Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36 #include <ras/ras_event.h>
37
38 /* lock to memory controller's control array */
39 static DEFINE_MUTEX(mem_ctls_mutex);
40 static LIST_HEAD(mc_devices);
41
42 /*
43  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
44  *      apei/ghes and i7core_edac to be used at the same time.
45  */
46 static void const *edac_mc_owner;
47
48 static struct bus_type mc_bus[EDAC_MAX_MCS];
49
50 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
51                                  unsigned len)
52 {
53         struct mem_ctl_info *mci = dimm->mci;
54         int i, n, count = 0;
55         char *p = buf;
56
57         for (i = 0; i < mci->n_layers; i++) {
58                 n = snprintf(p, len, "%s %d ",
59                               edac_layer_name[mci->layers[i].type],
60                               dimm->location[i]);
61                 p += n;
62                 len -= n;
63                 count += n;
64                 if (!len)
65                         break;
66         }
67
68         return count;
69 }
70
71 #ifdef CONFIG_EDAC_DEBUG
72
73 static void edac_mc_dump_channel(struct rank_info *chan)
74 {
75         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
76         edac_dbg(4, "    channel = %p\n", chan);
77         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
78         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
79 }
80
81 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
82 {
83         char location[80];
84
85         edac_dimm_info_location(dimm, location, sizeof(location));
86
87         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
88                  dimm->mci->csbased ? "rank" : "dimm",
89                  number, location, dimm->csrow, dimm->cschannel);
90         edac_dbg(4, "  dimm = %p\n", dimm);
91         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
92         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
93         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
94         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
95 }
96
97 static void edac_mc_dump_csrow(struct csrow_info *csrow)
98 {
99         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
100         edac_dbg(4, "  csrow = %p\n", csrow);
101         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
102         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
103         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
104         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
105         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
106         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
107 }
108
109 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
110 {
111         edac_dbg(3, "\tmci = %p\n", mci);
112         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
113         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
114         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
115         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
116         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
117                  mci->nr_csrows, mci->csrows);
118         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
119                  mci->tot_dimms, mci->dimms);
120         edac_dbg(3, "\tdev = %p\n", mci->pdev);
121         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
122                  mci->mod_name, mci->ctl_name);
123         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
124 }
125
126 #endif                          /* CONFIG_EDAC_DEBUG */
127
128 const char * const edac_mem_types[] = {
129         [MEM_EMPTY]     = "Empty csrow",
130         [MEM_RESERVED]  = "Reserved csrow type",
131         [MEM_UNKNOWN]   = "Unknown csrow type",
132         [MEM_FPM]       = "Fast page mode RAM",
133         [MEM_EDO]       = "Extended data out RAM",
134         [MEM_BEDO]      = "Burst Extended data out RAM",
135         [MEM_SDR]       = "Single data rate SDRAM",
136         [MEM_RDR]       = "Registered single data rate SDRAM",
137         [MEM_DDR]       = "Double data rate SDRAM",
138         [MEM_RDDR]      = "Registered Double data rate SDRAM",
139         [MEM_RMBS]      = "Rambus DRAM",
140         [MEM_DDR2]      = "Unbuffered DDR2 RAM",
141         [MEM_FB_DDR2]   = "Fully buffered DDR2",
142         [MEM_RDDR2]     = "Registered DDR2 RAM",
143         [MEM_XDR]       = "Rambus XDR",
144         [MEM_DDR3]      = "Unbuffered DDR3 RAM",
145         [MEM_RDDR3]     = "Registered DDR3 RAM",
146         [MEM_LRDDR3]    = "Load-Reduced DDR3 RAM",
147         [MEM_DDR4]      = "Unbuffered DDR4 RAM",
148         [MEM_RDDR4]     = "Registered DDR4 RAM",
149 };
150 EXPORT_SYMBOL_GPL(edac_mem_types);
151
152 /**
153  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
154  * @p:          pointer to a pointer with the memory offset to be used. At
155  *              return, this will be incremented to point to the next offset
156  * @size:       Size of the data structure to be reserved
157  * @n_elems:    Number of elements that should be reserved
158  *
159  * If 'size' is a constant, the compiler will optimize this whole function
160  * down to either a no-op or the addition of a constant to the value of '*p'.
161  *
162  * The 'p' pointer is absolutely needed to keep the proper advancing
163  * further in memory to the proper offsets when allocating the struct along
164  * with its embedded structs, as edac_device_alloc_ctl_info() does it
165  * above, for example.
166  *
167  * At return, the pointer 'p' will be incremented to be used on a next call
168  * to this function.
169  */
170 void *edac_align_ptr(void **p, unsigned size, int n_elems)
171 {
172         unsigned align, r;
173         void *ptr = *p;
174
175         *p += size * n_elems;
176
177         /*
178          * 'p' can possibly be an unaligned item X such that sizeof(X) is
179          * 'size'.  Adjust 'p' so that its alignment is at least as
180          * stringent as what the compiler would provide for X and return
181          * the aligned result.
182          * Here we assume that the alignment of a "long long" is the most
183          * stringent alignment that the compiler will ever provide by default.
184          * As far as I know, this is a reasonable assumption.
185          */
186         if (size > sizeof(long))
187                 align = sizeof(long long);
188         else if (size > sizeof(int))
189                 align = sizeof(long);
190         else if (size > sizeof(short))
191                 align = sizeof(int);
192         else if (size > sizeof(char))
193                 align = sizeof(short);
194         else
195                 return (char *)ptr;
196
197         r = (unsigned long)p % align;
198
199         if (r == 0)
200                 return (char *)ptr;
201
202         *p += align - r;
203
204         return (void *)(((unsigned long)ptr) + align - r);
205 }
206
207 static void _edac_mc_free(struct mem_ctl_info *mci)
208 {
209         int i, chn, row;
210         struct csrow_info *csr;
211         const unsigned int tot_dimms = mci->tot_dimms;
212         const unsigned int tot_channels = mci->num_cschannel;
213         const unsigned int tot_csrows = mci->nr_csrows;
214
215         if (mci->dimms) {
216                 for (i = 0; i < tot_dimms; i++)
217                         kfree(mci->dimms[i]);
218                 kfree(mci->dimms);
219         }
220         if (mci->csrows) {
221                 for (row = 0; row < tot_csrows; row++) {
222                         csr = mci->csrows[row];
223                         if (csr) {
224                                 if (csr->channels) {
225                                         for (chn = 0; chn < tot_channels; chn++)
226                                                 kfree(csr->channels[chn]);
227                                         kfree(csr->channels);
228                                 }
229                                 kfree(csr);
230                         }
231                 }
232                 kfree(mci->csrows);
233         }
234         kfree(mci);
235 }
236
237 /**
238  * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
239  * @mc_num:             Memory controller number
240  * @n_layers:           Number of MC hierarchy layers
241  * layers:              Describes each layer as seen by the Memory Controller
242  * @size_pvt:           size of private storage needed
243  *
244  *
245  * Everything is kmalloc'ed as one big chunk - more efficient.
246  * Only can be used if all structures have the same lifetime - otherwise
247  * you have to allocate and initialize your own structures.
248  *
249  * Use edac_mc_free() to free mc structures allocated by this function.
250  *
251  * NOTE: drivers handle multi-rank memories in different ways: in some
252  * drivers, one multi-rank memory stick is mapped as one entry, while, in
253  * others, a single multi-rank memory stick would be mapped into several
254  * entries. Currently, this function will allocate multiple struct dimm_info
255  * on such scenarios, as grouping the multiple ranks require drivers change.
256  *
257  * Returns:
258  *      On failure: NULL
259  *      On success: struct mem_ctl_info pointer
260  */
261 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
262                                    unsigned n_layers,
263                                    struct edac_mc_layer *layers,
264                                    unsigned sz_pvt)
265 {
266         struct mem_ctl_info *mci;
267         struct edac_mc_layer *layer;
268         struct csrow_info *csr;
269         struct rank_info *chan;
270         struct dimm_info *dimm;
271         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
272         unsigned pos[EDAC_MAX_LAYERS];
273         unsigned size, tot_dimms = 1, count = 1;
274         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
275         void *pvt, *p, *ptr = NULL;
276         int i, j, row, chn, n, len, off;
277         bool per_rank = false;
278
279         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
280         /*
281          * Calculate the total amount of dimms and csrows/cschannels while
282          * in the old API emulation mode
283          */
284         for (i = 0; i < n_layers; i++) {
285                 tot_dimms *= layers[i].size;
286                 if (layers[i].is_virt_csrow)
287                         tot_csrows *= layers[i].size;
288                 else
289                         tot_channels *= layers[i].size;
290
291                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
292                         per_rank = true;
293         }
294
295         /* Figure out the offsets of the various items from the start of an mc
296          * structure.  We want the alignment of each item to be at least as
297          * stringent as what the compiler would provide if we could simply
298          * hardcode everything into a single struct.
299          */
300         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
301         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
302         for (i = 0; i < n_layers; i++) {
303                 count *= layers[i].size;
304                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
305                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
306                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
307                 tot_errcount += 2 * count;
308         }
309
310         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
311         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
312         size = ((unsigned long)pvt) + sz_pvt;
313
314         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
315                  size,
316                  tot_dimms,
317                  per_rank ? "ranks" : "dimms",
318                  tot_csrows * tot_channels);
319
320         mci = kzalloc(size, GFP_KERNEL);
321         if (mci == NULL)
322                 return NULL;
323
324         /* Adjust pointers so they point within the memory we just allocated
325          * rather than an imaginary chunk of memory located at address 0.
326          */
327         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
328         for (i = 0; i < n_layers; i++) {
329                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
330                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
331         }
332         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
333
334         /* setup index and various internal pointers */
335         mci->mc_idx = mc_num;
336         mci->tot_dimms = tot_dimms;
337         mci->pvt_info = pvt;
338         mci->n_layers = n_layers;
339         mci->layers = layer;
340         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
341         mci->nr_csrows = tot_csrows;
342         mci->num_cschannel = tot_channels;
343         mci->csbased = per_rank;
344
345         /*
346          * Alocate and fill the csrow/channels structs
347          */
348         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
349         if (!mci->csrows)
350                 goto error;
351         for (row = 0; row < tot_csrows; row++) {
352                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
353                 if (!csr)
354                         goto error;
355                 mci->csrows[row] = csr;
356                 csr->csrow_idx = row;
357                 csr->mci = mci;
358                 csr->nr_channels = tot_channels;
359                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
360                                         GFP_KERNEL);
361                 if (!csr->channels)
362                         goto error;
363
364                 for (chn = 0; chn < tot_channels; chn++) {
365                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
366                         if (!chan)
367                                 goto error;
368                         csr->channels[chn] = chan;
369                         chan->chan_idx = chn;
370                         chan->csrow = csr;
371                 }
372         }
373
374         /*
375          * Allocate and fill the dimm structs
376          */
377         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
378         if (!mci->dimms)
379                 goto error;
380
381         memset(&pos, 0, sizeof(pos));
382         row = 0;
383         chn = 0;
384         for (i = 0; i < tot_dimms; i++) {
385                 chan = mci->csrows[row]->channels[chn];
386                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
387                 if (off < 0 || off >= tot_dimms) {
388                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
389                         goto error;
390                 }
391
392                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
393                 if (!dimm)
394                         goto error;
395                 mci->dimms[off] = dimm;
396                 dimm->mci = mci;
397
398                 /*
399                  * Copy DIMM location and initialize it.
400                  */
401                 len = sizeof(dimm->label);
402                 p = dimm->label;
403                 n = snprintf(p, len, "mc#%u", mc_num);
404                 p += n;
405                 len -= n;
406                 for (j = 0; j < n_layers; j++) {
407                         n = snprintf(p, len, "%s#%u",
408                                      edac_layer_name[layers[j].type],
409                                      pos[j]);
410                         p += n;
411                         len -= n;
412                         dimm->location[j] = pos[j];
413
414                         if (len <= 0)
415                                 break;
416                 }
417
418                 /* Link it to the csrows old API data */
419                 chan->dimm = dimm;
420                 dimm->csrow = row;
421                 dimm->cschannel = chn;
422
423                 /* Increment csrow location */
424                 if (layers[0].is_virt_csrow) {
425                         chn++;
426                         if (chn == tot_channels) {
427                                 chn = 0;
428                                 row++;
429                         }
430                 } else {
431                         row++;
432                         if (row == tot_csrows) {
433                                 row = 0;
434                                 chn++;
435                         }
436                 }
437
438                 /* Increment dimm location */
439                 for (j = n_layers - 1; j >= 0; j--) {
440                         pos[j]++;
441                         if (pos[j] < layers[j].size)
442                                 break;
443                         pos[j] = 0;
444                 }
445         }
446
447         mci->op_state = OP_ALLOC;
448
449         return mci;
450
451 error:
452         _edac_mc_free(mci);
453
454         return NULL;
455 }
456 EXPORT_SYMBOL_GPL(edac_mc_alloc);
457
458 /**
459  * edac_mc_free
460  *      'Free' a previously allocated 'mci' structure
461  * @mci: pointer to a struct mem_ctl_info structure
462  */
463 void edac_mc_free(struct mem_ctl_info *mci)
464 {
465         edac_dbg(1, "\n");
466
467         /* If we're not yet registered with sysfs free only what was allocated
468          * in edac_mc_alloc().
469          */
470         if (!device_is_registered(&mci->dev)) {
471                 _edac_mc_free(mci);
472                 return;
473         }
474
475         /* the mci instance is freed here, when the sysfs object is dropped */
476         edac_unregister_sysfs(mci);
477 }
478 EXPORT_SYMBOL_GPL(edac_mc_free);
479
480
481 /**
482  * find_mci_by_dev
483  *
484  *      scan list of controllers looking for the one that manages
485  *      the 'dev' device
486  * @dev: pointer to a struct device related with the MCI
487  */
488 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
489 {
490         struct mem_ctl_info *mci;
491         struct list_head *item;
492
493         edac_dbg(3, "\n");
494
495         list_for_each(item, &mc_devices) {
496                 mci = list_entry(item, struct mem_ctl_info, link);
497
498                 if (mci->pdev == dev)
499                         return mci;
500         }
501
502         return NULL;
503 }
504 EXPORT_SYMBOL_GPL(find_mci_by_dev);
505
506 /*
507  * handler for EDAC to check if NMI type handler has asserted interrupt
508  */
509 static int edac_mc_assert_error_check_and_clear(void)
510 {
511         int old_state;
512
513         if (edac_op_state == EDAC_OPSTATE_POLL)
514                 return 1;
515
516         old_state = edac_err_assert;
517         edac_err_assert = 0;
518
519         return old_state;
520 }
521
522 /*
523  * edac_mc_workq_function
524  *      performs the operation scheduled by a workq request
525  */
526 static void edac_mc_workq_function(struct work_struct *work_req)
527 {
528         struct delayed_work *d_work = to_delayed_work(work_req);
529         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
530
531         mutex_lock(&mem_ctls_mutex);
532
533         /* if this control struct has movd to offline state, we are done */
534         if (mci->op_state == OP_OFFLINE) {
535                 mutex_unlock(&mem_ctls_mutex);
536                 return;
537         }
538
539         /* Only poll controllers that are running polled and have a check */
540         if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
541                 mci->edac_check(mci);
542
543         mutex_unlock(&mem_ctls_mutex);
544
545         /* Reschedule */
546         queue_delayed_work(edac_workqueue, &mci->work,
547                         msecs_to_jiffies(edac_mc_get_poll_msec()));
548 }
549
550 /*
551  * edac_mc_workq_setup
552  *      initialize a workq item for this mci
553  *      passing in the new delay period in msec
554  *
555  *      locking model:
556  *
557  *              called with the mem_ctls_mutex held
558  */
559 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
560                                 bool init)
561 {
562         edac_dbg(0, "\n");
563
564         /* if this instance is not in the POLL state, then simply return */
565         if (mci->op_state != OP_RUNNING_POLL)
566                 return;
567
568         if (init)
569                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
570
571         mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572 }
573
574 /*
575  * edac_mc_workq_teardown
576  *      stop the workq processing on this mci
577  *
578  *      locking model:
579  *
580  *              called WITHOUT lock held
581  */
582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 {
584         int status;
585
586         if (mci->op_state != OP_RUNNING_POLL)
587                 return;
588
589         status = cancel_delayed_work(&mci->work);
590         if (status == 0) {
591                 edac_dbg(0, "not canceled, flush the queue\n");
592
593                 /* workq instance might be running, wait for it */
594                 flush_workqueue(edac_workqueue);
595         }
596 }
597
598 /*
599  * edac_mc_reset_delay_period(unsigned long value)
600  *
601  *      user space has updated our poll period value, need to
602  *      reset our workq delays
603  */
604 void edac_mc_reset_delay_period(unsigned long value)
605 {
606         struct mem_ctl_info *mci;
607         struct list_head *item;
608
609         mutex_lock(&mem_ctls_mutex);
610
611         list_for_each(item, &mc_devices) {
612                 mci = list_entry(item, struct mem_ctl_info, link);
613
614                 edac_mc_workq_setup(mci, value, false);
615         }
616
617         mutex_unlock(&mem_ctls_mutex);
618 }
619
620
621
622 /* Return 0 on success, 1 on failure.
623  * Before calling this function, caller must
624  * assign a unique value to mci->mc_idx.
625  *
626  *      locking model:
627  *
628  *              called with the mem_ctls_mutex lock held
629  */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632         struct list_head *item, *insert_before;
633         struct mem_ctl_info *p;
634
635         insert_before = &mc_devices;
636
637         p = find_mci_by_dev(mci->pdev);
638         if (unlikely(p != NULL))
639                 goto fail0;
640
641         list_for_each(item, &mc_devices) {
642                 p = list_entry(item, struct mem_ctl_info, link);
643
644                 if (p->mc_idx >= mci->mc_idx) {
645                         if (unlikely(p->mc_idx == mci->mc_idx))
646                                 goto fail1;
647
648                         insert_before = item;
649                         break;
650                 }
651         }
652
653         list_add_tail_rcu(&mci->link, insert_before);
654         atomic_inc(&edac_handlers);
655         return 0;
656
657 fail0:
658         edac_printk(KERN_WARNING, EDAC_MC,
659                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
660                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
661         return 1;
662
663 fail1:
664         edac_printk(KERN_WARNING, EDAC_MC,
665                 "bug in low-level driver: attempt to assign\n"
666                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
667         return 1;
668 }
669
670 static int del_mc_from_global_list(struct mem_ctl_info *mci)
671 {
672         int handlers = atomic_dec_return(&edac_handlers);
673         list_del_rcu(&mci->link);
674
675         /* these are for safe removal of devices from global list while
676          * NMI handlers may be traversing list
677          */
678         synchronize_rcu();
679         INIT_LIST_HEAD(&mci->link);
680
681         return handlers;
682 }
683
684 /**
685  * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
686  *
687  * If found, return a pointer to the structure.
688  * Else return NULL.
689  *
690  * Caller must hold mem_ctls_mutex.
691  */
692 struct mem_ctl_info *edac_mc_find(int idx)
693 {
694         struct list_head *item;
695         struct mem_ctl_info *mci;
696
697         list_for_each(item, &mc_devices) {
698                 mci = list_entry(item, struct mem_ctl_info, link);
699
700                 if (mci->mc_idx >= idx) {
701                         if (mci->mc_idx == idx)
702                                 return mci;
703
704                         break;
705                 }
706         }
707
708         return NULL;
709 }
710 EXPORT_SYMBOL(edac_mc_find);
711
712 /**
713  * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
714  *      global list and create sysfs entries associated with mci structure
715  * @mci: pointer to the mci structure to be added to the list
716  * @groups: optional attribute groups for the driver-specific sysfs entries
717  *
718  * Return:
719  *      0       Success
720  *      !0      Failure
721  */
722
723 /* FIXME - should a warning be printed if no error detection? correction? */
724 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
725                                const struct attribute_group **groups)
726 {
727         int ret = -EINVAL;
728         edac_dbg(0, "\n");
729
730         if (mci->mc_idx >= EDAC_MAX_MCS) {
731                 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
732                 return -ENODEV;
733         }
734
735 #ifdef CONFIG_EDAC_DEBUG
736         if (edac_debug_level >= 3)
737                 edac_mc_dump_mci(mci);
738
739         if (edac_debug_level >= 4) {
740                 int i;
741
742                 for (i = 0; i < mci->nr_csrows; i++) {
743                         struct csrow_info *csrow = mci->csrows[i];
744                         u32 nr_pages = 0;
745                         int j;
746
747                         for (j = 0; j < csrow->nr_channels; j++)
748                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
749                         if (!nr_pages)
750                                 continue;
751                         edac_mc_dump_csrow(csrow);
752                         for (j = 0; j < csrow->nr_channels; j++)
753                                 if (csrow->channels[j]->dimm->nr_pages)
754                                         edac_mc_dump_channel(csrow->channels[j]);
755                 }
756                 for (i = 0; i < mci->tot_dimms; i++)
757                         if (mci->dimms[i]->nr_pages)
758                                 edac_mc_dump_dimm(mci->dimms[i], i);
759         }
760 #endif
761         mutex_lock(&mem_ctls_mutex);
762
763         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
764                 ret = -EPERM;
765                 goto fail0;
766         }
767
768         if (add_mc_to_global_list(mci))
769                 goto fail0;
770
771         /* set load time so that error rate can be tracked */
772         mci->start_time = jiffies;
773
774         mci->bus = &mc_bus[mci->mc_idx];
775
776         if (edac_create_sysfs_mci_device(mci, groups)) {
777                 edac_mc_printk(mci, KERN_WARNING,
778                         "failed to create sysfs device\n");
779                 goto fail1;
780         }
781
782         /* If there IS a check routine, then we are running POLLED */
783         if (mci->edac_check != NULL) {
784                 /* This instance is NOW RUNNING */
785                 mci->op_state = OP_RUNNING_POLL;
786
787                 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
788         } else {
789                 mci->op_state = OP_RUNNING_INTERRUPT;
790         }
791
792         /* Report action taken */
793         edac_mc_printk(mci, KERN_INFO,
794                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
795                 mci->mod_name, mci->ctl_name, mci->dev_name,
796                 edac_op_state_to_string(mci->op_state));
797
798         edac_mc_owner = mci->mod_name;
799
800         mutex_unlock(&mem_ctls_mutex);
801         return 0;
802
803 fail1:
804         del_mc_from_global_list(mci);
805
806 fail0:
807         mutex_unlock(&mem_ctls_mutex);
808         return ret;
809 }
810 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
811
812 /**
813  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
814  *                 remove mci structure from global list
815  * @pdev: Pointer to 'struct device' representing mci structure to remove.
816  *
817  * Return pointer to removed mci structure, or NULL if device not found.
818  */
819 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
820 {
821         struct mem_ctl_info *mci;
822
823         edac_dbg(0, "\n");
824
825         mutex_lock(&mem_ctls_mutex);
826
827         /* find the requested mci struct in the global list */
828         mci = find_mci_by_dev(dev);
829         if (mci == NULL) {
830                 mutex_unlock(&mem_ctls_mutex);
831                 return NULL;
832         }
833
834         if (!del_mc_from_global_list(mci))
835                 edac_mc_owner = NULL;
836         mutex_unlock(&mem_ctls_mutex);
837
838         /* flush workq processes */
839         edac_mc_workq_teardown(mci);
840
841         /* marking MCI offline */
842         mci->op_state = OP_OFFLINE;
843
844         /* remove from sysfs */
845         edac_remove_sysfs_mci_device(mci);
846
847         edac_printk(KERN_INFO, EDAC_MC,
848                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
849                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
850
851         return mci;
852 }
853 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
854
855 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
856                                 u32 size)
857 {
858         struct page *pg;
859         void *virt_addr;
860         unsigned long flags = 0;
861
862         edac_dbg(3, "\n");
863
864         /* ECC error page was not in our memory. Ignore it. */
865         if (!pfn_valid(page))
866                 return;
867
868         /* Find the actual page structure then map it and fix */
869         pg = pfn_to_page(page);
870
871         if (PageHighMem(pg))
872                 local_irq_save(flags);
873
874         virt_addr = kmap_atomic(pg);
875
876         /* Perform architecture specific atomic scrub operation */
877         atomic_scrub(virt_addr + offset, size);
878
879         /* Unmap and complete */
880         kunmap_atomic(virt_addr);
881
882         if (PageHighMem(pg))
883                 local_irq_restore(flags);
884 }
885
886 /* FIXME - should return -1 */
887 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
888 {
889         struct csrow_info **csrows = mci->csrows;
890         int row, i, j, n;
891
892         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
893         row = -1;
894
895         for (i = 0; i < mci->nr_csrows; i++) {
896                 struct csrow_info *csrow = csrows[i];
897                 n = 0;
898                 for (j = 0; j < csrow->nr_channels; j++) {
899                         struct dimm_info *dimm = csrow->channels[j]->dimm;
900                         n += dimm->nr_pages;
901                 }
902                 if (n == 0)
903                         continue;
904
905                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
906                          mci->mc_idx,
907                          csrow->first_page, page, csrow->last_page,
908                          csrow->page_mask);
909
910                 if ((page >= csrow->first_page) &&
911                     (page <= csrow->last_page) &&
912                     ((page & csrow->page_mask) ==
913                      (csrow->first_page & csrow->page_mask))) {
914                         row = i;
915                         break;
916                 }
917         }
918
919         if (row == -1)
920                 edac_mc_printk(mci, KERN_ERR,
921                         "could not look up page error address %lx\n",
922                         (unsigned long)page);
923
924         return row;
925 }
926 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
927
928 const char *edac_layer_name[] = {
929         [EDAC_MC_LAYER_BRANCH] = "branch",
930         [EDAC_MC_LAYER_CHANNEL] = "channel",
931         [EDAC_MC_LAYER_SLOT] = "slot",
932         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
933         [EDAC_MC_LAYER_ALL_MEM] = "memory",
934 };
935 EXPORT_SYMBOL_GPL(edac_layer_name);
936
937 static void edac_inc_ce_error(struct mem_ctl_info *mci,
938                               bool enable_per_layer_report,
939                               const int pos[EDAC_MAX_LAYERS],
940                               const u16 count)
941 {
942         int i, index = 0;
943
944         mci->ce_mc += count;
945
946         if (!enable_per_layer_report) {
947                 mci->ce_noinfo_count += count;
948                 return;
949         }
950
951         for (i = 0; i < mci->n_layers; i++) {
952                 if (pos[i] < 0)
953                         break;
954                 index += pos[i];
955                 mci->ce_per_layer[i][index] += count;
956
957                 if (i < mci->n_layers - 1)
958                         index *= mci->layers[i + 1].size;
959         }
960 }
961
962 static void edac_inc_ue_error(struct mem_ctl_info *mci,
963                                     bool enable_per_layer_report,
964                                     const int pos[EDAC_MAX_LAYERS],
965                                     const u16 count)
966 {
967         int i, index = 0;
968
969         mci->ue_mc += count;
970
971         if (!enable_per_layer_report) {
972                 mci->ce_noinfo_count += count;
973                 return;
974         }
975
976         for (i = 0; i < mci->n_layers; i++) {
977                 if (pos[i] < 0)
978                         break;
979                 index += pos[i];
980                 mci->ue_per_layer[i][index] += count;
981
982                 if (i < mci->n_layers - 1)
983                         index *= mci->layers[i + 1].size;
984         }
985 }
986
987 static void edac_ce_error(struct mem_ctl_info *mci,
988                           const u16 error_count,
989                           const int pos[EDAC_MAX_LAYERS],
990                           const char *msg,
991                           const char *location,
992                           const char *label,
993                           const char *detail,
994                           const char *other_detail,
995                           const bool enable_per_layer_report,
996                           const unsigned long page_frame_number,
997                           const unsigned long offset_in_page,
998                           long grain)
999 {
1000         unsigned long remapped_page;
1001         char *msg_aux = "";
1002
1003         if (*msg)
1004                 msg_aux = " ";
1005
1006         if (edac_mc_get_log_ce()) {
1007                 if (other_detail && *other_detail)
1008                         edac_mc_printk(mci, KERN_WARNING,
1009                                        "%d CE %s%son %s (%s %s - %s)\n",
1010                                        error_count, msg, msg_aux, label,
1011                                        location, detail, other_detail);
1012                 else
1013                         edac_mc_printk(mci, KERN_WARNING,
1014                                        "%d CE %s%son %s (%s %s)\n",
1015                                        error_count, msg, msg_aux, label,
1016                                        location, detail);
1017         }
1018         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1019
1020         if (mci->scrub_mode == SCRUB_SW_SRC) {
1021                 /*
1022                         * Some memory controllers (called MCs below) can remap
1023                         * memory so that it is still available at a different
1024                         * address when PCI devices map into memory.
1025                         * MC's that can't do this, lose the memory where PCI
1026                         * devices are mapped. This mapping is MC-dependent
1027                         * and so we call back into the MC driver for it to
1028                         * map the MC page to a physical (CPU) page which can
1029                         * then be mapped to a virtual page - which can then
1030                         * be scrubbed.
1031                         */
1032                 remapped_page = mci->ctl_page_to_phys ?
1033                         mci->ctl_page_to_phys(mci, page_frame_number) :
1034                         page_frame_number;
1035
1036                 edac_mc_scrub_block(remapped_page,
1037                                         offset_in_page, grain);
1038         }
1039 }
1040
1041 static void edac_ue_error(struct mem_ctl_info *mci,
1042                           const u16 error_count,
1043                           const int pos[EDAC_MAX_LAYERS],
1044                           const char *msg,
1045                           const char *location,
1046                           const char *label,
1047                           const char *detail,
1048                           const char *other_detail,
1049                           const bool enable_per_layer_report)
1050 {
1051         char *msg_aux = "";
1052
1053         if (*msg)
1054                 msg_aux = " ";
1055
1056         if (edac_mc_get_log_ue()) {
1057                 if (other_detail && *other_detail)
1058                         edac_mc_printk(mci, KERN_WARNING,
1059                                        "%d UE %s%son %s (%s %s - %s)\n",
1060                                        error_count, msg, msg_aux, label,
1061                                        location, detail, other_detail);
1062                 else
1063                         edac_mc_printk(mci, KERN_WARNING,
1064                                        "%d UE %s%son %s (%s %s)\n",
1065                                        error_count, msg, msg_aux, label,
1066                                        location, detail);
1067         }
1068
1069         if (edac_mc_get_panic_on_ue()) {
1070                 if (other_detail && *other_detail)
1071                         panic("UE %s%son %s (%s%s - %s)\n",
1072                               msg, msg_aux, label, location, detail, other_detail);
1073                 else
1074                         panic("UE %s%son %s (%s%s)\n",
1075                               msg, msg_aux, label, location, detail);
1076         }
1077
1078         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1079 }
1080
1081 /**
1082  * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1083  *                            anything to discover the error location
1084  *
1085  * @type:               severity of the error (CE/UE/Fatal)
1086  * @mci:                a struct mem_ctl_info pointer
1087  * @e:                  error description
1088  *
1089  * This raw function is used internally by edac_mc_handle_error(). It should
1090  * only be called directly when the hardware error come directly from BIOS,
1091  * like in the case of APEI GHES driver.
1092  */
1093 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1094                               struct mem_ctl_info *mci,
1095                               struct edac_raw_error_desc *e)
1096 {
1097         char detail[80];
1098         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1099
1100         /* Memory type dependent details about the error */
1101         if (type == HW_EVENT_ERR_CORRECTED) {
1102                 snprintf(detail, sizeof(detail),
1103                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1104                         e->page_frame_number, e->offset_in_page,
1105                         e->grain, e->syndrome);
1106                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1107                               detail, e->other_detail, e->enable_per_layer_report,
1108                               e->page_frame_number, e->offset_in_page, e->grain);
1109         } else {
1110                 snprintf(detail, sizeof(detail),
1111                         "page:0x%lx offset:0x%lx grain:%ld",
1112                         e->page_frame_number, e->offset_in_page, e->grain);
1113
1114                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1115                               detail, e->other_detail, e->enable_per_layer_report);
1116         }
1117
1118
1119 }
1120 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1121
1122 /**
1123  * edac_mc_handle_error - reports a memory event to userspace
1124  *
1125  * @type:               severity of the error (CE/UE/Fatal)
1126  * @mci:                a struct mem_ctl_info pointer
1127  * @error_count:        Number of errors of the same type
1128  * @page_frame_number:  mem page where the error occurred
1129  * @offset_in_page:     offset of the error inside the page
1130  * @syndrome:           ECC syndrome
1131  * @top_layer:          Memory layer[0] position
1132  * @mid_layer:          Memory layer[1] position
1133  * @low_layer:          Memory layer[2] position
1134  * @msg:                Message meaningful to the end users that
1135  *                      explains the event
1136  * @other_detail:       Technical details about the event that
1137  *                      may help hardware manufacturers and
1138  *                      EDAC developers to analyse the event
1139  */
1140 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1141                           struct mem_ctl_info *mci,
1142                           const u16 error_count,
1143                           const unsigned long page_frame_number,
1144                           const unsigned long offset_in_page,
1145                           const unsigned long syndrome,
1146                           const int top_layer,
1147                           const int mid_layer,
1148                           const int low_layer,
1149                           const char *msg,
1150                           const char *other_detail)
1151 {
1152         char *p;
1153         int row = -1, chan = -1;
1154         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1155         int i, n_labels = 0;
1156         u8 grain_bits;
1157         struct edac_raw_error_desc *e = &mci->error_desc;
1158
1159         edac_dbg(3, "MC%d\n", mci->mc_idx);
1160
1161         /* Fills the error report buffer */
1162         memset(e, 0, sizeof (*e));
1163         e->error_count = error_count;
1164         e->top_layer = top_layer;
1165         e->mid_layer = mid_layer;
1166         e->low_layer = low_layer;
1167         e->page_frame_number = page_frame_number;
1168         e->offset_in_page = offset_in_page;
1169         e->syndrome = syndrome;
1170         e->msg = msg;
1171         e->other_detail = other_detail;
1172
1173         /*
1174          * Check if the event report is consistent and if the memory
1175          * location is known. If it is known, enable_per_layer_report will be
1176          * true, the DIMM(s) label info will be filled and the per-layer
1177          * error counters will be incremented.
1178          */
1179         for (i = 0; i < mci->n_layers; i++) {
1180                 if (pos[i] >= (int)mci->layers[i].size) {
1181
1182                         edac_mc_printk(mci, KERN_ERR,
1183                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1184                                        edac_layer_name[mci->layers[i].type],
1185                                        pos[i], mci->layers[i].size);
1186                         /*
1187                          * Instead of just returning it, let's use what's
1188                          * known about the error. The increment routines and
1189                          * the DIMM filter logic will do the right thing by
1190                          * pointing the likely damaged DIMMs.
1191                          */
1192                         pos[i] = -1;
1193                 }
1194                 if (pos[i] >= 0)
1195                         e->enable_per_layer_report = true;
1196         }
1197
1198         /*
1199          * Get the dimm label/grain that applies to the match criteria.
1200          * As the error algorithm may not be able to point to just one memory
1201          * stick, the logic here will get all possible labels that could
1202          * pottentially be affected by the error.
1203          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1204          * to have only the MC channel and the MC dimm (also called "branch")
1205          * but the channel is not known, as the memory is arranged in pairs,
1206          * where each memory belongs to a separate channel within the same
1207          * branch.
1208          */
1209         p = e->label;
1210         *p = '\0';
1211
1212         for (i = 0; i < mci->tot_dimms; i++) {
1213                 struct dimm_info *dimm = mci->dimms[i];
1214
1215                 if (top_layer >= 0 && top_layer != dimm->location[0])
1216                         continue;
1217                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1218                         continue;
1219                 if (low_layer >= 0 && low_layer != dimm->location[2])
1220                         continue;
1221
1222                 /* get the max grain, over the error match range */
1223                 if (dimm->grain > e->grain)
1224                         e->grain = dimm->grain;
1225
1226                 /*
1227                  * If the error is memory-controller wide, there's no need to
1228                  * seek for the affected DIMMs because the whole
1229                  * channel/memory controller/...  may be affected.
1230                  * Also, don't show errors for empty DIMM slots.
1231                  */
1232                 if (e->enable_per_layer_report && dimm->nr_pages) {
1233                         if (n_labels >= EDAC_MAX_LABELS) {
1234                                 e->enable_per_layer_report = false;
1235                                 break;
1236                         }
1237                         n_labels++;
1238                         if (p != e->label) {
1239                                 strcpy(p, OTHER_LABEL);
1240                                 p += strlen(OTHER_LABEL);
1241                         }
1242                         strcpy(p, dimm->label);
1243                         p += strlen(p);
1244                         *p = '\0';
1245
1246                         /*
1247                          * get csrow/channel of the DIMM, in order to allow
1248                          * incrementing the compat API counters
1249                          */
1250                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1251                                  mci->csbased ? "rank" : "dimm",
1252                                  dimm->csrow, dimm->cschannel);
1253                         if (row == -1)
1254                                 row = dimm->csrow;
1255                         else if (row >= 0 && row != dimm->csrow)
1256                                 row = -2;
1257
1258                         if (chan == -1)
1259                                 chan = dimm->cschannel;
1260                         else if (chan >= 0 && chan != dimm->cschannel)
1261                                 chan = -2;
1262                 }
1263         }
1264
1265         if (!e->enable_per_layer_report) {
1266                 strcpy(e->label, "any memory");
1267         } else {
1268                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1269                 if (p == e->label)
1270                         strcpy(e->label, "unknown memory");
1271                 if (type == HW_EVENT_ERR_CORRECTED) {
1272                         if (row >= 0) {
1273                                 mci->csrows[row]->ce_count += error_count;
1274                                 if (chan >= 0)
1275                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1276                         }
1277                 } else
1278                         if (row >= 0)
1279                                 mci->csrows[row]->ue_count += error_count;
1280         }
1281
1282         /* Fill the RAM location data */
1283         p = e->location;
1284
1285         for (i = 0; i < mci->n_layers; i++) {
1286                 if (pos[i] < 0)
1287                         continue;
1288
1289                 p += sprintf(p, "%s:%d ",
1290                              edac_layer_name[mci->layers[i].type],
1291                              pos[i]);
1292         }
1293         if (p > e->location)
1294                 *(p - 1) = '\0';
1295
1296         /* Report the error via the trace interface */
1297         grain_bits = fls_long(e->grain) + 1;
1298         trace_mc_event(type, e->msg, e->label, e->error_count,
1299                        mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1300                        PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1301                        grain_bits, e->syndrome, e->other_detail);
1302
1303         edac_raw_mc_handle_error(type, mci, e);
1304 }
1305 EXPORT_SYMBOL_GPL(edac_mc_handle_error);