Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / dma / sh / rcar-hpbdma.c
1 /*
2  * Copyright (C) 2011-2013 Renesas Electronics Corporation
3  * Copyright (C) 2013 Cogent Embedded, Inc.
4  *
5  * This file is based on the drivers/dma/sh/shdma.c
6  *
7  * Renesas SuperH DMA Engine support
8  *
9  * This is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * - DMA of SuperH does not have Hardware DMA chain mode.
15  * - max DMA size is 16MB.
16  *
17  */
18
19 #include <linux/dmaengine.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/platform_data/dma-rcar-hpbdma.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/shdma-base.h>
29 #include <linux/slab.h>
30
31 /* DMA channel registers */
32 #define HPB_DMAE_DSAR0  0x00
33 #define HPB_DMAE_DDAR0  0x04
34 #define HPB_DMAE_DTCR0  0x08
35 #define HPB_DMAE_DSAR1  0x0C
36 #define HPB_DMAE_DDAR1  0x10
37 #define HPB_DMAE_DTCR1  0x14
38 #define HPB_DMAE_DSASR  0x18
39 #define HPB_DMAE_DDASR  0x1C
40 #define HPB_DMAE_DTCSR  0x20
41 #define HPB_DMAE_DPTR   0x24
42 #define HPB_DMAE_DCR    0x28
43 #define HPB_DMAE_DCMDR  0x2C
44 #define HPB_DMAE_DSTPR  0x30
45 #define HPB_DMAE_DSTSR  0x34
46 #define HPB_DMAE_DDBGR  0x38
47 #define HPB_DMAE_DDBGR2 0x3C
48 #define HPB_DMAE_CHAN(n)        (0x40 * (n))
49
50 /* DMA command register (DCMDR) bits */
51 #define HPB_DMAE_DCMDR_BDOUT    BIT(7)
52 #define HPB_DMAE_DCMDR_DQSPD    BIT(6)
53 #define HPB_DMAE_DCMDR_DQSPC    BIT(5)
54 #define HPB_DMAE_DCMDR_DMSPD    BIT(4)
55 #define HPB_DMAE_DCMDR_DMSPC    BIT(3)
56 #define HPB_DMAE_DCMDR_DQEND    BIT(2)
57 #define HPB_DMAE_DCMDR_DNXT     BIT(1)
58 #define HPB_DMAE_DCMDR_DMEN     BIT(0)
59
60 /* DMA forced stop register (DSTPR) bits */
61 #define HPB_DMAE_DSTPR_DMSTP    BIT(0)
62
63 /* DMA status register (DSTSR) bits */
64 #define HPB_DMAE_DSTSR_DQSTS    BIT(2)
65 #define HPB_DMAE_DSTSR_DMSTS    BIT(0)
66
67 /* DMA common registers */
68 #define HPB_DMAE_DTIMR          0x00
69 #define HPB_DMAE_DINTSR0                0x0C
70 #define HPB_DMAE_DINTSR1                0x10
71 #define HPB_DMAE_DINTCR0                0x14
72 #define HPB_DMAE_DINTCR1                0x18
73 #define HPB_DMAE_DINTMR0                0x1C
74 #define HPB_DMAE_DINTMR1                0x20
75 #define HPB_DMAE_DACTSR0                0x24
76 #define HPB_DMAE_DACTSR1                0x28
77 #define HPB_DMAE_HSRSTR(n)      (0x40 + (n) * 4)
78 #define HPB_DMAE_HPB_DMASPR(n)  (0x140 + (n) * 4)
79 #define HPB_DMAE_HPB_DMLVLR0    0x160
80 #define HPB_DMAE_HPB_DMLVLR1    0x164
81 #define HPB_DMAE_HPB_DMSHPT0    0x168
82 #define HPB_DMAE_HPB_DMSHPT1    0x16C
83
84 #define HPB_DMA_SLAVE_NUMBER 256
85 #define HPB_DMA_TCR_MAX 0x01000000      /* 16 MiB */
86
87 struct hpb_dmae_chan {
88         struct shdma_chan shdma_chan;
89         int xfer_mode;                  /* DMA transfer mode */
90 #define XFER_SINGLE     1
91 #define XFER_DOUBLE     2
92         unsigned plane_idx;             /* current DMA information set */
93         bool first_desc;                /* first/next transfer */
94         int xmit_shift;                 /* log_2(bytes_per_xfer) */
95         void __iomem *base;
96         const struct hpb_dmae_slave_config *cfg;
97         char dev_id[16];                /* unique name per DMAC of channel */
98         dma_addr_t slave_addr;
99 };
100
101 struct hpb_dmae_device {
102         struct shdma_dev shdma_dev;
103         spinlock_t reg_lock;            /* comm_reg operation lock */
104         struct hpb_dmae_pdata *pdata;
105         void __iomem *chan_reg;
106         void __iomem *comm_reg;
107         void __iomem *reset_reg;
108         void __iomem *mode_reg;
109 };
110
111 struct hpb_dmae_regs {
112         u32 sar; /* SAR / source address */
113         u32 dar; /* DAR / destination address */
114         u32 tcr; /* TCR / transfer count */
115 };
116
117 struct hpb_desc {
118         struct shdma_desc shdma_desc;
119         struct hpb_dmae_regs hw;
120         unsigned plane_idx;
121 };
122
123 #define to_chan(schan) container_of(schan, struct hpb_dmae_chan, shdma_chan)
124 #define to_desc(sdesc) container_of(sdesc, struct hpb_desc, shdma_desc)
125 #define to_dev(sc) container_of(sc->shdma_chan.dma_chan.device, \
126                                 struct hpb_dmae_device, shdma_dev.dma_dev)
127
128 static void ch_reg_write(struct hpb_dmae_chan *hpb_dc, u32 data, u32 reg)
129 {
130         iowrite32(data, hpb_dc->base + reg);
131 }
132
133 static u32 ch_reg_read(struct hpb_dmae_chan *hpb_dc, u32 reg)
134 {
135         return ioread32(hpb_dc->base + reg);
136 }
137
138 static void dcmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
139 {
140         iowrite32(data, hpbdev->chan_reg + HPB_DMAE_DCMDR);
141 }
142
143 static void hsrstr_write(struct hpb_dmae_device *hpbdev, u32 ch)
144 {
145         iowrite32(0x1, hpbdev->comm_reg + HPB_DMAE_HSRSTR(ch));
146 }
147
148 static u32 dintsr_read(struct hpb_dmae_device *hpbdev, u32 ch)
149 {
150         u32 v;
151
152         if (ch < 32)
153                 v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR0) >> ch;
154         else
155                 v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR1) >> (ch - 32);
156         return v & 0x1;
157 }
158
159 static void dintcr_write(struct hpb_dmae_device *hpbdev, u32 ch)
160 {
161         if (ch < 32)
162                 iowrite32((0x1 << ch), hpbdev->comm_reg + HPB_DMAE_DINTCR0);
163         else
164                 iowrite32((0x1 << (ch - 32)),
165                           hpbdev->comm_reg + HPB_DMAE_DINTCR1);
166 }
167
168 static void asyncmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
169 {
170         iowrite32(data, hpbdev->mode_reg);
171 }
172
173 static u32 asyncmdr_read(struct hpb_dmae_device *hpbdev)
174 {
175         return ioread32(hpbdev->mode_reg);
176 }
177
178 static void hpb_dmae_enable_int(struct hpb_dmae_device *hpbdev, u32 ch)
179 {
180         u32 intreg;
181
182         spin_lock_irq(&hpbdev->reg_lock);
183         if (ch < 32) {
184                 intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR0);
185                 iowrite32(BIT(ch) | intreg,
186                           hpbdev->comm_reg + HPB_DMAE_DINTMR0);
187         } else {
188                 intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR1);
189                 iowrite32(BIT(ch - 32) | intreg,
190                           hpbdev->comm_reg + HPB_DMAE_DINTMR1);
191         }
192         spin_unlock_irq(&hpbdev->reg_lock);
193 }
194
195 static void hpb_dmae_async_reset(struct hpb_dmae_device *hpbdev, u32 data)
196 {
197         u32 rstr;
198         int timeout = 10000;    /* 100 ms */
199
200         spin_lock(&hpbdev->reg_lock);
201         rstr = ioread32(hpbdev->reset_reg);
202         rstr |= data;
203         iowrite32(rstr, hpbdev->reset_reg);
204         do {
205                 rstr = ioread32(hpbdev->reset_reg);
206                 if ((rstr & data) == data)
207                         break;
208                 udelay(10);
209         } while (timeout--);
210
211         if (timeout < 0)
212                 dev_err(hpbdev->shdma_dev.dma_dev.dev,
213                         "%s timeout\n", __func__);
214
215         rstr &= ~data;
216         iowrite32(rstr, hpbdev->reset_reg);
217         spin_unlock(&hpbdev->reg_lock);
218 }
219
220 static void hpb_dmae_set_async_mode(struct hpb_dmae_device *hpbdev,
221                                     u32 mask, u32 data)
222 {
223         u32 mode;
224
225         spin_lock_irq(&hpbdev->reg_lock);
226         mode = asyncmdr_read(hpbdev);
227         mode &= ~mask;
228         mode |= data;
229         asyncmdr_write(hpbdev, mode);
230         spin_unlock_irq(&hpbdev->reg_lock);
231 }
232
233 static void hpb_dmae_ctl_stop(struct hpb_dmae_device *hpbdev)
234 {
235         dcmdr_write(hpbdev, HPB_DMAE_DCMDR_DQSPD);
236 }
237
238 static void hpb_dmae_reset(struct hpb_dmae_device *hpbdev)
239 {
240         u32 ch;
241
242         for (ch = 0; ch < hpbdev->pdata->num_hw_channels; ch++)
243                 hsrstr_write(hpbdev, ch);
244 }
245
246 static unsigned int calc_xmit_shift(struct hpb_dmae_chan *hpb_chan)
247 {
248         struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
249         struct hpb_dmae_pdata *pdata = hpbdev->pdata;
250         int width = ch_reg_read(hpb_chan, HPB_DMAE_DCR);
251         int i;
252
253         switch (width & (HPB_DMAE_DCR_SPDS_MASK | HPB_DMAE_DCR_DPDS_MASK)) {
254         case HPB_DMAE_DCR_SPDS_8BIT | HPB_DMAE_DCR_DPDS_8BIT:
255         default:
256                 i = XMIT_SZ_8BIT;
257                 break;
258         case HPB_DMAE_DCR_SPDS_16BIT | HPB_DMAE_DCR_DPDS_16BIT:
259                 i = XMIT_SZ_16BIT;
260                 break;
261         case HPB_DMAE_DCR_SPDS_32BIT | HPB_DMAE_DCR_DPDS_32BIT:
262                 i = XMIT_SZ_32BIT;
263                 break;
264         }
265         return pdata->ts_shift[i];
266 }
267
268 static void hpb_dmae_set_reg(struct hpb_dmae_chan *hpb_chan,
269                              struct hpb_dmae_regs *hw, unsigned plane)
270 {
271         ch_reg_write(hpb_chan, hw->sar,
272                      plane ? HPB_DMAE_DSAR1 : HPB_DMAE_DSAR0);
273         ch_reg_write(hpb_chan, hw->dar,
274                      plane ? HPB_DMAE_DDAR1 : HPB_DMAE_DDAR0);
275         ch_reg_write(hpb_chan, hw->tcr >> hpb_chan->xmit_shift,
276                      plane ? HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
277 }
278
279 static void hpb_dmae_start(struct hpb_dmae_chan *hpb_chan, bool next)
280 {
281         ch_reg_write(hpb_chan, (next ? HPB_DMAE_DCMDR_DNXT : 0) |
282                      HPB_DMAE_DCMDR_DMEN, HPB_DMAE_DCMDR);
283 }
284
285 static void hpb_dmae_halt(struct shdma_chan *schan)
286 {
287         struct hpb_dmae_chan *chan = to_chan(schan);
288
289         ch_reg_write(chan, HPB_DMAE_DCMDR_DQEND, HPB_DMAE_DCMDR);
290         ch_reg_write(chan, HPB_DMAE_DSTPR_DMSTP, HPB_DMAE_DSTPR);
291
292         chan->plane_idx = 0;
293         chan->first_desc = true;
294 }
295
296 static const struct hpb_dmae_slave_config *
297 hpb_dmae_find_slave(struct hpb_dmae_chan *hpb_chan, int slave_id)
298 {
299         struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
300         struct hpb_dmae_pdata *pdata = hpbdev->pdata;
301         int i;
302
303         if (slave_id >= HPB_DMA_SLAVE_NUMBER)
304                 return NULL;
305
306         for (i = 0; i < pdata->num_slaves; i++)
307                 if (pdata->slaves[i].id == slave_id)
308                         return pdata->slaves + i;
309
310         return NULL;
311 }
312
313 static void hpb_dmae_start_xfer(struct shdma_chan *schan,
314                                 struct shdma_desc *sdesc)
315 {
316         struct hpb_dmae_chan *chan = to_chan(schan);
317         struct hpb_dmae_device *hpbdev = to_dev(chan);
318         struct hpb_desc *desc = to_desc(sdesc);
319
320         if (chan->cfg->flags & HPB_DMAE_SET_ASYNC_RESET)
321                 hpb_dmae_async_reset(hpbdev, chan->cfg->rstr);
322
323         desc->plane_idx = chan->plane_idx;
324         hpb_dmae_set_reg(chan, &desc->hw, chan->plane_idx);
325         hpb_dmae_start(chan, !chan->first_desc);
326
327         if (chan->xfer_mode == XFER_DOUBLE) {
328                 chan->plane_idx ^= 1;
329                 chan->first_desc = false;
330         }
331 }
332
333 static bool hpb_dmae_desc_completed(struct shdma_chan *schan,
334                                     struct shdma_desc *sdesc)
335 {
336         /*
337          * This is correct since we always have at most single
338          * outstanding DMA transfer per channel, and by the time
339          * we get completion interrupt the transfer is completed.
340          * This will change if we ever use alternating DMA
341          * information sets and submit two descriptors at once.
342          */
343         return true;
344 }
345
346 static bool hpb_dmae_chan_irq(struct shdma_chan *schan, int irq)
347 {
348         struct hpb_dmae_chan *chan = to_chan(schan);
349         struct hpb_dmae_device *hpbdev = to_dev(chan);
350         int ch = chan->cfg->dma_ch;
351
352         /* Check Complete DMA Transfer */
353         if (dintsr_read(hpbdev, ch)) {
354                 /* Clear Interrupt status */
355                 dintcr_write(hpbdev, ch);
356                 return true;
357         }
358         return false;
359 }
360
361 static int hpb_dmae_desc_setup(struct shdma_chan *schan,
362                                struct shdma_desc *sdesc,
363                                dma_addr_t src, dma_addr_t dst, size_t *len)
364 {
365         struct hpb_desc *desc = to_desc(sdesc);
366
367         if (*len > (size_t)HPB_DMA_TCR_MAX)
368                 *len = (size_t)HPB_DMA_TCR_MAX;
369
370         desc->hw.sar = src;
371         desc->hw.dar = dst;
372         desc->hw.tcr = *len;
373
374         return 0;
375 }
376
377 static size_t hpb_dmae_get_partial(struct shdma_chan *schan,
378                                    struct shdma_desc *sdesc)
379 {
380         struct hpb_desc *desc = to_desc(sdesc);
381         struct hpb_dmae_chan *chan = to_chan(schan);
382         u32 tcr = ch_reg_read(chan, desc->plane_idx ?
383                               HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
384
385         return (desc->hw.tcr - tcr) << chan->xmit_shift;
386 }
387
388 static bool hpb_dmae_channel_busy(struct shdma_chan *schan)
389 {
390         struct hpb_dmae_chan *chan = to_chan(schan);
391         u32 dstsr = ch_reg_read(chan, HPB_DMAE_DSTSR);
392
393         if (chan->xfer_mode == XFER_DOUBLE)
394                 return dstsr & HPB_DMAE_DSTSR_DQSTS;
395         else
396                 return dstsr & HPB_DMAE_DSTSR_DMSTS;
397 }
398
399 static int
400 hpb_dmae_alloc_chan_resources(struct hpb_dmae_chan *hpb_chan,
401                               const struct hpb_dmae_slave_config *cfg)
402 {
403         struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
404         struct hpb_dmae_pdata *pdata = hpbdev->pdata;
405         const struct hpb_dmae_channel *channel = pdata->channels;
406         int slave_id = cfg->id;
407         int i, err;
408
409         for (i = 0; i < pdata->num_channels; i++, channel++) {
410                 if (channel->s_id == slave_id) {
411                         struct device *dev = hpb_chan->shdma_chan.dev;
412
413                         hpb_chan->base = hpbdev->chan_reg +
414                                 HPB_DMAE_CHAN(cfg->dma_ch);
415
416                         dev_dbg(dev, "Detected Slave device\n");
417                         dev_dbg(dev, " -- slave_id       : 0x%x\n", slave_id);
418                         dev_dbg(dev, " -- cfg->dma_ch    : %d\n", cfg->dma_ch);
419                         dev_dbg(dev, " -- channel->ch_irq: %d\n",
420                                 channel->ch_irq);
421                         break;
422                 }
423         }
424
425         err = shdma_request_irq(&hpb_chan->shdma_chan, channel->ch_irq,
426                                 IRQF_SHARED, hpb_chan->dev_id);
427         if (err) {
428                 dev_err(hpb_chan->shdma_chan.dev,
429                         "DMA channel request_irq %d failed with error %d\n",
430                         channel->ch_irq, err);
431                 return err;
432         }
433
434         hpb_chan->plane_idx = 0;
435         hpb_chan->first_desc = true;
436
437         if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) == 0) {
438                 hpb_chan->xfer_mode = XFER_SINGLE;
439         } else if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) ==
440                    (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) {
441                 hpb_chan->xfer_mode = XFER_DOUBLE;
442         } else {
443                 dev_err(hpb_chan->shdma_chan.dev, "DCR setting error");
444                 return -EINVAL;
445         }
446
447         if (cfg->flags & HPB_DMAE_SET_ASYNC_MODE)
448                 hpb_dmae_set_async_mode(hpbdev, cfg->mdm, cfg->mdr);
449         ch_reg_write(hpb_chan, cfg->dcr, HPB_DMAE_DCR);
450         ch_reg_write(hpb_chan, cfg->port, HPB_DMAE_DPTR);
451         hpb_chan->xmit_shift = calc_xmit_shift(hpb_chan);
452         hpb_dmae_enable_int(hpbdev, cfg->dma_ch);
453
454         return 0;
455 }
456
457 static int hpb_dmae_set_slave(struct shdma_chan *schan, int slave_id,
458                               dma_addr_t slave_addr, bool try)
459 {
460         struct hpb_dmae_chan *chan = to_chan(schan);
461         const struct hpb_dmae_slave_config *sc =
462                 hpb_dmae_find_slave(chan, slave_id);
463
464         if (!sc)
465                 return -ENODEV;
466         if (try)
467                 return 0;
468         chan->cfg = sc;
469         chan->slave_addr = slave_addr ? : sc->addr;
470         return hpb_dmae_alloc_chan_resources(chan, sc);
471 }
472
473 static void hpb_dmae_setup_xfer(struct shdma_chan *schan, int slave_id)
474 {
475 }
476
477 static dma_addr_t hpb_dmae_slave_addr(struct shdma_chan *schan)
478 {
479         struct hpb_dmae_chan *chan = to_chan(schan);
480
481         return chan->slave_addr;
482 }
483
484 static struct shdma_desc *hpb_dmae_embedded_desc(void *buf, int i)
485 {
486         return &((struct hpb_desc *)buf)[i].shdma_desc;
487 }
488
489 static const struct shdma_ops hpb_dmae_ops = {
490         .desc_completed = hpb_dmae_desc_completed,
491         .halt_channel = hpb_dmae_halt,
492         .channel_busy = hpb_dmae_channel_busy,
493         .slave_addr = hpb_dmae_slave_addr,
494         .desc_setup = hpb_dmae_desc_setup,
495         .set_slave = hpb_dmae_set_slave,
496         .setup_xfer = hpb_dmae_setup_xfer,
497         .start_xfer = hpb_dmae_start_xfer,
498         .embedded_desc = hpb_dmae_embedded_desc,
499         .chan_irq = hpb_dmae_chan_irq,
500         .get_partial = hpb_dmae_get_partial,
501 };
502
503 static int hpb_dmae_chan_probe(struct hpb_dmae_device *hpbdev, int id)
504 {
505         struct shdma_dev *sdev = &hpbdev->shdma_dev;
506         struct platform_device *pdev =
507                 to_platform_device(hpbdev->shdma_dev.dma_dev.dev);
508         struct hpb_dmae_chan *new_hpb_chan;
509         struct shdma_chan *schan;
510
511         /* Alloc channel */
512         new_hpb_chan = devm_kzalloc(&pdev->dev,
513                                     sizeof(struct hpb_dmae_chan), GFP_KERNEL);
514         if (!new_hpb_chan) {
515                 dev_err(hpbdev->shdma_dev.dma_dev.dev,
516                         "No free memory for allocating DMA channels!\n");
517                 return -ENOMEM;
518         }
519
520         schan = &new_hpb_chan->shdma_chan;
521         schan->max_xfer_len = HPB_DMA_TCR_MAX;
522
523         shdma_chan_probe(sdev, schan, id);
524
525         if (pdev->id >= 0)
526                 snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
527                          "hpb-dmae%d.%d", pdev->id, id);
528         else
529                 snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
530                          "hpb-dma.%d", id);
531
532         return 0;
533 }
534
535 static int hpb_dmae_probe(struct platform_device *pdev)
536 {
537         const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
538                 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES;
539         struct hpb_dmae_pdata *pdata = pdev->dev.platform_data;
540         struct hpb_dmae_device *hpbdev;
541         struct dma_device *dma_dev;
542         struct resource *chan, *comm, *rest, *mode, *irq_res;
543         int err, i;
544
545         /* Get platform data */
546         if (!pdata || !pdata->num_channels)
547                 return -ENODEV;
548
549         chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
550         comm = platform_get_resource(pdev, IORESOURCE_MEM, 1);
551         rest = platform_get_resource(pdev, IORESOURCE_MEM, 2);
552         mode = platform_get_resource(pdev, IORESOURCE_MEM, 3);
553
554         irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
555         if (!irq_res)
556                 return -ENODEV;
557
558         hpbdev = devm_kzalloc(&pdev->dev, sizeof(struct hpb_dmae_device),
559                               GFP_KERNEL);
560         if (!hpbdev) {
561                 dev_err(&pdev->dev, "Not enough memory\n");
562                 return -ENOMEM;
563         }
564
565         hpbdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan);
566         if (IS_ERR(hpbdev->chan_reg))
567                 return PTR_ERR(hpbdev->chan_reg);
568
569         hpbdev->comm_reg = devm_ioremap_resource(&pdev->dev, comm);
570         if (IS_ERR(hpbdev->comm_reg))
571                 return PTR_ERR(hpbdev->comm_reg);
572
573         hpbdev->reset_reg = devm_ioremap_resource(&pdev->dev, rest);
574         if (IS_ERR(hpbdev->reset_reg))
575                 return PTR_ERR(hpbdev->reset_reg);
576
577         hpbdev->mode_reg = devm_ioremap_resource(&pdev->dev, mode);
578         if (IS_ERR(hpbdev->mode_reg))
579                 return PTR_ERR(hpbdev->mode_reg);
580
581         dma_dev = &hpbdev->shdma_dev.dma_dev;
582
583         spin_lock_init(&hpbdev->reg_lock);
584
585         /* Platform data */
586         hpbdev->pdata = pdata;
587
588         pm_runtime_enable(&pdev->dev);
589         err = pm_runtime_get_sync(&pdev->dev);
590         if (err < 0)
591                 dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err);
592
593         /* Reset DMA controller */
594         hpb_dmae_reset(hpbdev);
595
596         pm_runtime_put(&pdev->dev);
597
598         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
599         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
600         dma_dev->src_addr_widths = widths;
601         dma_dev->dst_addr_widths = widths;
602         dma_dev->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
603         dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
604
605         hpbdev->shdma_dev.ops = &hpb_dmae_ops;
606         hpbdev->shdma_dev.desc_size = sizeof(struct hpb_desc);
607         err = shdma_init(&pdev->dev, &hpbdev->shdma_dev, pdata->num_channels);
608         if (err < 0)
609                 goto error;
610
611         /* Create DMA channels */
612         for (i = 0; i < pdata->num_channels; i++)
613                 hpb_dmae_chan_probe(hpbdev, i);
614
615         platform_set_drvdata(pdev, hpbdev);
616         err = dma_async_device_register(dma_dev);
617         if (!err)
618                 return 0;
619
620         shdma_cleanup(&hpbdev->shdma_dev);
621 error:
622         pm_runtime_disable(&pdev->dev);
623         return err;
624 }
625
626 static void hpb_dmae_chan_remove(struct hpb_dmae_device *hpbdev)
627 {
628         struct shdma_chan *schan;
629         int i;
630
631         shdma_for_each_chan(schan, &hpbdev->shdma_dev, i) {
632                 BUG_ON(!schan);
633
634                 shdma_chan_remove(schan);
635         }
636 }
637
638 static int hpb_dmae_remove(struct platform_device *pdev)
639 {
640         struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
641
642         dma_async_device_unregister(&hpbdev->shdma_dev.dma_dev);
643
644         pm_runtime_disable(&pdev->dev);
645
646         hpb_dmae_chan_remove(hpbdev);
647
648         return 0;
649 }
650
651 static void hpb_dmae_shutdown(struct platform_device *pdev)
652 {
653         struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
654         hpb_dmae_ctl_stop(hpbdev);
655 }
656
657 static struct platform_driver hpb_dmae_driver = {
658         .probe          = hpb_dmae_probe,
659         .remove         = hpb_dmae_remove,
660         .shutdown       = hpb_dmae_shutdown,
661         .driver = {
662                 .name   = "hpb-dma-engine",
663         },
664 };
665 module_platform_driver(hpb_dmae_driver);
666
667 MODULE_AUTHOR("Max Filippov <max.filippov@cogentembedded.com>");
668 MODULE_DESCRIPTION("Renesas HPB DMA Engine driver");
669 MODULE_LICENSE("GPL");