Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / dma / xgene-dma.c
1 /*
2  * Applied Micro X-Gene SoC DMA engine Driver
3  *
4  * Copyright (c) 2015, Applied Micro Circuits Corporation
5  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6  *          Loc Ho <lho@apm.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  *
21  * NOTE: PM support is currently not available.
22  */
23
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dmapool.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33
34 #include "dmaengine.h"
35
36 /* X-Gene DMA ring csr registers and bit definations */
37 #define XGENE_DMA_RING_CONFIG                   0x04
38 #define XGENE_DMA_RING_ENABLE                   BIT(31)
39 #define XGENE_DMA_RING_ID                       0x08
40 #define XGENE_DMA_RING_ID_SETUP(v)              ((v) | BIT(31))
41 #define XGENE_DMA_RING_ID_BUF                   0x0C
42 #define XGENE_DMA_RING_ID_BUF_SETUP(v)          (((v) << 9) | BIT(21))
43 #define XGENE_DMA_RING_THRESLD0_SET1            0x30
44 #define XGENE_DMA_RING_THRESLD0_SET1_VAL        0X64
45 #define XGENE_DMA_RING_THRESLD1_SET1            0x34
46 #define XGENE_DMA_RING_THRESLD1_SET1_VAL        0xC8
47 #define XGENE_DMA_RING_HYSTERESIS               0x68
48 #define XGENE_DMA_RING_HYSTERESIS_VAL           0xFFFFFFFF
49 #define XGENE_DMA_RING_STATE                    0x6C
50 #define XGENE_DMA_RING_STATE_WR_BASE            0x70
51 #define XGENE_DMA_RING_NE_INT_MODE              0x017C
52 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)    \
53         ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
54 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)  \
55         ((m) &= (~BIT(31 - (v))))
56 #define XGENE_DMA_RING_CLKEN                    0xC208
57 #define XGENE_DMA_RING_SRST                     0xC200
58 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN         0xD070
59 #define XGENE_DMA_RING_BLK_MEM_RDY              0xD074
60 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL          0xFFFFFFFF
61 #define XGENE_DMA_RING_DESC_CNT(v)              (((v) & 0x0001FFFE) >> 1)
62 #define XGENE_DMA_RING_ID_GET(owner, num)       (((owner) << 6) | (num))
63 #define XGENE_DMA_RING_DST_ID(v)                ((1 << 10) | (v))
64 #define XGENE_DMA_RING_CMD_OFFSET               0x2C
65 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)       ((v) << 6)
66 #define XGENE_DMA_RING_COHERENT_SET(m)          \
67         (((u32 *)(m))[2] |= BIT(4))
68 #define XGENE_DMA_RING_ADDRL_SET(m, v)          \
69         (((u32 *)(m))[2] |= (((v) >> 8) << 5))
70 #define XGENE_DMA_RING_ADDRH_SET(m, v)          \
71         (((u32 *)(m))[3] |= ((v) >> 35))
72 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)        \
73         (((u32 *)(m))[3] |= BIT(19))
74 #define XGENE_DMA_RING_SIZE_SET(m, v)           \
75         (((u32 *)(m))[3] |= ((v) << 23))
76 #define XGENE_DMA_RING_RECOMBBUF_SET(m)         \
77         (((u32 *)(m))[3] |= BIT(27))
78 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)     \
79         (((u32 *)(m))[3] |= (0x7 << 28))
80 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)     \
81         (((u32 *)(m))[4] |= 0x3)
82 #define XGENE_DMA_RING_SELTHRSH_SET(m)          \
83         (((u32 *)(m))[4] |= BIT(3))
84 #define XGENE_DMA_RING_TYPE_SET(m, v)           \
85         (((u32 *)(m))[4] |= ((v) << 19))
86
87 /* X-Gene DMA device csr registers and bit definitions */
88 #define XGENE_DMA_IPBRR                         0x0
89 #define XGENE_DMA_DEV_ID_RD(v)                  ((v) & 0x00000FFF)
90 #define XGENE_DMA_BUS_ID_RD(v)                  (((v) >> 12) & 3)
91 #define XGENE_DMA_REV_NO_RD(v)                  (((v) >> 14) & 3)
92 #define XGENE_DMA_GCR                           0x10
93 #define XGENE_DMA_CH_SETUP(v)                   \
94         ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
95 #define XGENE_DMA_ENABLE(v)                     ((v) |= BIT(31))
96 #define XGENE_DMA_DISABLE(v)                    ((v) &= ~BIT(31))
97 #define XGENE_DMA_RAID6_CONT                    0x14
98 #define XGENE_DMA_RAID6_MULTI_CTRL(v)           ((v) << 24)
99 #define XGENE_DMA_INT                           0x70
100 #define XGENE_DMA_INT_MASK                      0x74
101 #define XGENE_DMA_INT_ALL_MASK                  0xFFFFFFFF
102 #define XGENE_DMA_INT_ALL_UNMASK                0x0
103 #define XGENE_DMA_INT_MASK_SHIFT                0x14
104 #define XGENE_DMA_RING_INT0_MASK                0x90A0
105 #define XGENE_DMA_RING_INT1_MASK                0x90A8
106 #define XGENE_DMA_RING_INT2_MASK                0x90B0
107 #define XGENE_DMA_RING_INT3_MASK                0x90B8
108 #define XGENE_DMA_RING_INT4_MASK                0x90C0
109 #define XGENE_DMA_CFG_RING_WQ_ASSOC             0x90E0
110 #define XGENE_DMA_ASSOC_RING_MNGR1              0xFFFFFFFF
111 #define XGENE_DMA_MEM_RAM_SHUTDOWN              0xD070
112 #define XGENE_DMA_BLK_MEM_RDY                   0xD074
113 #define XGENE_DMA_BLK_MEM_RDY_VAL               0xFFFFFFFF
114
115 /* X-Gene SoC EFUSE csr register and bit defination */
116 #define XGENE_SOC_JTAG1_SHADOW                  0x18
117 #define XGENE_DMA_PQ_DISABLE_MASK               BIT(13)
118
119 /* X-Gene DMA Descriptor format */
120 #define XGENE_DMA_DESC_NV_BIT                   BIT_ULL(50)
121 #define XGENE_DMA_DESC_IN_BIT                   BIT_ULL(55)
122 #define XGENE_DMA_DESC_C_BIT                    BIT_ULL(63)
123 #define XGENE_DMA_DESC_DR_BIT                   BIT_ULL(61)
124 #define XGENE_DMA_DESC_ELERR_POS                46
125 #define XGENE_DMA_DESC_RTYPE_POS                56
126 #define XGENE_DMA_DESC_LERR_POS                 60
127 #define XGENE_DMA_DESC_FLYBY_POS                4
128 #define XGENE_DMA_DESC_BUFLEN_POS               48
129 #define XGENE_DMA_DESC_HOENQ_NUM_POS            48
130
131 #define XGENE_DMA_DESC_NV_SET(m)                \
132         (((u64 *)(m))[0] |= XGENE_DMA_DESC_NV_BIT)
133 #define XGENE_DMA_DESC_IN_SET(m)                \
134         (((u64 *)(m))[0] |= XGENE_DMA_DESC_IN_BIT)
135 #define XGENE_DMA_DESC_RTYPE_SET(m, v)          \
136         (((u64 *)(m))[0] |= ((u64)(v) << XGENE_DMA_DESC_RTYPE_POS))
137 #define XGENE_DMA_DESC_BUFADDR_SET(m, v)        \
138         (((u64 *)(m))[0] |= (v))
139 #define XGENE_DMA_DESC_BUFLEN_SET(m, v)         \
140         (((u64 *)(m))[0] |= ((u64)(v) << XGENE_DMA_DESC_BUFLEN_POS))
141 #define XGENE_DMA_DESC_C_SET(m)                 \
142         (((u64 *)(m))[1] |= XGENE_DMA_DESC_C_BIT)
143 #define XGENE_DMA_DESC_FLYBY_SET(m, v)          \
144         (((u64 *)(m))[2] |= ((v) << XGENE_DMA_DESC_FLYBY_POS))
145 #define XGENE_DMA_DESC_MULTI_SET(m, v, i)       \
146         (((u64 *)(m))[2] |= ((u64)(v) << (((i) + 1) * 8)))
147 #define XGENE_DMA_DESC_DR_SET(m)                \
148         (((u64 *)(m))[2] |= XGENE_DMA_DESC_DR_BIT)
149 #define XGENE_DMA_DESC_DST_ADDR_SET(m, v)       \
150         (((u64 *)(m))[3] |= (v))
151 #define XGENE_DMA_DESC_H0ENQ_NUM_SET(m, v)      \
152         (((u64 *)(m))[3] |= ((u64)(v) << XGENE_DMA_DESC_HOENQ_NUM_POS))
153 #define XGENE_DMA_DESC_ELERR_RD(m)              \
154         (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
155 #define XGENE_DMA_DESC_LERR_RD(m)               \
156         (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
157 #define XGENE_DMA_DESC_STATUS(elerr, lerr)      \
158         (((elerr) << 4) | (lerr))
159
160 /* X-Gene DMA descriptor empty s/w signature */
161 #define XGENE_DMA_DESC_EMPTY_INDEX              0
162 #define XGENE_DMA_DESC_EMPTY_SIGNATURE          ~0ULL
163 #define XGENE_DMA_DESC_SET_EMPTY(m)             \
164         (((u64 *)(m))[XGENE_DMA_DESC_EMPTY_INDEX] =     \
165          XGENE_DMA_DESC_EMPTY_SIGNATURE)
166 #define XGENE_DMA_DESC_IS_EMPTY(m)              \
167         (((u64 *)(m))[XGENE_DMA_DESC_EMPTY_INDEX] ==    \
168          XGENE_DMA_DESC_EMPTY_SIGNATURE)
169
170 /* X-Gene DMA configurable parameters defines */
171 #define XGENE_DMA_RING_NUM              512
172 #define XGENE_DMA_BUFNUM                0x0
173 #define XGENE_DMA_CPU_BUFNUM            0x18
174 #define XGENE_DMA_RING_OWNER_DMA        0x03
175 #define XGENE_DMA_RING_OWNER_CPU        0x0F
176 #define XGENE_DMA_RING_TYPE_REGULAR     0x01
177 #define XGENE_DMA_RING_WQ_DESC_SIZE     32      /* 32 Bytes */
178 #define XGENE_DMA_RING_NUM_CONFIG       5
179 #define XGENE_DMA_MAX_CHANNEL           4
180 #define XGENE_DMA_XOR_CHANNEL           0
181 #define XGENE_DMA_PQ_CHANNEL            1
182 #define XGENE_DMA_MAX_BYTE_CNT          0x4000  /* 16 KB */
183 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
184 #define XGENE_DMA_XOR_ALIGNMENT         6       /* 64 Bytes */
185 #define XGENE_DMA_MAX_XOR_SRC           5
186 #define XGENE_DMA_16K_BUFFER_LEN_CODE   0x0
187 #define XGENE_DMA_INVALID_LEN_CODE      0x7800
188
189 /* X-Gene DMA descriptor error codes */
190 #define ERR_DESC_AXI                    0x01
191 #define ERR_BAD_DESC                    0x02
192 #define ERR_READ_DATA_AXI               0x03
193 #define ERR_WRITE_DATA_AXI              0x04
194 #define ERR_FBP_TIMEOUT                 0x05
195 #define ERR_ECC                         0x06
196 #define ERR_DIFF_SIZE                   0x08
197 #define ERR_SCT_GAT_LEN                 0x09
198 #define ERR_CRC_ERR                     0x11
199 #define ERR_CHKSUM                      0x12
200 #define ERR_DIF                         0x13
201
202 /* X-Gene DMA error interrupt codes */
203 #define ERR_DIF_SIZE_INT                0x0
204 #define ERR_GS_ERR_INT                  0x1
205 #define ERR_FPB_TIMEO_INT               0x2
206 #define ERR_WFIFO_OVF_INT               0x3
207 #define ERR_RFIFO_OVF_INT               0x4
208 #define ERR_WR_TIMEO_INT                0x5
209 #define ERR_RD_TIMEO_INT                0x6
210 #define ERR_WR_ERR_INT                  0x7
211 #define ERR_RD_ERR_INT                  0x8
212 #define ERR_BAD_DESC_INT                0x9
213 #define ERR_DESC_DST_INT                0xA
214 #define ERR_DESC_SRC_INT                0xB
215
216 /* X-Gene DMA flyby operation code */
217 #define FLYBY_2SRC_XOR                  0x8
218 #define FLYBY_3SRC_XOR                  0x9
219 #define FLYBY_4SRC_XOR                  0xA
220 #define FLYBY_5SRC_XOR                  0xB
221
222 /* X-Gene DMA SW descriptor flags */
223 #define XGENE_DMA_FLAG_64B_DESC         BIT(0)
224
225 /* Define to dump X-Gene DMA descriptor */
226 #define XGENE_DMA_DESC_DUMP(desc, m)    \
227         print_hex_dump(KERN_ERR, (m),   \
228                         DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
229
230 #define to_dma_desc_sw(tx)              \
231         container_of(tx, struct xgene_dma_desc_sw, tx)
232 #define to_dma_chan(dchan)              \
233         container_of(dchan, struct xgene_dma_chan, dma_chan)
234
235 #define chan_dbg(chan, fmt, arg...)     \
236         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
237 #define chan_err(chan, fmt, arg...)     \
238         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
239
240 struct xgene_dma_desc_hw {
241         u64 m0;
242         u64 m1;
243         u64 m2;
244         u64 m3;
245 };
246
247 enum xgene_dma_ring_cfgsize {
248         XGENE_DMA_RING_CFG_SIZE_512B,
249         XGENE_DMA_RING_CFG_SIZE_2KB,
250         XGENE_DMA_RING_CFG_SIZE_16KB,
251         XGENE_DMA_RING_CFG_SIZE_64KB,
252         XGENE_DMA_RING_CFG_SIZE_512KB,
253         XGENE_DMA_RING_CFG_SIZE_INVALID
254 };
255
256 struct xgene_dma_ring {
257         struct xgene_dma *pdma;
258         u8 buf_num;
259         u16 id;
260         u16 num;
261         u16 head;
262         u16 owner;
263         u16 slots;
264         u16 dst_ring_num;
265         u32 size;
266         void __iomem *cmd;
267         void __iomem *cmd_base;
268         dma_addr_t desc_paddr;
269         u32 state[XGENE_DMA_RING_NUM_CONFIG];
270         enum xgene_dma_ring_cfgsize cfgsize;
271         union {
272                 void *desc_vaddr;
273                 struct xgene_dma_desc_hw *desc_hw;
274         };
275 };
276
277 struct xgene_dma_desc_sw {
278         struct xgene_dma_desc_hw desc1;
279         struct xgene_dma_desc_hw desc2;
280         u32 flags;
281         struct list_head node;
282         struct list_head tx_list;
283         struct dma_async_tx_descriptor tx;
284 };
285
286 /**
287  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
288  * @dma_chan: dmaengine channel object member
289  * @pdma: X-Gene DMA device structure reference
290  * @dev: struct device reference for dma mapping api
291  * @id: raw id of this channel
292  * @rx_irq: channel IRQ
293  * @name: name of X-Gene DMA channel
294  * @lock: serializes enqueue/dequeue operations to the descriptor pool
295  * @pending: number of transaction request pushed to DMA controller for
296  *      execution, but still waiting for completion,
297  * @max_outstanding: max number of outstanding request we can push to channel
298  * @ld_pending: descriptors which are queued to run, but have not yet been
299  *      submitted to the hardware for execution
300  * @ld_running: descriptors which are currently being executing by the hardware
301  * @ld_completed: descriptors which have finished execution by the hardware.
302  *      These descriptors have already had their cleanup actions run. They
303  *      are waiting for the ACK bit to be set by the async tx API.
304  * @desc_pool: descriptor pool for DMA operations
305  * @tasklet: bottom half where all completed descriptors cleans
306  * @tx_ring: transmit ring descriptor that we use to prepare actual
307  *      descriptors for further executions
308  * @rx_ring: receive ring descriptor that we use to get completed DMA
309  *      descriptors during cleanup time
310  */
311 struct xgene_dma_chan {
312         struct dma_chan dma_chan;
313         struct xgene_dma *pdma;
314         struct device *dev;
315         int id;
316         int rx_irq;
317         char name[10];
318         spinlock_t lock;
319         int pending;
320         int max_outstanding;
321         struct list_head ld_pending;
322         struct list_head ld_running;
323         struct list_head ld_completed;
324         struct dma_pool *desc_pool;
325         struct tasklet_struct tasklet;
326         struct xgene_dma_ring tx_ring;
327         struct xgene_dma_ring rx_ring;
328 };
329
330 /**
331  * struct xgene_dma - internal representation of an X-Gene DMA device
332  * @err_irq: DMA error irq number
333  * @ring_num: start id number for DMA ring
334  * @csr_dma: base for DMA register access
335  * @csr_ring: base for DMA ring register access
336  * @csr_ring_cmd: base for DMA ring command register access
337  * @csr_efuse: base for efuse register access
338  * @dma_dev: embedded struct dma_device
339  * @chan: reference to X-Gene DMA channels
340  */
341 struct xgene_dma {
342         struct device *dev;
343         struct clk *clk;
344         int err_irq;
345         int ring_num;
346         void __iomem *csr_dma;
347         void __iomem *csr_ring;
348         void __iomem *csr_ring_cmd;
349         void __iomem *csr_efuse;
350         struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
351         struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
352 };
353
354 static const char * const xgene_dma_desc_err[] = {
355         [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
356         [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
357         [ERR_READ_DATA_AXI] = "AXI error when reading data",
358         [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
359         [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
360         [ERR_ECC] = "ECC double bit error",
361         [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
362         [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
363         [ERR_CRC_ERR] = "CRC error",
364         [ERR_CHKSUM] = "Checksum error",
365         [ERR_DIF] = "DIF error",
366 };
367
368 static const char * const xgene_dma_err[] = {
369         [ERR_DIF_SIZE_INT] = "DIF size error",
370         [ERR_GS_ERR_INT] = "Gather scatter not same size error",
371         [ERR_FPB_TIMEO_INT] = "Free pool time out error",
372         [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
373         [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
374         [ERR_WR_TIMEO_INT] = "Write time out error",
375         [ERR_RD_TIMEO_INT] = "Read time out error",
376         [ERR_WR_ERR_INT] = "HBF bus write error",
377         [ERR_RD_ERR_INT] = "HBF bus read error",
378         [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
379         [ERR_DESC_DST_INT] = "HFB reading dst link address error",
380         [ERR_DESC_SRC_INT] = "HFB reading src link address error",
381 };
382
383 static bool is_pq_enabled(struct xgene_dma *pdma)
384 {
385         u32 val;
386
387         val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
388         return !(val & XGENE_DMA_PQ_DISABLE_MASK);
389 }
390
391 static void xgene_dma_cpu_to_le64(u64 *desc, int count)
392 {
393         int i;
394
395         for (i = 0; i < count; i++)
396                 desc[i] = cpu_to_le64(desc[i]);
397 }
398
399 static u16 xgene_dma_encode_len(u32 len)
400 {
401         return (len < XGENE_DMA_MAX_BYTE_CNT) ?
402                 len : XGENE_DMA_16K_BUFFER_LEN_CODE;
403 }
404
405 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
406 {
407         static u8 flyby_type[] = {
408                 FLYBY_2SRC_XOR, /* Dummy */
409                 FLYBY_2SRC_XOR, /* Dummy */
410                 FLYBY_2SRC_XOR,
411                 FLYBY_3SRC_XOR,
412                 FLYBY_4SRC_XOR,
413                 FLYBY_5SRC_XOR
414         };
415
416         return flyby_type[src_cnt];
417 }
418
419 static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring)
420 {
421         u32 __iomem *cmd_base = ring->cmd_base;
422         u32 ring_state = ioread32(&cmd_base[1]);
423
424         return XGENE_DMA_RING_DESC_CNT(ring_state);
425 }
426
427 static void xgene_dma_set_src_buffer(void *ext8, size_t *len,
428                                      dma_addr_t *paddr)
429 {
430         size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
431                         *len : XGENE_DMA_MAX_BYTE_CNT;
432
433         XGENE_DMA_DESC_BUFADDR_SET(ext8, *paddr);
434         XGENE_DMA_DESC_BUFLEN_SET(ext8, xgene_dma_encode_len(nbytes));
435         *len -= nbytes;
436         *paddr += nbytes;
437 }
438
439 static void xgene_dma_invalidate_buffer(void *ext8)
440 {
441         XGENE_DMA_DESC_BUFLEN_SET(ext8, XGENE_DMA_INVALID_LEN_CODE);
442 }
443
444 static void *xgene_dma_lookup_ext8(u64 *desc, int idx)
445 {
446         return (idx % 2) ? (desc + idx - 1) : (desc + idx + 1);
447 }
448
449 static void xgene_dma_init_desc(void *desc, u16 dst_ring_num)
450 {
451         XGENE_DMA_DESC_C_SET(desc); /* Coherent IO */
452         XGENE_DMA_DESC_IN_SET(desc);
453         XGENE_DMA_DESC_H0ENQ_NUM_SET(desc, dst_ring_num);
454         XGENE_DMA_DESC_RTYPE_SET(desc, XGENE_DMA_RING_OWNER_DMA);
455 }
456
457 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
458                                     struct xgene_dma_desc_sw *desc_sw,
459                                     dma_addr_t dst, dma_addr_t src,
460                                     size_t len)
461 {
462         void *desc1, *desc2;
463         int i;
464
465         /* Get 1st descriptor */
466         desc1 = &desc_sw->desc1;
467         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
468
469         /* Set destination address */
470         XGENE_DMA_DESC_DR_SET(desc1);
471         XGENE_DMA_DESC_DST_ADDR_SET(desc1, dst);
472
473         /* Set 1st source address */
474         xgene_dma_set_src_buffer(desc1 + 8, &len, &src);
475
476         if (len <= 0) {
477                 desc2 = NULL;
478                 goto skip_additional_src;
479         }
480
481         /*
482          * We need to split this source buffer,
483          * and need to use 2nd descriptor
484          */
485         desc2 = &desc_sw->desc2;
486         XGENE_DMA_DESC_NV_SET(desc1);
487
488         /* Set 2nd to 5th source address */
489         for (i = 0; i < 4 && len; i++)
490                 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
491                                          &len, &src);
492
493         /* Invalidate unused source address field */
494         for (; i < 4; i++)
495                 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
496
497         /* Updated flag that we have prepared 64B descriptor */
498         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
499
500 skip_additional_src:
501         /* Hardware stores descriptor in little endian format */
502         xgene_dma_cpu_to_le64(desc1, 4);
503         if (desc2)
504                 xgene_dma_cpu_to_le64(desc2, 4);
505 }
506
507 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
508                                     struct xgene_dma_desc_sw *desc_sw,
509                                     dma_addr_t *dst, dma_addr_t *src,
510                                     u32 src_cnt, size_t *nbytes,
511                                     const u8 *scf)
512 {
513         void *desc1, *desc2;
514         size_t len = *nbytes;
515         int i;
516
517         desc1 = &desc_sw->desc1;
518         desc2 = &desc_sw->desc2;
519
520         /* Initialize DMA descriptor */
521         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
522
523         /* Set destination address */
524         XGENE_DMA_DESC_DR_SET(desc1);
525         XGENE_DMA_DESC_DST_ADDR_SET(desc1, *dst);
526
527         /* We have multiple source addresses, so need to set NV bit*/
528         XGENE_DMA_DESC_NV_SET(desc1);
529
530         /* Set flyby opcode */
531         XGENE_DMA_DESC_FLYBY_SET(desc1, xgene_dma_encode_xor_flyby(src_cnt));
532
533         /* Set 1st to 5th source addresses */
534         for (i = 0; i < src_cnt; i++) {
535                 len = *nbytes;
536                 xgene_dma_set_src_buffer((i == 0) ? (desc1 + 8) :
537                                          xgene_dma_lookup_ext8(desc2, i - 1),
538                                          &len, &src[i]);
539                 XGENE_DMA_DESC_MULTI_SET(desc1, scf[i], i);
540         }
541
542         /* Hardware stores descriptor in little endian format */
543         xgene_dma_cpu_to_le64(desc1, 4);
544         xgene_dma_cpu_to_le64(desc2, 4);
545
546         /* Update meta data */
547         *nbytes = len;
548         *dst += XGENE_DMA_MAX_BYTE_CNT;
549
550         /* We need always 64B descriptor to perform xor or pq operations */
551         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
552 }
553
554 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
555 {
556         struct xgene_dma_desc_sw *desc;
557         struct xgene_dma_chan *chan;
558         dma_cookie_t cookie;
559
560         if (unlikely(!tx))
561                 return -EINVAL;
562
563         chan = to_dma_chan(tx->chan);
564         desc = to_dma_desc_sw(tx);
565
566         spin_lock_bh(&chan->lock);
567
568         cookie = dma_cookie_assign(tx);
569
570         /* Add this transaction list onto the tail of the pending queue */
571         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
572
573         spin_unlock_bh(&chan->lock);
574
575         return cookie;
576 }
577
578 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
579                                        struct xgene_dma_desc_sw *desc)
580 {
581         list_del(&desc->node);
582         chan_dbg(chan, "LD %p free\n", desc);
583         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
584 }
585
586 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
587                                  struct xgene_dma_chan *chan)
588 {
589         struct xgene_dma_desc_sw *desc;
590         dma_addr_t phys;
591
592         desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys);
593         if (!desc) {
594                 chan_err(chan, "Failed to allocate LDs\n");
595                 return NULL;
596         }
597
598         memset(desc, 0, sizeof(*desc));
599
600         INIT_LIST_HEAD(&desc->tx_list);
601         desc->tx.phys = phys;
602         desc->tx.tx_submit = xgene_dma_tx_submit;
603         dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
604
605         chan_dbg(chan, "LD %p allocated\n", desc);
606
607         return desc;
608 }
609
610 /**
611  * xgene_dma_clean_completed_descriptor - free all descriptors which
612  * has been completed and acked
613  * @chan: X-Gene DMA channel
614  *
615  * This function is used on all completed and acked descriptors.
616  */
617 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
618 {
619         struct xgene_dma_desc_sw *desc, *_desc;
620
621         /* Run the callback for each descriptor, in order */
622         list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
623                 if (async_tx_test_ack(&desc->tx))
624                         xgene_dma_clean_descriptor(chan, desc);
625         }
626 }
627
628 /**
629  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
630  * @chan: X-Gene DMA channel
631  * @desc: descriptor to cleanup and free
632  *
633  * This function is used on a descriptor which has been executed by the DMA
634  * controller. It will run any callbacks, submit any dependencies.
635  */
636 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
637                                               struct xgene_dma_desc_sw *desc)
638 {
639         struct dma_async_tx_descriptor *tx = &desc->tx;
640
641         /*
642          * If this is not the last transaction in the group,
643          * then no need to complete cookie and run any callback as
644          * this is not the tx_descriptor which had been sent to caller
645          * of this DMA request
646          */
647
648         if (tx->cookie == 0)
649                 return;
650
651         dma_cookie_complete(tx);
652
653         /* Run the link descriptor callback function */
654         if (tx->callback)
655                 tx->callback(tx->callback_param);
656
657         dma_descriptor_unmap(tx);
658
659         /* Run any dependencies */
660         dma_run_dependencies(tx);
661 }
662
663 /**
664  * xgene_dma_clean_running_descriptor - move the completed descriptor from
665  * ld_running to ld_completed
666  * @chan: X-Gene DMA channel
667  * @desc: the descriptor which is completed
668  *
669  * Free the descriptor directly if acked by async_tx api,
670  * else move it to queue ld_completed.
671  */
672 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
673                                                struct xgene_dma_desc_sw *desc)
674 {
675         /* Remove from the list of running transactions */
676         list_del(&desc->node);
677
678         /*
679          * the client is allowed to attach dependent operations
680          * until 'ack' is set
681          */
682         if (!async_tx_test_ack(&desc->tx)) {
683                 /*
684                  * Move this descriptor to the list of descriptors which is
685                  * completed, but still awaiting the 'ack' bit to be set.
686                  */
687                 list_add_tail(&desc->node, &chan->ld_completed);
688                 return;
689         }
690
691         chan_dbg(chan, "LD %p free\n", desc);
692         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
693 }
694
695 static int xgene_chan_xfer_request(struct xgene_dma_ring *ring,
696                                    struct xgene_dma_desc_sw *desc_sw)
697 {
698         struct xgene_dma_desc_hw *desc_hw;
699
700         /* Check if can push more descriptor to hw for execution */
701         if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2))
702                 return -EBUSY;
703
704         /* Get hw descriptor from DMA tx ring */
705         desc_hw = &ring->desc_hw[ring->head];
706
707         /*
708          * Increment the head count to point next
709          * descriptor for next time
710          */
711         if (++ring->head == ring->slots)
712                 ring->head = 0;
713
714         /* Copy prepared sw descriptor data to hw descriptor */
715         memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
716
717         /*
718          * Check if we have prepared 64B descriptor,
719          * in this case we need one more hw descriptor
720          */
721         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
722                 desc_hw = &ring->desc_hw[ring->head];
723
724                 if (++ring->head == ring->slots)
725                         ring->head = 0;
726
727                 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
728         }
729
730         /* Notify the hw that we have descriptor ready for execution */
731         iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
732                   2 : 1, ring->cmd);
733
734         return 0;
735 }
736
737 /**
738  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
739  * @chan : X-Gene DMA channel
740  *
741  * LOCKING: must hold chan->desc_lock
742  */
743 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
744 {
745         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
746         int ret;
747
748         /*
749          * If the list of pending descriptors is empty, then we
750          * don't need to do any work at all
751          */
752         if (list_empty(&chan->ld_pending)) {
753                 chan_dbg(chan, "No pending LDs\n");
754                 return;
755         }
756
757         /*
758          * Move elements from the queue of pending transactions onto the list
759          * of running transactions and push it to hw for further executions
760          */
761         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
762                 /*
763                  * Check if have pushed max number of transactions to hw
764                  * as capable, so let's stop here and will push remaining
765                  * elements from pening ld queue after completing some
766                  * descriptors that we have already pushed
767                  */
768                 if (chan->pending >= chan->max_outstanding)
769                         return;
770
771                 ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw);
772                 if (ret)
773                         return;
774
775                 /*
776                  * Delete this element from ld pending queue and append it to
777                  * ld running queue
778                  */
779                 list_move_tail(&desc_sw->node, &chan->ld_running);
780
781                 /* Increment the pending transaction count */
782                 chan->pending++;
783         }
784 }
785
786 /**
787  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
788  * and move them to ld_completed to free until flag 'ack' is set
789  * @chan: X-Gene DMA channel
790  *
791  * This function is used on descriptors which have been executed by the DMA
792  * controller. It will run any callbacks, submit any dependencies, then
793  * free these descriptors if flag 'ack' is set.
794  */
795 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
796 {
797         struct xgene_dma_ring *ring = &chan->rx_ring;
798         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
799         struct xgene_dma_desc_hw *desc_hw;
800         u8 status;
801
802         /* Clean already completed and acked descriptors */
803         xgene_dma_clean_completed_descriptor(chan);
804
805         /* Run the callback for each descriptor, in order */
806         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
807                 /* Get subsequent hw descriptor from DMA rx ring */
808                 desc_hw = &ring->desc_hw[ring->head];
809
810                 /* Check if this descriptor has been completed */
811                 if (unlikely(XGENE_DMA_DESC_IS_EMPTY(desc_hw)))
812                         break;
813
814                 if (++ring->head == ring->slots)
815                         ring->head = 0;
816
817                 /* Check if we have any error with DMA transactions */
818                 status = XGENE_DMA_DESC_STATUS(
819                                 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
820                                                         desc_hw->m0)),
821                                 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
822                                                        desc_hw->m0)));
823                 if (status) {
824                         /* Print the DMA error type */
825                         chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
826
827                         /*
828                          * We have DMA transactions error here. Dump DMA Tx
829                          * and Rx descriptors for this request */
830                         XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
831                                             "X-Gene DMA TX DESC1: ");
832
833                         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
834                                 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
835                                                     "X-Gene DMA TX DESC2: ");
836
837                         XGENE_DMA_DESC_DUMP(desc_hw,
838                                             "X-Gene DMA RX ERR DESC: ");
839                 }
840
841                 /* Notify the hw about this completed descriptor */
842                 iowrite32(-1, ring->cmd);
843
844                 /* Mark this hw descriptor as processed */
845                 XGENE_DMA_DESC_SET_EMPTY(desc_hw);
846
847                 xgene_dma_run_tx_complete_actions(chan, desc_sw);
848
849                 xgene_dma_clean_running_descriptor(chan, desc_sw);
850
851                 /*
852                  * Decrement the pending transaction count
853                  * as we have processed one
854                  */
855                 chan->pending--;
856         }
857
858         /*
859          * Start any pending transactions automatically
860          * In the ideal case, we keep the DMA controller busy while we go
861          * ahead and free the descriptors below.
862          */
863         xgene_chan_xfer_ld_pending(chan);
864 }
865
866 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
867 {
868         struct xgene_dma_chan *chan = to_dma_chan(dchan);
869
870         /* Has this channel already been allocated? */
871         if (chan->desc_pool)
872                 return 1;
873
874         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
875                                           sizeof(struct xgene_dma_desc_sw),
876                                           0, 0);
877         if (!chan->desc_pool) {
878                 chan_err(chan, "Failed to allocate descriptor pool\n");
879                 return -ENOMEM;
880         }
881
882         chan_dbg(chan, "Allocate descripto pool\n");
883
884         return 1;
885 }
886
887 /**
888  * xgene_dma_free_desc_list - Free all descriptors in a queue
889  * @chan: X-Gene DMA channel
890  * @list: the list to free
891  *
892  * LOCKING: must hold chan->desc_lock
893  */
894 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
895                                      struct list_head *list)
896 {
897         struct xgene_dma_desc_sw *desc, *_desc;
898
899         list_for_each_entry_safe(desc, _desc, list, node)
900                 xgene_dma_clean_descriptor(chan, desc);
901 }
902
903 static void xgene_dma_free_tx_desc_list(struct xgene_dma_chan *chan,
904                                         struct list_head *list)
905 {
906         struct xgene_dma_desc_sw *desc, *_desc;
907
908         list_for_each_entry_safe(desc, _desc, list, node)
909                 xgene_dma_clean_descriptor(chan, desc);
910 }
911
912 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
913 {
914         struct xgene_dma_chan *chan = to_dma_chan(dchan);
915
916         chan_dbg(chan, "Free all resources\n");
917
918         if (!chan->desc_pool)
919                 return;
920
921         spin_lock_bh(&chan->lock);
922
923         /* Process all running descriptor */
924         xgene_dma_cleanup_descriptors(chan);
925
926         /* Clean all link descriptor queues */
927         xgene_dma_free_desc_list(chan, &chan->ld_pending);
928         xgene_dma_free_desc_list(chan, &chan->ld_running);
929         xgene_dma_free_desc_list(chan, &chan->ld_completed);
930
931         spin_unlock_bh(&chan->lock);
932
933         /* Delete this channel DMA pool */
934         dma_pool_destroy(chan->desc_pool);
935         chan->desc_pool = NULL;
936 }
937
938 static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy(
939         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
940         size_t len, unsigned long flags)
941 {
942         struct xgene_dma_desc_sw *first = NULL, *new;
943         struct xgene_dma_chan *chan;
944         size_t copy;
945
946         if (unlikely(!dchan || !len))
947                 return NULL;
948
949         chan = to_dma_chan(dchan);
950
951         do {
952                 /* Allocate the link descriptor from DMA pool */
953                 new = xgene_dma_alloc_descriptor(chan);
954                 if (!new)
955                         goto fail;
956
957                 /* Create the largest transaction possible */
958                 copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
959
960                 /* Prepare DMA descriptor */
961                 xgene_dma_prep_cpy_desc(chan, new, dst, src, copy);
962
963                 if (!first)
964                         first = new;
965
966                 new->tx.cookie = 0;
967                 async_tx_ack(&new->tx);
968
969                 /* Update metadata */
970                 len -= copy;
971                 dst += copy;
972                 src += copy;
973
974                 /* Insert the link descriptor to the LD ring */
975                 list_add_tail(&new->node, &first->tx_list);
976         } while (len);
977
978         new->tx.flags = flags; /* client is in control of this ack */
979         new->tx.cookie = -EBUSY;
980         list_splice(&first->tx_list, &new->tx_list);
981
982         return &new->tx;
983
984 fail:
985         if (!first)
986                 return NULL;
987
988         xgene_dma_free_tx_desc_list(chan, &first->tx_list);
989         return NULL;
990 }
991
992 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
993         struct dma_chan *dchan, struct scatterlist *dst_sg,
994         u32 dst_nents, struct scatterlist *src_sg,
995         u32 src_nents, unsigned long flags)
996 {
997         struct xgene_dma_desc_sw *first = NULL, *new = NULL;
998         struct xgene_dma_chan *chan;
999         size_t dst_avail, src_avail;
1000         dma_addr_t dst, src;
1001         size_t len;
1002
1003         if (unlikely(!dchan))
1004                 return NULL;
1005
1006         if (unlikely(!dst_nents || !src_nents))
1007                 return NULL;
1008
1009         if (unlikely(!dst_sg || !src_sg))
1010                 return NULL;
1011
1012         chan = to_dma_chan(dchan);
1013
1014         /* Get prepared for the loop */
1015         dst_avail = sg_dma_len(dst_sg);
1016         src_avail = sg_dma_len(src_sg);
1017         dst_nents--;
1018         src_nents--;
1019
1020         /* Run until we are out of scatterlist entries */
1021         while (true) {
1022                 /* Create the largest transaction possible */
1023                 len = min_t(size_t, src_avail, dst_avail);
1024                 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
1025                 if (len == 0)
1026                         goto fetch;
1027
1028                 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
1029                 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
1030
1031                 /* Allocate the link descriptor from DMA pool */
1032                 new = xgene_dma_alloc_descriptor(chan);
1033                 if (!new)
1034                         goto fail;
1035
1036                 /* Prepare DMA descriptor */
1037                 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
1038
1039                 if (!first)
1040                         first = new;
1041
1042                 new->tx.cookie = 0;
1043                 async_tx_ack(&new->tx);
1044
1045                 /* update metadata */
1046                 dst_avail -= len;
1047                 src_avail -= len;
1048
1049                 /* Insert the link descriptor to the LD ring */
1050                 list_add_tail(&new->node, &first->tx_list);
1051
1052 fetch:
1053                 /* fetch the next dst scatterlist entry */
1054                 if (dst_avail == 0) {
1055                         /* no more entries: we're done */
1056                         if (dst_nents == 0)
1057                                 break;
1058
1059                         /* fetch the next entry: if there are no more: done */
1060                         dst_sg = sg_next(dst_sg);
1061                         if (!dst_sg)
1062                                 break;
1063
1064                         dst_nents--;
1065                         dst_avail = sg_dma_len(dst_sg);
1066                 }
1067
1068                 /* fetch the next src scatterlist entry */
1069                 if (src_avail == 0) {
1070                         /* no more entries: we're done */
1071                         if (src_nents == 0)
1072                                 break;
1073
1074                         /* fetch the next entry: if there are no more: done */
1075                         src_sg = sg_next(src_sg);
1076                         if (!src_sg)
1077                                 break;
1078
1079                         src_nents--;
1080                         src_avail = sg_dma_len(src_sg);
1081                 }
1082         }
1083
1084         if (!new)
1085                 return NULL;
1086
1087         new->tx.flags = flags; /* client is in control of this ack */
1088         new->tx.cookie = -EBUSY;
1089         list_splice(&first->tx_list, &new->tx_list);
1090
1091         return &new->tx;
1092 fail:
1093         if (!first)
1094                 return NULL;
1095
1096         xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1097         return NULL;
1098 }
1099
1100 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1101         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1102         u32 src_cnt, size_t len, unsigned long flags)
1103 {
1104         struct xgene_dma_desc_sw *first = NULL, *new;
1105         struct xgene_dma_chan *chan;
1106         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1107                                 0x01, 0x01, 0x01, 0x01, 0x01};
1108
1109         if (unlikely(!dchan || !len))
1110                 return NULL;
1111
1112         chan = to_dma_chan(dchan);
1113
1114         do {
1115                 /* Allocate the link descriptor from DMA pool */
1116                 new = xgene_dma_alloc_descriptor(chan);
1117                 if (!new)
1118                         goto fail;
1119
1120                 /* Prepare xor DMA descriptor */
1121                 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1122                                         src_cnt, &len, multi);
1123
1124                 if (!first)
1125                         first = new;
1126
1127                 new->tx.cookie = 0;
1128                 async_tx_ack(&new->tx);
1129
1130                 /* Insert the link descriptor to the LD ring */
1131                 list_add_tail(&new->node, &first->tx_list);
1132         } while (len);
1133
1134         new->tx.flags = flags; /* client is in control of this ack */
1135         new->tx.cookie = -EBUSY;
1136         list_splice(&first->tx_list, &new->tx_list);
1137
1138         return &new->tx;
1139
1140 fail:
1141         if (!first)
1142                 return NULL;
1143
1144         xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1145         return NULL;
1146 }
1147
1148 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1149         struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1150         u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1151 {
1152         struct xgene_dma_desc_sw *first = NULL, *new;
1153         struct xgene_dma_chan *chan;
1154         size_t _len = len;
1155         dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1156         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1157
1158         if (unlikely(!dchan || !len))
1159                 return NULL;
1160
1161         chan = to_dma_chan(dchan);
1162
1163         /*
1164          * Save source addresses on local variable, may be we have to
1165          * prepare two descriptor to generate P and Q if both enabled
1166          * in the flags by client
1167          */
1168         memcpy(_src, src, sizeof(*src) * src_cnt);
1169
1170         if (flags & DMA_PREP_PQ_DISABLE_P)
1171                 len = 0;
1172
1173         if (flags & DMA_PREP_PQ_DISABLE_Q)
1174                 _len = 0;
1175
1176         do {
1177                 /* Allocate the link descriptor from DMA pool */
1178                 new = xgene_dma_alloc_descriptor(chan);
1179                 if (!new)
1180                         goto fail;
1181
1182                 if (!first)
1183                         first = new;
1184
1185                 new->tx.cookie = 0;
1186                 async_tx_ack(&new->tx);
1187
1188                 /* Insert the link descriptor to the LD ring */
1189                 list_add_tail(&new->node, &first->tx_list);
1190
1191                 /*
1192                  * Prepare DMA descriptor to generate P,
1193                  * if DMA_PREP_PQ_DISABLE_P flag is not set
1194                  */
1195                 if (len) {
1196                         xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1197                                                 src_cnt, &len, multi);
1198                         continue;
1199                 }
1200
1201                 /*
1202                  * Prepare DMA descriptor to generate Q,
1203                  * if DMA_PREP_PQ_DISABLE_Q flag is not set
1204                  */
1205                 if (_len) {
1206                         xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1207                                                 src_cnt, &_len, scf);
1208                 }
1209         } while (len || _len);
1210
1211         new->tx.flags = flags; /* client is in control of this ack */
1212         new->tx.cookie = -EBUSY;
1213         list_splice(&first->tx_list, &new->tx_list);
1214
1215         return &new->tx;
1216
1217 fail:
1218         if (!first)
1219                 return NULL;
1220
1221         xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1222         return NULL;
1223 }
1224
1225 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1226 {
1227         struct xgene_dma_chan *chan = to_dma_chan(dchan);
1228
1229         spin_lock_bh(&chan->lock);
1230         xgene_chan_xfer_ld_pending(chan);
1231         spin_unlock_bh(&chan->lock);
1232 }
1233
1234 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1235                                            dma_cookie_t cookie,
1236                                            struct dma_tx_state *txstate)
1237 {
1238         return dma_cookie_status(dchan, cookie, txstate);
1239 }
1240
1241 static void xgene_dma_tasklet_cb(unsigned long data)
1242 {
1243         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1244
1245         spin_lock_bh(&chan->lock);
1246
1247         /* Run all cleanup for descriptors which have been completed */
1248         xgene_dma_cleanup_descriptors(chan);
1249
1250         /* Re-enable DMA channel IRQ */
1251         enable_irq(chan->rx_irq);
1252
1253         spin_unlock_bh(&chan->lock);
1254 }
1255
1256 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1257 {
1258         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1259
1260         BUG_ON(!chan);
1261
1262         /*
1263          * Disable DMA channel IRQ until we process completed
1264          * descriptors
1265          */
1266         disable_irq_nosync(chan->rx_irq);
1267
1268         /*
1269          * Schedule the tasklet to handle all cleanup of the current
1270          * transaction. It will start a new transaction if there is
1271          * one pending.
1272          */
1273         tasklet_schedule(&chan->tasklet);
1274
1275         return IRQ_HANDLED;
1276 }
1277
1278 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1279 {
1280         struct xgene_dma *pdma = (struct xgene_dma *)id;
1281         unsigned long int_mask;
1282         u32 val, i;
1283
1284         val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1285
1286         /* Clear DMA interrupts */
1287         iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1288
1289         /* Print DMA error info */
1290         int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1291         for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1292                 dev_err(pdma->dev,
1293                         "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1294
1295         return IRQ_HANDLED;
1296 }
1297
1298 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1299 {
1300         int i;
1301
1302         iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1303
1304         for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1305                 iowrite32(ring->state[i], ring->pdma->csr_ring +
1306                           XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1307 }
1308
1309 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1310 {
1311         memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1312         xgene_dma_wr_ring_state(ring);
1313 }
1314
1315 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1316 {
1317         void *ring_cfg = ring->state;
1318         u64 addr = ring->desc_paddr;
1319         void *desc;
1320         u32 i, val;
1321
1322         ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1323
1324         /* Clear DMA ring state */
1325         xgene_dma_clr_ring_state(ring);
1326
1327         /* Set DMA ring type */
1328         XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1329
1330         if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1331                 /* Set recombination buffer and timeout */
1332                 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1333                 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1334                 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1335         }
1336
1337         /* Initialize DMA ring state */
1338         XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1339         XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1340         XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1341         XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1342         XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1343         XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1344
1345         /* Write DMA ring configurations */
1346         xgene_dma_wr_ring_state(ring);
1347
1348         /* Set DMA ring id */
1349         iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1350                   ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1351
1352         /* Set DMA ring buffer */
1353         iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1354                   ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1355
1356         if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1357                 return;
1358
1359         /* Set empty signature to DMA Rx ring descriptors */
1360         for (i = 0; i < ring->slots; i++) {
1361                 desc = &ring->desc_hw[i];
1362                 XGENE_DMA_DESC_SET_EMPTY(desc);
1363         }
1364
1365         /* Enable DMA Rx ring interrupt */
1366         val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1367         XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1368         iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1369 }
1370
1371 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1372 {
1373         u32 ring_id, val;
1374
1375         if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1376                 /* Disable DMA Rx ring interrupt */
1377                 val = ioread32(ring->pdma->csr_ring +
1378                                XGENE_DMA_RING_NE_INT_MODE);
1379                 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1380                 iowrite32(val, ring->pdma->csr_ring +
1381                           XGENE_DMA_RING_NE_INT_MODE);
1382         }
1383
1384         /* Clear DMA ring state */
1385         ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1386         iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1387
1388         iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1389         xgene_dma_clr_ring_state(ring);
1390 }
1391
1392 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1393 {
1394         ring->cmd_base = ring->pdma->csr_ring_cmd +
1395                                 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1396                                                           XGENE_DMA_RING_NUM));
1397
1398         ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1399 }
1400
1401 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1402                                    enum xgene_dma_ring_cfgsize cfgsize)
1403 {
1404         int size;
1405
1406         switch (cfgsize) {
1407         case XGENE_DMA_RING_CFG_SIZE_512B:
1408                 size = 0x200;
1409                 break;
1410         case XGENE_DMA_RING_CFG_SIZE_2KB:
1411                 size = 0x800;
1412                 break;
1413         case XGENE_DMA_RING_CFG_SIZE_16KB:
1414                 size = 0x4000;
1415                 break;
1416         case XGENE_DMA_RING_CFG_SIZE_64KB:
1417                 size = 0x10000;
1418                 break;
1419         case XGENE_DMA_RING_CFG_SIZE_512KB:
1420                 size = 0x80000;
1421                 break;
1422         default:
1423                 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1424                 return -EINVAL;
1425         }
1426
1427         return size;
1428 }
1429
1430 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1431 {
1432         /* Clear DMA ring configurations */
1433         xgene_dma_clear_ring(ring);
1434
1435         /* De-allocate DMA ring descriptor */
1436         if (ring->desc_vaddr) {
1437                 dma_free_coherent(ring->pdma->dev, ring->size,
1438                                   ring->desc_vaddr, ring->desc_paddr);
1439                 ring->desc_vaddr = NULL;
1440         }
1441 }
1442
1443 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1444 {
1445         xgene_dma_delete_ring_one(&chan->rx_ring);
1446         xgene_dma_delete_ring_one(&chan->tx_ring);
1447 }
1448
1449 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1450                                      struct xgene_dma_ring *ring,
1451                                      enum xgene_dma_ring_cfgsize cfgsize)
1452 {
1453         /* Setup DMA ring descriptor variables */
1454         ring->pdma = chan->pdma;
1455         ring->cfgsize = cfgsize;
1456         ring->num = chan->pdma->ring_num++;
1457         ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1458
1459         ring->size = xgene_dma_get_ring_size(chan, cfgsize);
1460         if (ring->size <= 0)
1461                 return ring->size;
1462
1463         /* Allocate memory for DMA ring descriptor */
1464         ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1465                                                &ring->desc_paddr, GFP_KERNEL);
1466         if (!ring->desc_vaddr) {
1467                 chan_err(chan, "Failed to allocate ring desc\n");
1468                 return -ENOMEM;
1469         }
1470
1471         /* Configure and enable DMA ring */
1472         xgene_dma_set_ring_cmd(ring);
1473         xgene_dma_setup_ring(ring);
1474
1475         return 0;
1476 }
1477
1478 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1479 {
1480         struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1481         struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1482         int ret;
1483
1484         /* Create DMA Rx ring descriptor */
1485         rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1486         rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1487
1488         ret = xgene_dma_create_ring_one(chan, rx_ring,
1489                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1490         if (ret)
1491                 return ret;
1492
1493         chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1494                  rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1495
1496         /* Create DMA Tx ring descriptor */
1497         tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1498         tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1499
1500         ret = xgene_dma_create_ring_one(chan, tx_ring,
1501                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1502         if (ret) {
1503                 xgene_dma_delete_ring_one(rx_ring);
1504                 return ret;
1505         }
1506
1507         tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1508
1509         chan_dbg(chan,
1510                  "Tx ring id 0x%X num %d desc 0x%p\n",
1511                  tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1512
1513         /* Set the max outstanding request possible to this channel */
1514         chan->max_outstanding = rx_ring->slots;
1515
1516         return ret;
1517 }
1518
1519 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1520 {
1521         int ret, i, j;
1522
1523         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1524                 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1525                 if (ret) {
1526                         for (j = 0; j < i; j++)
1527                                 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1528                         return ret;
1529                 }
1530         }
1531
1532         return ret;
1533 }
1534
1535 static void xgene_dma_enable(struct xgene_dma *pdma)
1536 {
1537         u32 val;
1538
1539         /* Configure and enable DMA engine */
1540         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1541         XGENE_DMA_CH_SETUP(val);
1542         XGENE_DMA_ENABLE(val);
1543         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1544 }
1545
1546 static void xgene_dma_disable(struct xgene_dma *pdma)
1547 {
1548         u32 val;
1549
1550         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1551         XGENE_DMA_DISABLE(val);
1552         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1553 }
1554
1555 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1556 {
1557         /*
1558          * Mask DMA ring overflow, underflow and
1559          * AXI write/read error interrupts
1560          */
1561         iowrite32(XGENE_DMA_INT_ALL_MASK,
1562                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1563         iowrite32(XGENE_DMA_INT_ALL_MASK,
1564                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1565         iowrite32(XGENE_DMA_INT_ALL_MASK,
1566                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1567         iowrite32(XGENE_DMA_INT_ALL_MASK,
1568                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1569         iowrite32(XGENE_DMA_INT_ALL_MASK,
1570                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1571
1572         /* Mask DMA error interrupts */
1573         iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1574 }
1575
1576 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1577 {
1578         /*
1579          * Unmask DMA ring overflow, underflow and
1580          * AXI write/read error interrupts
1581          */
1582         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1583                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1584         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1585                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1586         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1587                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1588         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1589                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1590         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1591                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1592
1593         /* Unmask DMA error interrupts */
1594         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1595                   pdma->csr_dma + XGENE_DMA_INT_MASK);
1596 }
1597
1598 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1599 {
1600         u32 val;
1601
1602         /* Associate DMA ring to corresponding ring HW */
1603         iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1604                   pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1605
1606         /* Configure RAID6 polynomial control setting */
1607         if (is_pq_enabled(pdma))
1608                 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1609                           pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1610         else
1611                 dev_info(pdma->dev, "PQ is disabled in HW\n");
1612
1613         xgene_dma_enable(pdma);
1614         xgene_dma_unmask_interrupts(pdma);
1615
1616         /* Get DMA id and version info */
1617         val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1618
1619         /* DMA device info */
1620         dev_info(pdma->dev,
1621                  "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1622                  XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1623                  XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1624 }
1625
1626 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1627 {
1628         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1629             (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1630                 return 0;
1631
1632         iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1633         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1634
1635         /* Bring up memory */
1636         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1637
1638         /* Force a barrier */
1639         ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1640
1641         /* reset may take up to 1ms */
1642         usleep_range(1000, 1100);
1643
1644         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1645                 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1646                 dev_err(pdma->dev,
1647                         "Failed to release ring mngr memory from shutdown\n");
1648                 return -ENODEV;
1649         }
1650
1651         /* program threshold set 1 and all hysteresis */
1652         iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1653                   pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1654         iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1655                   pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1656         iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1657                   pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1658
1659         /* Enable QPcore and assign error queue */
1660         iowrite32(XGENE_DMA_RING_ENABLE,
1661                   pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1662
1663         return 0;
1664 }
1665
1666 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1667 {
1668         int ret;
1669
1670         ret = xgene_dma_init_ring_mngr(pdma);
1671         if (ret)
1672                 return ret;
1673
1674         /* Bring up memory */
1675         iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1676
1677         /* Force a barrier */
1678         ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1679
1680         /* reset may take up to 1ms */
1681         usleep_range(1000, 1100);
1682
1683         if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1684                 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1685                 dev_err(pdma->dev,
1686                         "Failed to release DMA memory from shutdown\n");
1687                 return -ENODEV;
1688         }
1689
1690         return 0;
1691 }
1692
1693 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1694 {
1695         struct xgene_dma_chan *chan;
1696         int ret, i, j;
1697
1698         /* Register DMA error irq */
1699         ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1700                                0, "dma_error", pdma);
1701         if (ret) {
1702                 dev_err(pdma->dev,
1703                         "Failed to register error IRQ %d\n", pdma->err_irq);
1704                 return ret;
1705         }
1706
1707         /* Register DMA channel rx irq */
1708         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1709                 chan = &pdma->chan[i];
1710                 ret = devm_request_irq(chan->dev, chan->rx_irq,
1711                                        xgene_dma_chan_ring_isr,
1712                                        0, chan->name, chan);
1713                 if (ret) {
1714                         chan_err(chan, "Failed to register Rx IRQ %d\n",
1715                                  chan->rx_irq);
1716                         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1717
1718                         for (j = 0; j < i; j++) {
1719                                 chan = &pdma->chan[i];
1720                                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1721                         }
1722
1723                         return ret;
1724                 }
1725         }
1726
1727         return 0;
1728 }
1729
1730 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1731 {
1732         struct xgene_dma_chan *chan;
1733         int i;
1734
1735         /* Free DMA device error irq */
1736         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1737
1738         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1739                 chan = &pdma->chan[i];
1740                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1741         }
1742 }
1743
1744 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1745                                struct dma_device *dma_dev)
1746 {
1747         /* Initialize DMA device capability mask */
1748         dma_cap_zero(dma_dev->cap_mask);
1749
1750         /* Set DMA device capability */
1751         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1752         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1753
1754         /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1755          * and channel 1 supports XOR, PQ both. First thing here is we have
1756          * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1757          * we can make sure this by reading SoC Efuse register.
1758          * Second thing, we have hw errata that if we run channel 0 and
1759          * channel 1 simultaneously with executing XOR and PQ request,
1760          * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1761          * if XOR and PQ supports on channel 1 is disabled.
1762          */
1763         if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1764             is_pq_enabled(chan->pdma)) {
1765                 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1766                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1767         } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1768                    !is_pq_enabled(chan->pdma)) {
1769                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1770         }
1771
1772         /* Set base and prep routines */
1773         dma_dev->dev = chan->dev;
1774         dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1775         dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1776         dma_dev->device_issue_pending = xgene_dma_issue_pending;
1777         dma_dev->device_tx_status = xgene_dma_tx_status;
1778         dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy;
1779         dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1780
1781         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1782                 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1783                 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1784                 dma_dev->xor_align = XGENE_DMA_XOR_ALIGNMENT;
1785         }
1786
1787         if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1788                 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1789                 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1790                 dma_dev->pq_align = XGENE_DMA_XOR_ALIGNMENT;
1791         }
1792 }
1793
1794 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1795 {
1796         struct xgene_dma_chan *chan = &pdma->chan[id];
1797         struct dma_device *dma_dev = &pdma->dma_dev[id];
1798         int ret;
1799
1800         chan->dma_chan.device = dma_dev;
1801
1802         spin_lock_init(&chan->lock);
1803         INIT_LIST_HEAD(&chan->ld_pending);
1804         INIT_LIST_HEAD(&chan->ld_running);
1805         INIT_LIST_HEAD(&chan->ld_completed);
1806         tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1807                      (unsigned long)chan);
1808
1809         chan->pending = 0;
1810         chan->desc_pool = NULL;
1811         dma_cookie_init(&chan->dma_chan);
1812
1813         /* Setup dma device capabilities and prep routines */
1814         xgene_dma_set_caps(chan, dma_dev);
1815
1816         /* Initialize DMA device list head */
1817         INIT_LIST_HEAD(&dma_dev->channels);
1818         list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1819
1820         /* Register with Linux async DMA framework*/
1821         ret = dma_async_device_register(dma_dev);
1822         if (ret) {
1823                 chan_err(chan, "Failed to register async device %d", ret);
1824                 tasklet_kill(&chan->tasklet);
1825
1826                 return ret;
1827         }
1828
1829         /* DMA capability info */
1830         dev_info(pdma->dev,
1831                  "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan),
1832                  dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "",
1833                  dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1834                  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1835                  dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1836
1837         return 0;
1838 }
1839
1840 static int xgene_dma_init_async(struct xgene_dma *pdma)
1841 {
1842         int ret, i, j;
1843
1844         for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1845                 ret = xgene_dma_async_register(pdma, i);
1846                 if (ret) {
1847                         for (j = 0; j < i; j++) {
1848                                 dma_async_device_unregister(&pdma->dma_dev[j]);
1849                                 tasklet_kill(&pdma->chan[j].tasklet);
1850                         }
1851
1852                         return ret;
1853                 }
1854         }
1855
1856         return ret;
1857 }
1858
1859 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1860 {
1861         int i;
1862
1863         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1864                 dma_async_device_unregister(&pdma->dma_dev[i]);
1865 }
1866
1867 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1868 {
1869         struct xgene_dma_chan *chan;
1870         int i;
1871
1872         pdma->ring_num = XGENE_DMA_RING_NUM;
1873
1874         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1875                 chan = &pdma->chan[i];
1876                 chan->dev = pdma->dev;
1877                 chan->pdma = pdma;
1878                 chan->id = i;
1879                 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1880         }
1881 }
1882
1883 static int xgene_dma_get_resources(struct platform_device *pdev,
1884                                    struct xgene_dma *pdma)
1885 {
1886         struct resource *res;
1887         int irq, i;
1888
1889         /* Get DMA csr region */
1890         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1891         if (!res) {
1892                 dev_err(&pdev->dev, "Failed to get csr region\n");
1893                 return -ENXIO;
1894         }
1895
1896         pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1897                                      resource_size(res));
1898         if (!pdma->csr_dma) {
1899                 dev_err(&pdev->dev, "Failed to ioremap csr region");
1900                 return -ENOMEM;
1901         }
1902
1903         /* Get DMA ring csr region */
1904         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1905         if (!res) {
1906                 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1907                 return -ENXIO;
1908         }
1909
1910         pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1911                                        resource_size(res));
1912         if (!pdma->csr_ring) {
1913                 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1914                 return -ENOMEM;
1915         }
1916
1917         /* Get DMA ring cmd csr region */
1918         res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1919         if (!res) {
1920                 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1921                 return -ENXIO;
1922         }
1923
1924         pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1925                                           resource_size(res));
1926         if (!pdma->csr_ring_cmd) {
1927                 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1928                 return -ENOMEM;
1929         }
1930
1931         /* Get efuse csr region */
1932         res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1933         if (!res) {
1934                 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1935                 return -ENXIO;
1936         }
1937
1938         pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1939                                        resource_size(res));
1940         if (!pdma->csr_efuse) {
1941                 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1942                 return -ENOMEM;
1943         }
1944
1945         /* Get DMA error interrupt */
1946         irq = platform_get_irq(pdev, 0);
1947         if (irq <= 0) {
1948                 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1949                 return -ENXIO;
1950         }
1951
1952         pdma->err_irq = irq;
1953
1954         /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1955         for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1956                 irq = platform_get_irq(pdev, i);
1957                 if (irq <= 0) {
1958                         dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1959                         return -ENXIO;
1960                 }
1961
1962                 pdma->chan[i - 1].rx_irq = irq;
1963         }
1964
1965         return 0;
1966 }
1967
1968 static int xgene_dma_probe(struct platform_device *pdev)
1969 {
1970         struct xgene_dma *pdma;
1971         int ret, i;
1972
1973         pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1974         if (!pdma)
1975                 return -ENOMEM;
1976
1977         pdma->dev = &pdev->dev;
1978         platform_set_drvdata(pdev, pdma);
1979
1980         ret = xgene_dma_get_resources(pdev, pdma);
1981         if (ret)
1982                 return ret;
1983
1984         pdma->clk = devm_clk_get(&pdev->dev, NULL);
1985         if (IS_ERR(pdma->clk)) {
1986                 dev_err(&pdev->dev, "Failed to get clk\n");
1987                 return PTR_ERR(pdma->clk);
1988         }
1989
1990         /* Enable clk before accessing registers */
1991         ret = clk_prepare_enable(pdma->clk);
1992         if (ret) {
1993                 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1994                 return ret;
1995         }
1996
1997         /* Remove DMA RAM out of shutdown */
1998         ret = xgene_dma_init_mem(pdma);
1999         if (ret)
2000                 goto err_clk_enable;
2001
2002         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
2003         if (ret) {
2004                 dev_err(&pdev->dev, "No usable DMA configuration\n");
2005                 goto err_dma_mask;
2006         }
2007
2008         /* Initialize DMA channels software state */
2009         xgene_dma_init_channels(pdma);
2010
2011         /* Configue DMA rings */
2012         ret = xgene_dma_init_rings(pdma);
2013         if (ret)
2014                 goto err_clk_enable;
2015
2016         ret = xgene_dma_request_irqs(pdma);
2017         if (ret)
2018                 goto err_request_irq;
2019
2020         /* Configure and enable DMA engine */
2021         xgene_dma_init_hw(pdma);
2022
2023         /* Register DMA device with linux async framework */
2024         ret = xgene_dma_init_async(pdma);
2025         if (ret)
2026                 goto err_async_init;
2027
2028         return 0;
2029
2030 err_async_init:
2031         xgene_dma_free_irqs(pdma);
2032
2033 err_request_irq:
2034         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
2035                 xgene_dma_delete_chan_rings(&pdma->chan[i]);
2036
2037 err_dma_mask:
2038 err_clk_enable:
2039         clk_disable_unprepare(pdma->clk);
2040
2041         return ret;
2042 }
2043
2044 static int xgene_dma_remove(struct platform_device *pdev)
2045 {
2046         struct xgene_dma *pdma = platform_get_drvdata(pdev);
2047         struct xgene_dma_chan *chan;
2048         int i;
2049
2050         xgene_dma_async_unregister(pdma);
2051
2052         /* Mask interrupts and disable DMA engine */
2053         xgene_dma_mask_interrupts(pdma);
2054         xgene_dma_disable(pdma);
2055         xgene_dma_free_irqs(pdma);
2056
2057         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
2058                 chan = &pdma->chan[i];
2059                 tasklet_kill(&chan->tasklet);
2060                 xgene_dma_delete_chan_rings(chan);
2061         }
2062
2063         clk_disable_unprepare(pdma->clk);
2064
2065         return 0;
2066 }
2067
2068 static const struct of_device_id xgene_dma_of_match_ptr[] = {
2069         {.compatible = "apm,xgene-storm-dma",},
2070         {},
2071 };
2072 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
2073
2074 static struct platform_driver xgene_dma_driver = {
2075         .probe = xgene_dma_probe,
2076         .remove = xgene_dma_remove,
2077         .driver = {
2078                 .name = "X-Gene-DMA",
2079                 .of_match_table = xgene_dma_of_match_ptr,
2080         },
2081 };
2082
2083 module_platform_driver(xgene_dma_driver);
2084
2085 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2086 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2087 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2088 MODULE_LICENSE("GPL");
2089 MODULE_VERSION("1.0");