp,
888         NULL
889 };
890
891 static void mci_attr_release(struct device *dev)
892 {
893         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
894
895         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
896         kfree(mci);
897 }
898
899 static struct device_type mci_attr_type = {
900         .groups         = mci_attr_groups,
901         .release        = mci_attr_release,
902 };
903
904 #ifdef CONFIG_EDAC_DEBUG
905 static struct dentry *edac_debugfs;
906
907 int __init edac_debugfs_init(void)
908 {
909         edac_debugfs = debugfs_create_dir("edac", NULL);
910         if (IS_ERR(edac_debugfs)) {
911                 edac_debugfs = NULL;
912                 return -ENOMEM;
913         }
914         return 0;
915 }
916
917 void edac_debugfs_exit(void)
918 {
919         debugfs_remove(edac_debugfs);
920 }
921
922 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
923 {
924         struct dentry *d, *parent;
925         char name[80];
926         int i;
927
928         if (!edac_debugfs)
929                 return -ENODEV;
930
931         d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
932         if (!d)
933                 return -ENOMEM;
934         parent = d;
935
936         for (i = 0; i < mci->n_layers; i++) {
937                 sprintf(name, "fake_inject_%s",
938                              edac_layer_name[mci->layers[i].type]);
939                 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
940                                       &mci->fake_inject_layer[i]);
941                 if (!d)
942                         goto nomem;
943         }
944
945         d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
946                                 &mci->fake_inject_ue);
947         if (!d)
948                 goto nomem;
949
950         d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
951                                 &mci->fake_inject_count);
952         if (!d)
953                 goto nomem;
954
955         d = debugfs_create_file("fake_inject", S_IWUSR, parent,
956                                 &mci->dev,
957                                 &debug_fake_inject_fops);
958         if (!d)
959                 goto nomem;
960
961         mci->debugfs = parent;
962         return 0;
963 nomem:
964         debugfs_remove(mci->debugfs);
965         return -ENOMEM;
966 }
967 #endif
968
969 /*
970  * Create a new Memory Controller kobject instance,
971  *      mc<id> under the 'mc' directory
972  *
973  * Return:
974  *      0       Success
975  *      !0      Failure
976  */
977 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
978                                  const struct attribute_group **groups)
979 {
980         int i, err;
981
982         /*
983          * The memory controller needs its own bus, in order to avoid
984          * namespace conflicts at /sys/bus/edac.
985          */
986         mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
987         if (!mci->bus->name)
988                 return -ENOMEM;
989
990         edac_dbg(0, "creating bus %s\n", mci->bus->name);
991
992         err = bus_register(mci->bus);
993         if (err < 0)
994                 goto fail_free_name;
995
996         /* get the /sys/devices/system/edac subsys reference */
997         mci->dev.type = &mci_attr_type;
998         device_initialize(&mci->dev);
999
1000         mci->dev.parent = mci_pdev;
1001         mci->dev.bus = mci->bus;
1002         mci->dev.groups = groups;
1003         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1004         dev_set_drvdata(&mci->dev, mci);
1005         pm_runtime_forbid(&mci->dev);
1006
1007         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1008         err = device_add(&mci->dev);
1009         if (err < 0) {
1010                 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1011                 goto fail_unregister_bus;
1012         }
1013
1014         /*
1015          * Create the dimm/rank devices
1016          */
1017         for (i = 0; i < mci->tot_dimms; i++) {
1018                 struct dimm_info *dimm = mci->dimms[i];
1019                 /* Only expose populated DIMMs */
1020                 if (!dimm->nr_pages)
1021                         continue;
1022
1023 #ifdef CONFIG_EDAC_DEBUG
1024                 edac_dbg(1, "creating dimm%d, located at ", i);
1025                 if (edac_debug_level >= 1) {
1026                         int lay;
1027                         for (lay = 0; lay < mci->n_layers; lay++)
1028                                 printk(KERN_CONT "%s %d ",
1029                                         edac_layer_name[mci->layers[lay].type],
1030                                         dimm->location[lay]);
1031                         printk(KERN_CONT "\n");
1032                 }
1033 #endif
1034                 err = edac_create_dimm_object(mci, dimm, i);
1035                 if (err) {
1036                         edac_dbg(1, "failure: create dimm %d obj\n", i);
1037                         goto fail_unregister_dimm;
1038                 }
1039         }
1040
1041 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1042         err = edac_create_csrow_objects(mci);
1043         if (err < 0)
1044                 goto fail_unregister_dimm;
1045 #endif
1046
1047 #ifdef CONFIG_EDAC_DEBUG
1048         edac_create_debug_nodes(mci);
1049 #endif
1050         return 0;
1051
1052 fail_unregister_dimm:
1053         for (i--; i >= 0; i--) {
1054                 struct dimm_info *dimm = mci->dimms[i];
1055                 if (!dimm->nr_pages)
1056                         continue;
1057
1058                 device_unregister(&dimm->dev);
1059         }
1060         device_unregister(&mci->dev);
1061 fail_unregister_bus:
1062         bus_unregister(mci->bus);
1063 fail_free_name:
1064         kfree(mci->bus->name);
1065         return err;
1066 }
1067
1068 /*
1069  * remove a Memory Controller instance
1070  */
1071 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1072 {
1073         int i;
1074
1075         edac_dbg(0, "\n");
1076
1077 #ifdef CONFIG_EDAC_DEBUG
1078         debugfs_remove(mci->debugfs);
1079 #endif
1080 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1081         edac_delete_csrow_objects(mci);
1082 #endif
1083
1084         for (i = 0; i < mci->tot_dimms; i++) {
1085                 struct dimm_info *dimm = mci->dimms[i];
1086                 if (dimm->nr_pages == 0)
1087                         continue;
1088                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1089                 device_unregister(&dimm->dev);
1090         }
1091 }
1092
1093 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1094 {
1095         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1096         device_unregister(&mci->dev);
1097         bus_unregister(mci->bus);
1098         kfree(mci->bus->name);
1099 }
1100
1101 static void mc_attr_release(struct device *dev)
1102 {
1103         /*
1104          * There's no container structure here, as this is just the mci
1105          * parent device, used to create the /sys/devices/mc sysfs node.
1106          * So, there are no attributes on it.
1107          */
1108         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1109         kfree(dev);
1110 }
1111
1112 static struct device_type mc_attr_type = {
1113         .release        = mc_attr_release,
1114 };
1115 /*
1116  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1117  */
1118 int __init edac_mc_sysfs_init(void)
1119 {
1120         struct bus_type *edac_subsys;
1121         int err;
1122
1123         /* get the /sys/devices/system/edac subsys reference */
1124         edac_subsys = edac_get_sysfs_subsys();
1125         if (edac_subsys == NULL) {
1126                 edac_dbg(1, "no edac_subsys\n");
1127                 err = -EINVAL;
1128                 goto out;
1129         }
1130
1131         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1132         if (!mci_pdev) {
1133                 err = -ENOMEM;
1134                 goto out_put_sysfs;
1135         }
1136
1137         mci_pdev->bus = edac_subsys;
1138         mci_pdev->type = &mc_attr_type;
1139         device_initialize(mci_pdev);
1140         dev_set_name(mci_pdev, "mc");
1141
1142         err = device_add(mci_pdev);
1143         if (err < 0)
1144                 goto out_dev_free;
1145
1146         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1147
1148         return 0;
1149
1150  out_dev_free:
1151         kfree(mci_pdev);
1152  out_put_sysfs:
1153         edac_put_sysfs_subsys();
1154  out:
1155         return err;
1156 }
1157
1158 void edac_mc_sysfs_exit(void)
1159 {
1160         device_unregister(mci_pdev);
1161         edac_put_sysfs_subsys();
1162 }