Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34
35 #define MAX_KEYLEN 32
36
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40
41 #define NPE_OP_HASH_VERIFY   0x01
42 #define NPE_OP_CCM_ENABLE    0x04
43 #define NPE_OP_CRYPT_ENABLE  0x08
44 #define NPE_OP_HASH_ENABLE   0x10
45 #define NPE_OP_NOT_IN_PLACE  0x20
46 #define NPE_OP_HMAC_DISABLE  0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48
49 #define NPE_OP_CCM_GEN_MIC   0xcc
50 #define NPE_OP_HASH_GEN_ICV  0x50
51 #define NPE_OP_ENC_GEN_KEY   0xc9
52
53 #define MOD_ECB     0x0000
54 #define MOD_CTR     0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59
60 #define KEYLEN_128  4
61 #define KEYLEN_192  6
62 #define KEYLEN_256  8
63
64 #define CIPH_DECR   0x0000
65 #define CIPH_ENCR   0x0400
66
67 #define MOD_DES     0x0000
68 #define MOD_TDEA2   0x0100
69 #define MOD_3DES   0x0200
70 #define MOD_AES     0x0800
71 #define MOD_AES128  (0x0800 | KEYLEN_128)
72 #define MOD_AES192  (0x0900 | KEYLEN_192)
73 #define MOD_AES256  (0x0a00 | KEYLEN_256)
74
75 #define MAX_IVLEN   16
76 #define NPE_ID      2  /* NPE C */
77 #define NPE_QLEN    16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81
82 #define SEND_QID    29
83 #define RECV_QID    30
84
85 #define CTL_FLAG_UNUSED         0x0000
86 #define CTL_FLAG_USED           0x1000
87 #define CTL_FLAG_PERFORM_ABLK   0x0001
88 #define CTL_FLAG_GEN_ICV        0x0002
89 #define CTL_FLAG_GEN_REVAES     0x0004
90 #define CTL_FLAG_PERFORM_AEAD   0x0008
91 #define CTL_FLAG_MASK           0x000f
92
93 #define HMAC_IPAD_VALUE   0x36
94 #define HMAC_OPAD_VALUE   0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96
97 #define MD5_DIGEST_SIZE   16
98
99 struct buffer_desc {
100         u32 phys_next;
101 #ifdef __ARMEB__
102         u16 buf_len;
103         u16 pkt_len;
104 #else
105         u16 pkt_len;
106         u16 buf_len;
107 #endif
108         u32 phys_addr;
109         u32 __reserved[4];
110         struct buffer_desc *next;
111         enum dma_data_direction dir;
112 };
113
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116         u8 mode;                /* NPE_OP_*  operation mode */
117         u8 init_len;
118         u16 reserved;
119 #else
120         u16 reserved;
121         u8 init_len;
122         u8 mode;                /* NPE_OP_*  operation mode */
123 #endif
124         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
125         u32 icv_rev_aes;        /* icv or rev aes */
126         u32 src_buf;
127         u32 dst_buf;
128 #ifdef __ARMEB__
129         u16 auth_offs;          /* Authentication start offset */
130         u16 auth_len;           /* Authentication data length */
131         u16 crypt_offs;         /* Cryption start offset */
132         u16 crypt_len;          /* Cryption data length */
133 #else
134         u16 auth_len;           /* Authentication data length */
135         u16 auth_offs;          /* Authentication start offset */
136         u16 crypt_len;          /* Cryption data length */
137         u16 crypt_offs;         /* Cryption start offset */
138 #endif
139         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
140         u32 crypto_ctx;         /* NPE Crypto Param structure address */
141
142         /* Used by Host: 4*4 bytes*/
143         unsigned ctl_flags;
144         union {
145                 struct ablkcipher_request *ablk_req;
146                 struct aead_request *aead_req;
147                 struct crypto_tfm *tfm;
148         } data;
149         struct buffer_desc *regist_buf;
150         u8 *regist_ptr;
151 };
152
153 struct ablk_ctx {
154         struct buffer_desc *src;
155         struct buffer_desc *dst;
156 };
157
158 struct aead_ctx {
159         struct buffer_desc *buffer;
160         struct scatterlist ivlist;
161         /* used when the hmac is not on one sg entry */
162         u8 *hmac_virt;
163         int encrypt;
164 };
165
166 struct ix_hash_algo {
167         u32 cfgword;
168         unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172         unsigned char *npe_ctx;
173         dma_addr_t npe_ctx_phys;
174         int npe_ctx_idx;
175         u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179         struct ix_sa_dir encrypt;
180         struct ix_sa_dir decrypt;
181         int authkey_len;
182         u8 authkey[MAX_KEYLEN];
183         int enckey_len;
184         u8 enckey[MAX_KEYLEN];
185         u8 salt[MAX_IVLEN];
186         u8 nonce[CTR_RFC3686_NONCE_SIZE];
187         unsigned salted;
188         atomic_t configuring;
189         struct completion completion;
190 };
191
192 struct ixp_alg {
193         struct crypto_alg crypto;
194         const struct ix_hash_algo *hash;
195         u32 cfg_enc;
196         u32 cfg_dec;
197
198         int registered;
199 };
200
201 static const struct ix_hash_algo hash_alg_md5 = {
202         .cfgword        = 0xAA010004,
203         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
204                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
205 };
206 static const struct ix_hash_algo hash_alg_sha1 = {
207         .cfgword        = 0x00000005,
208         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
209                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
210 };
211
212 static struct npe *npe_c;
213 static struct dma_pool *buffer_pool = NULL;
214 static struct dma_pool *ctx_pool = NULL;
215
216 static struct crypt_ctl *crypt_virt = NULL;
217 static dma_addr_t crypt_phys;
218
219 static int support_aes = 1;
220
221 #define DRIVER_NAME "ixp4xx_crypto"
222
223 static struct platform_device *pdev;
224
225 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
226 {
227         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
228 }
229
230 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
231 {
232         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
233 }
234
235 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
236 {
237         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
238 }
239
240 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
241 {
242         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
243 }
244
245 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
246 {
247         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
248 }
249
250 static int setup_crypt_desc(void)
251 {
252         struct device *dev = &pdev->dev;
253         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
254         crypt_virt = dma_alloc_coherent(dev,
255                         NPE_QLEN * sizeof(struct crypt_ctl),
256                         &crypt_phys, GFP_ATOMIC);
257         if (!crypt_virt)
258                 return -ENOMEM;
259         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
260         return 0;
261 }
262
263 static spinlock_t desc_lock;
264 static struct crypt_ctl *get_crypt_desc(void)
265 {
266         int i;
267         static int idx = 0;
268         unsigned long flags;
269
270         spin_lock_irqsave(&desc_lock, flags);
271
272         if (unlikely(!crypt_virt))
273                 setup_crypt_desc();
274         if (unlikely(!crypt_virt)) {
275                 spin_unlock_irqrestore(&desc_lock, flags);
276                 return NULL;
277         }
278         i = idx;
279         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
280                 if (++idx >= NPE_QLEN)
281                         idx = 0;
282                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
283                 spin_unlock_irqrestore(&desc_lock, flags);
284                 return crypt_virt +i;
285         } else {
286                 spin_unlock_irqrestore(&desc_lock, flags);
287                 return NULL;
288         }
289 }
290
291 static spinlock_t emerg_lock;
292 static struct crypt_ctl *get_crypt_desc_emerg(void)
293 {
294         int i;
295         static int idx = NPE_QLEN;
296         struct crypt_ctl *desc;
297         unsigned long flags;
298
299         desc = get_crypt_desc();
300         if (desc)
301                 return desc;
302         if (unlikely(!crypt_virt))
303                 return NULL;
304
305         spin_lock_irqsave(&emerg_lock, flags);
306         i = idx;
307         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
308                 if (++idx >= NPE_QLEN_TOTAL)
309                         idx = NPE_QLEN;
310                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
311                 spin_unlock_irqrestore(&emerg_lock, flags);
312                 return crypt_virt +i;
313         } else {
314                 spin_unlock_irqrestore(&emerg_lock, flags);
315                 return NULL;
316         }
317 }
318
319 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
320 {
321         while (buf) {
322                 struct buffer_desc *buf1;
323                 u32 phys1;
324
325                 buf1 = buf->next;
326                 phys1 = buf->phys_next;
327                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
328                 dma_pool_free(buffer_pool, buf, phys);
329                 buf = buf1;
330                 phys = phys1;
331         }
332 }
333
334 static struct tasklet_struct crypto_done_tasklet;
335
336 static void finish_scattered_hmac(struct crypt_ctl *crypt)
337 {
338         struct aead_request *req = crypt->data.aead_req;
339         struct aead_ctx *req_ctx = aead_request_ctx(req);
340         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
341         int authsize = crypto_aead_authsize(tfm);
342         int decryptlen = req->cryptlen - authsize;
343
344         if (req_ctx->encrypt) {
345                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
346                         req->src, decryptlen, authsize, 1);
347         }
348         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
349 }
350
351 static void one_packet(dma_addr_t phys)
352 {
353         struct device *dev = &pdev->dev;
354         struct crypt_ctl *crypt;
355         struct ixp_ctx *ctx;
356         int failed;
357
358         failed = phys & 0x1 ? -EBADMSG : 0;
359         phys &= ~0x3;
360         crypt = crypt_phys2virt(phys);
361
362         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
363         case CTL_FLAG_PERFORM_AEAD: {
364                 struct aead_request *req = crypt->data.aead_req;
365                 struct aead_ctx *req_ctx = aead_request_ctx(req);
366
367                 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
368                 if (req_ctx->hmac_virt) {
369                         finish_scattered_hmac(crypt);
370                 }
371                 req->base.complete(&req->base, failed);
372                 break;
373         }
374         case CTL_FLAG_PERFORM_ABLK: {
375                 struct ablkcipher_request *req = crypt->data.ablk_req;
376                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
377
378                 if (req_ctx->dst) {
379                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
380                 }
381                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
382                 req->base.complete(&req->base, failed);
383                 break;
384         }
385         case CTL_FLAG_GEN_ICV:
386                 ctx = crypto_tfm_ctx(crypt->data.tfm);
387                 dma_pool_free(ctx_pool, crypt->regist_ptr,
388                                 crypt->regist_buf->phys_addr);
389                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
390                 if (atomic_dec_and_test(&ctx->configuring))
391                         complete(&ctx->completion);
392                 break;
393         case CTL_FLAG_GEN_REVAES:
394                 ctx = crypto_tfm_ctx(crypt->data.tfm);
395                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
396                 if (atomic_dec_and_test(&ctx->configuring))
397                         complete(&ctx->completion);
398                 break;
399         default:
400                 BUG();
401         }
402         crypt->ctl_flags = CTL_FLAG_UNUSED;
403 }
404
405 static void irqhandler(void *_unused)
406 {
407         tasklet_schedule(&crypto_done_tasklet);
408 }
409
410 static void crypto_done_action(unsigned long arg)
411 {
412         int i;
413
414         for(i=0; i<4; i++) {
415                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
416                 if (!phys)
417                         return;
418                 one_packet(phys);
419         }
420         tasklet_schedule(&crypto_done_tasklet);
421 }
422
423 static int init_ixp_crypto(struct device *dev)
424 {
425         int ret = -ENODEV;
426         u32 msg[2] = { 0, 0 };
427
428         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
429                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
430                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
431                 return ret;
432         }
433         npe_c = npe_request(NPE_ID);
434         if (!npe_c)
435                 return ret;
436
437         if (!npe_running(npe_c)) {
438                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
439                 if (ret) {
440                         return ret;
441                 }
442                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
443                         goto npe_error;
444         } else {
445                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
446                         goto npe_error;
447
448                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
449                         goto npe_error;
450         }
451
452         switch ((msg[1]>>16) & 0xff) {
453         case 3:
454                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
455                                 npe_name(npe_c));
456                 support_aes = 0;
457                 break;
458         case 4:
459         case 5:
460                 support_aes = 1;
461                 break;
462         default:
463                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
464                         npe_name(npe_c));
465                 return -ENODEV;
466         }
467         /* buffer_pool will also be used to sometimes store the hmac,
468          * so assure it is large enough
469          */
470         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
471         buffer_pool = dma_pool_create("buffer", dev,
472                         sizeof(struct buffer_desc), 32, 0);
473         ret = -ENOMEM;
474         if (!buffer_pool) {
475                 goto err;
476         }
477         ctx_pool = dma_pool_create("context", dev,
478                         NPE_CTX_LEN, 16, 0);
479         if (!ctx_pool) {
480                 goto err;
481         }
482         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
483                                  "ixp_crypto:out", NULL);
484         if (ret)
485                 goto err;
486         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
487                                  "ixp_crypto:in", NULL);
488         if (ret) {
489                 qmgr_release_queue(SEND_QID);
490                 goto err;
491         }
492         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
493         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
494
495         qmgr_enable_irq(RECV_QID);
496         return 0;
497
498 npe_error:
499         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
500         ret = -EIO;
501 err:
502         if (ctx_pool)
503                 dma_pool_destroy(ctx_pool);
504         if (buffer_pool)
505                 dma_pool_destroy(buffer_pool);
506         npe_release(npe_c);
507         return ret;
508 }
509
510 static void release_ixp_crypto(struct device *dev)
511 {
512         qmgr_disable_irq(RECV_QID);
513         tasklet_kill(&crypto_done_tasklet);
514
515         qmgr_release_queue(SEND_QID);
516         qmgr_release_queue(RECV_QID);
517
518         dma_pool_destroy(ctx_pool);
519         dma_pool_destroy(buffer_pool);
520
521         npe_release(npe_c);
522
523         if (crypt_virt) {
524                 dma_free_coherent(dev,
525                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
526                         crypt_virt, crypt_phys);
527         }
528         return;
529 }
530
531 static void reset_sa_dir(struct ix_sa_dir *dir)
532 {
533         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
534         dir->npe_ctx_idx = 0;
535         dir->npe_mode = 0;
536 }
537
538 static int init_sa_dir(struct ix_sa_dir *dir)
539 {
540         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
541         if (!dir->npe_ctx) {
542                 return -ENOMEM;
543         }
544         reset_sa_dir(dir);
545         return 0;
546 }
547
548 static void free_sa_dir(struct ix_sa_dir *dir)
549 {
550         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
551         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
552 }
553
554 static int init_tfm(struct crypto_tfm *tfm)
555 {
556         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
557         int ret;
558
559         atomic_set(&ctx->configuring, 0);
560         ret = init_sa_dir(&ctx->encrypt);
561         if (ret)
562                 return ret;
563         ret = init_sa_dir(&ctx->decrypt);
564         if (ret) {
565                 free_sa_dir(&ctx->encrypt);
566         }
567         return ret;
568 }
569
570 static int init_tfm_ablk(struct crypto_tfm *tfm)
571 {
572         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
573         return init_tfm(tfm);
574 }
575
576 static int init_tfm_aead(struct crypto_tfm *tfm)
577 {
578         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
579         return init_tfm(tfm);
580 }
581
582 static void exit_tfm(struct crypto_tfm *tfm)
583 {
584         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
585         free_sa_dir(&ctx->encrypt);
586         free_sa_dir(&ctx->decrypt);
587 }
588
589 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
590                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
591 {
592         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
593         struct crypt_ctl *crypt;
594         struct buffer_desc *buf;
595         int i;
596         u8 *pad;
597         u32 pad_phys, buf_phys;
598
599         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
600         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
601         if (!pad)
602                 return -ENOMEM;
603         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
604         if (!buf) {
605                 dma_pool_free(ctx_pool, pad, pad_phys);
606                 return -ENOMEM;
607         }
608         crypt = get_crypt_desc_emerg();
609         if (!crypt) {
610                 dma_pool_free(ctx_pool, pad, pad_phys);
611                 dma_pool_free(buffer_pool, buf, buf_phys);
612                 return -EAGAIN;
613         }
614
615         memcpy(pad, key, key_len);
616         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
617         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
618                 pad[i] ^= xpad;
619         }
620
621         crypt->data.tfm = tfm;
622         crypt->regist_ptr = pad;
623         crypt->regist_buf = buf;
624
625         crypt->auth_offs = 0;
626         crypt->auth_len = HMAC_PAD_BLOCKLEN;
627         crypt->crypto_ctx = ctx_addr;
628         crypt->src_buf = buf_phys;
629         crypt->icv_rev_aes = target;
630         crypt->mode = NPE_OP_HASH_GEN_ICV;
631         crypt->init_len = init_len;
632         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
633
634         buf->next = 0;
635         buf->buf_len = HMAC_PAD_BLOCKLEN;
636         buf->pkt_len = 0;
637         buf->phys_addr = pad_phys;
638
639         atomic_inc(&ctx->configuring);
640         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
641         BUG_ON(qmgr_stat_overflow(SEND_QID));
642         return 0;
643 }
644
645 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
646                 const u8 *key, int key_len, unsigned digest_len)
647 {
648         u32 itarget, otarget, npe_ctx_addr;
649         unsigned char *cinfo;
650         int init_len, ret = 0;
651         u32 cfgword;
652         struct ix_sa_dir *dir;
653         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
654         const struct ix_hash_algo *algo;
655
656         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
657         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
658         algo = ix_hash(tfm);
659
660         /* write cfg word to cryptinfo */
661         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
662 #ifndef __ARMEB__
663         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
664 #endif
665         *(u32*)cinfo = cpu_to_be32(cfgword);
666         cinfo += sizeof(cfgword);
667
668         /* write ICV to cryptinfo */
669         memcpy(cinfo, algo->icv, digest_len);
670         cinfo += digest_len;
671
672         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
673                                 + sizeof(algo->cfgword);
674         otarget = itarget + digest_len;
675         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
676         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
677
678         dir->npe_ctx_idx += init_len;
679         dir->npe_mode |= NPE_OP_HASH_ENABLE;
680
681         if (!encrypt)
682                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
683
684         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
685                         init_len, npe_ctx_addr, key, key_len);
686         if (ret)
687                 return ret;
688         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
689                         init_len, npe_ctx_addr, key, key_len);
690 }
691
692 static int gen_rev_aes_key(struct crypto_tfm *tfm)
693 {
694         struct crypt_ctl *crypt;
695         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
696         struct ix_sa_dir *dir = &ctx->decrypt;
697
698         crypt = get_crypt_desc_emerg();
699         if (!crypt) {
700                 return -EAGAIN;
701         }
702         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
703
704         crypt->data.tfm = tfm;
705         crypt->crypt_offs = 0;
706         crypt->crypt_len = AES_BLOCK128;
707         crypt->src_buf = 0;
708         crypt->crypto_ctx = dir->npe_ctx_phys;
709         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
710         crypt->mode = NPE_OP_ENC_GEN_KEY;
711         crypt->init_len = dir->npe_ctx_idx;
712         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
713
714         atomic_inc(&ctx->configuring);
715         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
716         BUG_ON(qmgr_stat_overflow(SEND_QID));
717         return 0;
718 }
719
720 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
721                 const u8 *key, int key_len)
722 {
723         u8 *cinfo;
724         u32 cipher_cfg;
725         u32 keylen_cfg = 0;
726         struct ix_sa_dir *dir;
727         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
728         u32 *flags = &tfm->crt_flags;
729
730         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
731         cinfo = dir->npe_ctx;
732
733         if (encrypt) {
734                 cipher_cfg = cipher_cfg_enc(tfm);
735                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
736         } else {
737                 cipher_cfg = cipher_cfg_dec(tfm);
738         }
739         if (cipher_cfg & MOD_AES) {
740                 switch (key_len) {
741                 case 16: keylen_cfg = MOD_AES128; break;
742                 case 24: keylen_cfg = MOD_AES192; break;
743                 case 32: keylen_cfg = MOD_AES256; break;
744                 default:
745                         *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
746                         return -EINVAL;
747                 }
748                 cipher_cfg |= keylen_cfg;
749         } else if (cipher_cfg & MOD_3DES) {
750                 const u32 *K = (const u32 *)key;
751                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
752                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
753                 {
754                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
755                         return -EINVAL;
756                 }
757         } else {
758                 u32 tmp[DES_EXPKEY_WORDS];
759                 if (des_ekey(tmp, key) == 0) {
760                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
761                 }
762         }
763         /* write cfg word to cryptinfo */
764         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
765         cinfo += sizeof(cipher_cfg);
766
767         /* write cipher key to cryptinfo */
768         memcpy(cinfo, key, key_len);
769         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
770         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
771                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
772                 key_len = DES3_EDE_KEY_SIZE;
773         }
774         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
775         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
776         if ((cipher_cfg & MOD_AES) && !encrypt) {
777                 return gen_rev_aes_key(tfm);
778         }
779         return 0;
780 }
781
782 static struct buffer_desc *chainup_buffers(struct device *dev,
783                 struct scatterlist *sg, unsigned nbytes,
784                 struct buffer_desc *buf, gfp_t flags,
785                 enum dma_data_direction dir)
786 {
787         for (; nbytes > 0; sg = sg_next(sg)) {
788                 unsigned len = min(nbytes, sg->length);
789                 struct buffer_desc *next_buf;
790                 u32 next_buf_phys;
791                 void *ptr;
792
793                 nbytes -= len;
794                 ptr = page_address(sg_page(sg)) + sg->offset;
795                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
796                 if (!next_buf) {
797                         buf = NULL;
798                         break;
799                 }
800                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
801                 buf->next = next_buf;
802                 buf->phys_next = next_buf_phys;
803                 buf = next_buf;
804
805                 buf->phys_addr = sg_dma_address(sg);
806                 buf->buf_len = len;
807                 buf->dir = dir;
808         }
809         buf->next = NULL;
810         buf->phys_next = 0;
811         return buf;
812 }
813
814 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
815                         unsigned int key_len)
816 {
817         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
818         u32 *flags = &tfm->base.crt_flags;
819         int ret;
820
821         init_completion(&ctx->completion);
822         atomic_inc(&ctx->configuring);
823
824         reset_sa_dir(&ctx->encrypt);
825         reset_sa_dir(&ctx->decrypt);
826
827         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
828         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
829
830         ret = setup_cipher(&tfm->base, 0, key, key_len);
831         if (ret)
832                 goto out;
833         ret = setup_cipher(&tfm->base, 1, key, key_len);
834         if (ret)
835                 goto out;
836
837         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
838                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
839                         ret = -EINVAL;
840                 } else {
841                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
842                 }
843         }
844 out:
845         if (!atomic_dec_and_test(&ctx->configuring))
846                 wait_for_completion(&ctx->completion);
847         return ret;
848 }
849
850 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
851                 unsigned int key_len)
852 {
853         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
854
855         /* the nonce is stored in bytes at end of key */
856         if (key_len < CTR_RFC3686_NONCE_SIZE)
857                 return -EINVAL;
858
859         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
860                         CTR_RFC3686_NONCE_SIZE);
861
862         key_len -= CTR_RFC3686_NONCE_SIZE;
863         return ablk_setkey(tfm, key, key_len);
864 }
865
866 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
867 {
868         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
869         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
870         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
871         struct ix_sa_dir *dir;
872         struct crypt_ctl *crypt;
873         unsigned int nbytes = req->nbytes;
874         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
875         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
876         struct buffer_desc src_hook;
877         struct device *dev = &pdev->dev;
878         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
879                                 GFP_KERNEL : GFP_ATOMIC;
880
881         if (qmgr_stat_full(SEND_QID))
882                 return -EAGAIN;
883         if (atomic_read(&ctx->configuring))
884                 return -EAGAIN;
885
886         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
887
888         crypt = get_crypt_desc();
889         if (!crypt)
890                 return -ENOMEM;
891
892         crypt->data.ablk_req = req;
893         crypt->crypto_ctx = dir->npe_ctx_phys;
894         crypt->mode = dir->npe_mode;
895         crypt->init_len = dir->npe_ctx_idx;
896
897         crypt->crypt_offs = 0;
898         crypt->crypt_len = nbytes;
899
900         BUG_ON(ivsize && !req->info);
901         memcpy(crypt->iv, req->info, ivsize);
902         if (req->src != req->dst) {
903                 struct buffer_desc dst_hook;
904                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
905                 /* This was never tested by Intel
906                  * for more than one dst buffer, I think. */
907                 req_ctx->dst = NULL;
908                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
909                                         flags, DMA_FROM_DEVICE))
910                         goto free_buf_dest;
911                 src_direction = DMA_TO_DEVICE;
912                 req_ctx->dst = dst_hook.next;
913                 crypt->dst_buf = dst_hook.phys_next;
914         } else {
915                 req_ctx->dst = NULL;
916         }
917         req_ctx->src = NULL;
918         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
919                                 flags, src_direction))
920                 goto free_buf_src;
921
922         req_ctx->src = src_hook.next;
923         crypt->src_buf = src_hook.phys_next;
924         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
925         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
926         BUG_ON(qmgr_stat_overflow(SEND_QID));
927         return -EINPROGRESS;
928
929 free_buf_src:
930         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
931 free_buf_dest:
932         if (req->src != req->dst) {
933                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
934         }
935         crypt->ctl_flags = CTL_FLAG_UNUSED;
936         return -ENOMEM;
937 }
938
939 static int ablk_encrypt(struct ablkcipher_request *req)
940 {
941         return ablk_perform(req, 1);
942 }
943
944 static int ablk_decrypt(struct ablkcipher_request *req)
945 {
946         return ablk_perform(req, 0);
947 }
948
949 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
950 {
951         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
952         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
953         u8 iv[CTR_RFC3686_BLOCK_SIZE];
954         u8 *info = req->info;
955         int ret;
956
957         /* set up counter block */
958         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
959         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
960
961         /* initialize counter portion of counter block */
962         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
963                 cpu_to_be32(1);
964
965         req->info = iv;
966         ret = ablk_perform(req, 1);
967         req->info = info;
968         return ret;
969 }
970
971 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
972                 unsigned int nbytes)
973 {
974         int offset = 0;
975
976         if (!nbytes)
977                 return 0;
978
979         for (;;) {
980                 if (start < offset + sg->length)
981                         break;
982
983                 offset += sg->length;
984                 sg = sg_next(sg);
985         }
986         return (start + nbytes > offset + sg->length);
987 }
988
989 static int aead_perform(struct aead_request *req, int encrypt,
990                 int cryptoffset, int eff_cryptlen, u8 *iv)
991 {
992         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
993         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
994         unsigned ivsize = crypto_aead_ivsize(tfm);
995         unsigned authsize = crypto_aead_authsize(tfm);
996         struct ix_sa_dir *dir;
997         struct crypt_ctl *crypt;
998         unsigned int cryptlen;
999         struct buffer_desc *buf, src_hook;
1000         struct aead_ctx *req_ctx = aead_request_ctx(req);
1001         struct device *dev = &pdev->dev;
1002         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1003                                 GFP_KERNEL : GFP_ATOMIC;
1004
1005         if (qmgr_stat_full(SEND_QID))
1006                 return -EAGAIN;
1007         if (atomic_read(&ctx->configuring))
1008                 return -EAGAIN;
1009
1010         if (encrypt) {
1011                 dir = &ctx->encrypt;
1012                 cryptlen = req->cryptlen;
1013         } else {
1014                 dir = &ctx->decrypt;
1015                 /* req->cryptlen includes the authsize when decrypting */
1016                 cryptlen = req->cryptlen -authsize;
1017                 eff_cryptlen -= authsize;
1018         }
1019         crypt = get_crypt_desc();
1020         if (!crypt)
1021                 return -ENOMEM;
1022
1023         crypt->data.aead_req = req;
1024         crypt->crypto_ctx = dir->npe_ctx_phys;
1025         crypt->mode = dir->npe_mode;
1026         crypt->init_len = dir->npe_ctx_idx;
1027
1028         crypt->crypt_offs = cryptoffset;
1029         crypt->crypt_len = eff_cryptlen;
1030
1031         crypt->auth_offs = 0;
1032         crypt->auth_len = req->assoclen + ivsize + cryptlen;
1033         BUG_ON(ivsize && !req->iv);
1034         memcpy(crypt->iv, req->iv, ivsize);
1035
1036         if (req->src != req->dst) {
1037                 BUG(); /* -ENOTSUP because of my laziness */
1038         }
1039
1040         /* ASSOC data */
1041         buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1042                 flags, DMA_TO_DEVICE);
1043         req_ctx->buffer = src_hook.next;
1044         crypt->src_buf = src_hook.phys_next;
1045         if (!buf)
1046                 goto out;
1047         /* IV */
1048         sg_init_table(&req_ctx->ivlist, 1);
1049         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1050         buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1051                         DMA_BIDIRECTIONAL);
1052         if (!buf)
1053                 goto free_chain;
1054         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1055                 /* The 12 hmac bytes are scattered,
1056                  * we need to copy them into a safe buffer */
1057                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1058                                 &crypt->icv_rev_aes);
1059                 if (unlikely(!req_ctx->hmac_virt))
1060                         goto free_chain;
1061                 if (!encrypt) {
1062                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1063                                 req->src, cryptlen, authsize, 0);
1064                 }
1065                 req_ctx->encrypt = encrypt;
1066         } else {
1067                 req_ctx->hmac_virt = NULL;
1068         }
1069         /* Crypt */
1070         buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1071                         DMA_BIDIRECTIONAL);
1072         if (!buf)
1073                 goto free_hmac_virt;
1074         if (!req_ctx->hmac_virt) {
1075                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1076         }
1077
1078         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1079         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1080         BUG_ON(qmgr_stat_overflow(SEND_QID));
1081         return -EINPROGRESS;
1082 free_hmac_virt:
1083         if (req_ctx->hmac_virt) {
1084                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1085                                 crypt->icv_rev_aes);
1086         }
1087 free_chain:
1088         free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1089 out:
1090         crypt->ctl_flags = CTL_FLAG_UNUSED;
1091         return -ENOMEM;
1092 }
1093
1094 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1095 {
1096         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1097         u32 *flags = &tfm->base.crt_flags;
1098         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1099         int ret;
1100
1101         if (!ctx->enckey_len && !ctx->authkey_len)
1102                 return 0;
1103         init_completion(&ctx->completion);
1104         atomic_inc(&ctx->configuring);
1105
1106         reset_sa_dir(&ctx->encrypt);
1107         reset_sa_dir(&ctx->decrypt);
1108
1109         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1110         if (ret)
1111                 goto out;
1112         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1113         if (ret)
1114                 goto out;
1115         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1116                         ctx->authkey_len, digest_len);
1117         if (ret)
1118                 goto out;
1119         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1120                         ctx->authkey_len, digest_len);
1121         if (ret)
1122                 goto out;
1123
1124         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1125                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1126                         ret = -EINVAL;
1127                         goto out;
1128                 } else {
1129                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1130                 }
1131         }
1132 out:
1133         if (!atomic_dec_and_test(&ctx->configuring))
1134                 wait_for_completion(&ctx->completion);
1135         return ret;
1136 }
1137
1138 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1139 {
1140         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1141
1142         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1143                 return -EINVAL;
1144         return aead_setup(tfm, authsize);
1145 }
1146
1147 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1148                         unsigned int keylen)
1149 {
1150         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1151         struct crypto_authenc_keys keys;
1152
1153         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1154                 goto badkey;
1155
1156         if (keys.authkeylen > sizeof(ctx->authkey))
1157                 goto badkey;
1158
1159         if (keys.enckeylen > sizeof(ctx->enckey))
1160                 goto badkey;
1161
1162         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1163         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1164         ctx->authkey_len = keys.authkeylen;
1165         ctx->enckey_len = keys.enckeylen;
1166
1167         return aead_setup(tfm, crypto_aead_authsize(tfm));
1168 badkey:
1169         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1170         return -EINVAL;
1171 }
1172
1173 static int aead_encrypt(struct aead_request *req)
1174 {
1175         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1176         return aead_perform(req, 1, req->assoclen + ivsize,
1177                         req->cryptlen, req->iv);
1178 }
1179
1180 static int aead_decrypt(struct aead_request *req)
1181 {
1182         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1183         return aead_perform(req, 0, req->assoclen + ivsize,
1184                         req->cryptlen, req->iv);
1185 }
1186
1187 static int aead_givencrypt(struct aead_givcrypt_request *req)
1188 {
1189         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1190         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1191         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1192         __be64 seq;
1193
1194         /* copied from eseqiv.c */
1195         if (!ctx->salted) {
1196                 get_random_bytes(ctx->salt, ivsize);
1197                 ctx->salted = 1;
1198         }
1199         memcpy(req->areq.iv, ctx->salt, ivsize);
1200         len = ivsize;
1201         if (ivsize > sizeof(u64)) {
1202                 memset(req->giv, 0, ivsize - sizeof(u64));
1203                 len = sizeof(u64);
1204         }
1205         seq = cpu_to_be64(req->seq);
1206         memcpy(req->giv + ivsize - len, &seq, len);
1207         return aead_perform(&req->areq, 1, req->areq.assoclen,
1208                         req->areq.cryptlen +ivsize, req->giv);
1209 }
1210
1211 static struct ixp_alg ixp4xx_algos[] = {
1212 {
1213         .crypto = {
1214                 .cra_name       = "cbc(des)",
1215                 .cra_blocksize  = DES_BLOCK_SIZE,
1216                 .cra_u          = { .ablkcipher = {
1217                         .min_keysize    = DES_KEY_SIZE,
1218                         .max_keysize    = DES_KEY_SIZE,
1219                         .ivsize         = DES_BLOCK_SIZE,
1220                         .geniv          = "eseqiv",
1221                         }
1222                 }
1223         },
1224         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1225         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1226
1227 }, {
1228         .crypto = {
1229                 .cra_name       = "ecb(des)",
1230                 .cra_blocksize  = DES_BLOCK_SIZE,
1231                 .cra_u          = { .ablkcipher = {
1232                         .min_keysize    = DES_KEY_SIZE,
1233                         .max_keysize    = DES_KEY_SIZE,
1234                         }
1235                 }
1236         },
1237         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1238         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1239 }, {
1240         .crypto = {
1241                 .cra_name       = "cbc(des3_ede)",
1242                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1243                 .cra_u          = { .ablkcipher = {
1244                         .min_keysize    = DES3_EDE_KEY_SIZE,
1245                         .max_keysize    = DES3_EDE_KEY_SIZE,
1246                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1247                         .geniv          = "eseqiv",
1248                         }
1249                 }
1250         },
1251         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1252         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1253 }, {
1254         .crypto = {
1255                 .cra_name       = "ecb(des3_ede)",
1256                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1257                 .cra_u          = { .ablkcipher = {
1258                         .min_keysize    = DES3_EDE_KEY_SIZE,
1259                         .max_keysize    = DES3_EDE_KEY_SIZE,
1260                         }
1261                 }
1262         },
1263         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1264         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1265 }, {
1266         .crypto = {
1267                 .cra_name       = "cbc(aes)",
1268                 .cra_blocksize  = AES_BLOCK_SIZE,
1269                 .cra_u          = { .ablkcipher = {
1270                         .min_keysize    = AES_MIN_KEY_SIZE,
1271                         .max_keysize    = AES_MAX_KEY_SIZE,
1272                         .ivsize         = AES_BLOCK_SIZE,
1273                         .geniv          = "eseqiv",
1274                         }
1275                 }
1276         },
1277         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1278         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1279 }, {
1280         .crypto = {
1281                 .cra_name       = "ecb(aes)",
1282                 .cra_blocksize  = AES_BLOCK_SIZE,
1283                 .cra_u          = { .ablkcipher = {
1284                         .min_keysize    = AES_MIN_KEY_SIZE,
1285                         .max_keysize    = AES_MAX_KEY_SIZE,
1286                         }
1287                 }
1288         },
1289         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1290         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1291 }, {
1292         .crypto = {
1293                 .cra_name       = "ctr(aes)",
1294                 .cra_blocksize  = AES_BLOCK_SIZE,
1295                 .cra_u          = { .ablkcipher = {
1296                         .min_keysize    = AES_MIN_KEY_SIZE,
1297                         .max_keysize    = AES_MAX_KEY_SIZE,
1298                         .ivsize         = AES_BLOCK_SIZE,
1299                         .geniv          = "eseqiv",
1300                         }
1301                 }
1302         },
1303         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1304         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1305 }, {
1306         .crypto = {
1307                 .cra_name       = "rfc3686(ctr(aes))",
1308                 .cra_blocksize  = AES_BLOCK_SIZE,
1309                 .cra_u          = { .ablkcipher = {
1310                         .min_keysize    = AES_MIN_KEY_SIZE,
1311                         .max_keysize    = AES_MAX_KEY_SIZE,
1312                         .ivsize         = AES_BLOCK_SIZE,
1313                         .geniv          = "eseqiv",
1314                         .setkey         = ablk_rfc3686_setkey,
1315                         .encrypt        = ablk_rfc3686_crypt,
1316                         .decrypt        = ablk_rfc3686_crypt }
1317                 }
1318         },
1319         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1320         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1321 }, {
1322         .crypto = {
1323                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1324                 .cra_blocksize  = DES_BLOCK_SIZE,
1325                 .cra_u          = { .aead = {
1326                         .ivsize         = DES_BLOCK_SIZE,
1327                         .maxauthsize    = MD5_DIGEST_SIZE,
1328                         }
1329                 }
1330         },
1331         .hash = &hash_alg_md5,
1332         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1333         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1334 }, {
1335         .crypto = {
1336                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1337                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1338                 .cra_u          = { .aead = {
1339                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1340                         .maxauthsize    = MD5_DIGEST_SIZE,
1341                         }
1342                 }
1343         },
1344         .hash = &hash_alg_md5,
1345         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1346         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1347 }, {
1348         .crypto = {
1349                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1350                 .cra_blocksize  = DES_BLOCK_SIZE,
1351                 .cra_u          = { .aead = {
1352                         .ivsize         = DES_BLOCK_SIZE,
1353                         .maxauthsize    = SHA1_DIGEST_SIZE,
1354                         }
1355                 }
1356         },
1357         .hash = &hash_alg_sha1,
1358         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1359         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1360 }, {
1361         .crypto = {
1362                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1363                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1364                 .cra_u          = { .aead = {
1365                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1366                         .maxauthsize    = SHA1_DIGEST_SIZE,
1367                         }
1368                 }
1369         },
1370         .hash = &hash_alg_sha1,
1371         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1372         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1373 }, {
1374         .crypto = {
1375                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1376                 .cra_blocksize  = AES_BLOCK_SIZE,
1377                 .cra_u          = { .aead = {
1378                         .ivsize         = AES_BLOCK_SIZE,
1379                         .maxauthsize    = MD5_DIGEST_SIZE,
1380                         }
1381                 }
1382         },
1383         .hash = &hash_alg_md5,
1384         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1385         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1386 }, {
1387         .crypto = {
1388                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1389                 .cra_blocksize  = AES_BLOCK_SIZE,
1390                 .cra_u          = { .aead = {
1391                         .ivsize         = AES_BLOCK_SIZE,
1392                         .maxauthsize    = SHA1_DIGEST_SIZE,
1393                         }
1394                 }
1395         },
1396         .hash = &hash_alg_sha1,
1397         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1398         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1399 } };
1400
1401 #define IXP_POSTFIX "-ixp4xx"
1402
1403 static const struct platform_device_info ixp_dev_info __initdata = {
1404         .name           = DRIVER_NAME,
1405         .id             = 0,
1406         .dma_mask       = DMA_BIT_MASK(32),
1407 };
1408
1409 static int __init ixp_module_init(void)
1410 {
1411         int num = ARRAY_SIZE(ixp4xx_algos);
1412         int i, err;
1413
1414         pdev = platform_device_register_full(&ixp_dev_info);
1415         if (IS_ERR(pdev))
1416                 return PTR_ERR(pdev);
1417
1418         spin_lock_init(&desc_lock);
1419         spin_lock_init(&emerg_lock);
1420
1421         err = init_ixp_crypto(&pdev->dev);
1422         if (err) {
1423                 platform_device_unregister(pdev);
1424                 return err;
1425         }
1426         for (i=0; i< num; i++) {
1427                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1428
1429                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1430                         "%s"IXP_POSTFIX, cra->cra_name) >=
1431                         CRYPTO_MAX_ALG_NAME)
1432                 {
1433                         continue;
1434                 }
1435                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1436                         continue;
1437                 }
1438                 if (!ixp4xx_algos[i].hash) {
1439                         /* block ciphers */
1440                         cra->cra_type = &crypto_ablkcipher_type;
1441                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1442                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1443                                          CRYPTO_ALG_ASYNC;
1444                         if (!cra->cra_ablkcipher.setkey)
1445                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1446                         if (!cra->cra_ablkcipher.encrypt)
1447                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1448                         if (!cra->cra_ablkcipher.decrypt)
1449                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1450                         cra->cra_init = init_tfm_ablk;
1451                 } else {
1452                         /* authenc */
1453                         cra->cra_type = &crypto_aead_type;
1454                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1455                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1456                                          CRYPTO_ALG_ASYNC;
1457                         cra->cra_aead.setkey = aead_setkey;
1458                         cra->cra_aead.setauthsize = aead_setauthsize;
1459                         cra->cra_aead.encrypt = aead_encrypt;
1460                         cra->cra_aead.decrypt = aead_decrypt;
1461                         cra->cra_aead.givencrypt = aead_givencrypt;
1462                         cra->cra_init = init_tfm_aead;
1463                 }
1464                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1465                 cra->cra_module = THIS_MODULE;
1466                 cra->cra_alignmask = 3;
1467                 cra->cra_priority = 300;
1468                 cra->cra_exit = exit_tfm;
1469                 if (crypto_register_alg(cra))
1470                         printk(KERN_ERR "Failed to register '%s'\n",
1471                                 cra->cra_name);
1472                 else
1473                         ixp4xx_algos[i].registered = 1;
1474         }
1475         return 0;
1476 }
1477
1478 static void __exit ixp_module_exit(void)
1479 {
1480         int num = ARRAY_SIZE(ixp4xx_algos);
1481         int i;
1482
1483         for (i=0; i< num; i++) {
1484                 if (ixp4xx_algos[i].registered)
1485                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1486         }
1487         release_ixp_crypto(&pdev->dev);
1488         platform_device_unregister(pdev);
1489 }
1490
1491 module_init(ixp_module_init);
1492 module_exit(ixp_module_exit);
1493
1494 MODULE_LICENSE("GPL");
1495 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1496 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1497