Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / cpufreq / sa1110-cpufreq.c
1 /*
2  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Note: there are two erratas that apply to the SA1110 here:
11  *  7 - SDRAM auto-power-up failure (rev A0)
12  * 13 - Corruption of internal register reads/writes following
13  *      SDRAM reads (rev A0, B0, B1)
14  *
15  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
16  *
17  * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
18  */
19 #include <linux/cpufreq.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/moduleparam.h>
25 #include <linux/types.h>
26
27 #include <asm/cputype.h>
28 #include <asm/mach-types.h>
29
30 #include <mach/generic.h>
31 #include <mach/hardware.h>
32
33 #undef DEBUG
34
35 struct sdram_params {
36         const char name[20];
37         u_char  rows;           /* bits                          */
38         u_char  cas_latency;    /* cycles                        */
39         u_char  tck;            /* clock cycle time (ns)         */
40         u_char  trcd;           /* activate to r/w (ns)          */
41         u_char  trp;            /* precharge to activate (ns)    */
42         u_char  twr;            /* write recovery time (ns)      */
43         u_short refresh;        /* refresh time for array (us)   */
44 };
45
46 struct sdram_info {
47         u_int   mdcnfg;
48         u_int   mdrefr;
49         u_int   mdcas[3];
50 };
51
52 static struct sdram_params sdram_tbl[] __initdata = {
53         {       /* Toshiba TC59SM716 CL2 */
54                 .name           = "TC59SM716-CL2",
55                 .rows           = 12,
56                 .tck            = 10,
57                 .trcd           = 20,
58                 .trp            = 20,
59                 .twr            = 10,
60                 .refresh        = 64000,
61                 .cas_latency    = 2,
62         }, {    /* Toshiba TC59SM716 CL3 */
63                 .name           = "TC59SM716-CL3",
64                 .rows           = 12,
65                 .tck            = 8,
66                 .trcd           = 20,
67                 .trp            = 20,
68                 .twr            = 8,
69                 .refresh        = 64000,
70                 .cas_latency    = 3,
71         }, {    /* Samsung K4S641632D TC75 */
72                 .name           = "K4S641632D",
73                 .rows           = 14,
74                 .tck            = 9,
75                 .trcd           = 27,
76                 .trp            = 20,
77                 .twr            = 9,
78                 .refresh        = 64000,
79                 .cas_latency    = 3,
80         }, {    /* Samsung K4S281632B-1H */
81                 .name           = "K4S281632B-1H",
82                 .rows           = 12,
83                 .tck            = 10,
84                 .trp            = 20,
85                 .twr            = 10,
86                 .refresh        = 64000,
87                 .cas_latency    = 3,
88         }, {    /* Samsung KM416S4030CT */
89                 .name           = "KM416S4030CT",
90                 .rows           = 13,
91                 .tck            = 8,
92                 .trcd           = 24,   /* 3 CLKs */
93                 .trp            = 24,   /* 3 CLKs */
94                 .twr            = 16,   /* Trdl: 2 CLKs */
95                 .refresh        = 64000,
96                 .cas_latency    = 3,
97         }, {    /* Winbond W982516AH75L CL3 */
98                 .name           = "W982516AH75L",
99                 .rows           = 16,
100                 .tck            = 8,
101                 .trcd           = 20,
102                 .trp            = 20,
103                 .twr            = 8,
104                 .refresh        = 64000,
105                 .cas_latency    = 3,
106         }, {    /* Micron MT48LC8M16A2TG-75 */
107                 .name           = "MT48LC8M16A2TG-75",
108                 .rows           = 12,
109                 .tck            = 8,
110                 .trcd           = 20,
111                 .trp            = 20,
112                 .twr            = 8,
113                 .refresh        = 64000,
114                 .cas_latency    = 3,
115         },
116 };
117
118 static struct sdram_params sdram_params;
119
120 /*
121  * Given a period in ns and frequency in khz, calculate the number of
122  * cycles of frequency in period.  Note that we round up to the next
123  * cycle, even if we are only slightly over.
124  */
125 static inline u_int ns_to_cycles(u_int ns, u_int khz)
126 {
127         return (ns * khz + 999999) / 1000000;
128 }
129
130 /*
131  * Create the MDCAS register bit pattern.
132  */
133 static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
134 {
135         u_int shift;
136
137         rcd = 2 * rcd - 1;
138         shift = delayed + 1 + rcd;
139
140         mdcas[0]  = (1 << rcd) - 1;
141         mdcas[0] |= 0x55555555 << shift;
142         mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
143 }
144
145 static void
146 sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
147                        struct sdram_params *sdram)
148 {
149         u_int mem_khz, sd_khz, trp, twr;
150
151         mem_khz = cpu_khz / 2;
152         sd_khz = mem_khz;
153
154         /*
155          * If SDCLK would invalidate the SDRAM timings,
156          * run SDCLK at half speed.
157          *
158          * CPU steppings prior to B2 must either run the memory at
159          * half speed or use delayed read latching (errata 13).
160          */
161         if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
162             (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
163                 sd_khz /= 2;
164
165         sd->mdcnfg = MDCNFG & 0x007f007f;
166
167         twr = ns_to_cycles(sdram->twr, mem_khz);
168
169         /* trp should always be >1 */
170         trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
171         if (trp < 1)
172                 trp = 1;
173
174         sd->mdcnfg |= trp << 8;
175         sd->mdcnfg |= trp << 24;
176         sd->mdcnfg |= sdram->cas_latency << 12;
177         sd->mdcnfg |= sdram->cas_latency << 28;
178         sd->mdcnfg |= twr << 14;
179         sd->mdcnfg |= twr << 30;
180
181         sd->mdrefr = MDREFR & 0xffbffff0;
182         sd->mdrefr |= 7;
183
184         if (sd_khz != mem_khz)
185                 sd->mdrefr |= MDREFR_K1DB2;
186
187         /* initial number of '1's in MDCAS + 1 */
188         set_mdcas(sd->mdcas, sd_khz >= 62000,
189                 ns_to_cycles(sdram->trcd, mem_khz));
190
191 #ifdef DEBUG
192         printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
193                 sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],
194                 sd->mdcas[2]);
195 #endif
196 }
197
198 /*
199  * Set the SDRAM refresh rate.
200  */
201 static inline void sdram_set_refresh(u_int dri)
202 {
203         MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
204         (void) MDREFR;
205 }
206
207 /*
208  * Update the refresh period.  We do this such that we always refresh
209  * the SDRAMs within their permissible period.  The refresh period is
210  * always a multiple of the memory clock (fixed at cpu_clock / 2).
211  *
212  * FIXME: we don't currently take account of burst accesses here,
213  * but neither do Intels DM nor Angel.
214  */
215 static void
216 sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
217 {
218         u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
219         u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
220
221 #ifdef DEBUG
222         mdelay(250);
223         printk(KERN_DEBUG "new dri value = %d\n", dri);
224 #endif
225
226         sdram_set_refresh(dri);
227 }
228
229 /*
230  * Ok, set the CPU frequency.
231  */
232 static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr)
233 {
234         struct sdram_params *sdram = &sdram_params;
235         struct sdram_info sd;
236         unsigned long flags;
237         unsigned int unused;
238
239         sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram);
240
241 #if 0
242         /*
243          * These values are wrong according to the SA1110 documentation
244          * and errata, but they seem to work.  Need to get a storage
245          * scope on to the SDRAM signals to work out why.
246          */
247         if (policy->max < 147500) {
248                 sd.mdrefr |= MDREFR_K1DB2;
249                 sd.mdcas[0] = 0xaaaaaa7f;
250         } else {
251                 sd.mdrefr &= ~MDREFR_K1DB2;
252                 sd.mdcas[0] = 0xaaaaaa9f;
253         }
254         sd.mdcas[1] = 0xaaaaaaaa;
255         sd.mdcas[2] = 0xaaaaaaaa;
256 #endif
257
258         /*
259          * The clock could be going away for some time.  Set the SDRAMs
260          * to refresh rapidly (every 64 memory clock cycles).  To get
261          * through the whole array, we need to wait 262144 mclk cycles.
262          * We wait 20ms to be safe.
263          */
264         sdram_set_refresh(2);
265         if (!irqs_disabled())
266                 msleep(20);
267         else
268                 mdelay(20);
269
270         /*
271          * Reprogram the DRAM timings with interrupts disabled, and
272          * ensure that we are doing this within a complete cache line.
273          * This means that we won't access SDRAM for the duration of
274          * the programming.
275          */
276         local_irq_save(flags);
277         asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
278         udelay(10);
279         __asm__ __volatile__("\n\
280                 b       2f                                      \n\
281                 .align  5                                       \n\
282 1:              str     %3, [%1, #0]            @ MDCNFG        \n\
283                 str     %4, [%1, #28]           @ MDREFR        \n\
284                 str     %5, [%1, #4]            @ MDCAS0        \n\
285                 str     %6, [%1, #8]            @ MDCAS1        \n\
286                 str     %7, [%1, #12]           @ MDCAS2        \n\
287                 str     %8, [%2, #0]            @ PPCR          \n\
288                 ldr     %0, [%1, #0]                            \n\
289                 b       3f                                      \n\
290 2:              b       1b                                      \n\
291 3:              nop                                             \n\
292                 nop"
293                 : "=&r" (unused)
294                 : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
295                   "r" (sd.mdrefr), "r" (sd.mdcas[0]),
296                   "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
297         local_irq_restore(flags);
298
299         /*
300          * Now, return the SDRAM refresh back to normal.
301          */
302         sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram);
303
304         return 0;
305 }
306
307 static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
308 {
309         return cpufreq_generic_init(policy, sa11x0_freq_table, CPUFREQ_ETERNAL);
310 }
311
312 /* sa1110_driver needs __refdata because it must remain after init registers
313  * it with cpufreq_register_driver() */
314 static struct cpufreq_driver sa1110_driver __refdata = {
315         .flags          = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
316         .verify         = cpufreq_generic_frequency_table_verify,
317         .target_index   = sa1110_target,
318         .get            = sa11x0_getspeed,
319         .init           = sa1110_cpu_init,
320         .name           = "sa1110",
321 };
322
323 static struct sdram_params *sa1110_find_sdram(const char *name)
324 {
325         struct sdram_params *sdram;
326
327         for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl);
328              sdram++)
329                 if (strcmp(name, sdram->name) == 0)
330                         return sdram;
331
332         return NULL;
333 }
334
335 static char sdram_name[16];
336
337 static int __init sa1110_clk_init(void)
338 {
339         struct sdram_params *sdram;
340         const char *name = sdram_name;
341
342         if (!cpu_is_sa1110())
343                 return -ENODEV;
344
345         if (!name[0]) {
346                 if (machine_is_assabet())
347                         name = "TC59SM716-CL3";
348                 if (machine_is_pt_system3())
349                         name = "K4S641632D";
350                 if (machine_is_h3100())
351                         name = "KM416S4030CT";
352                 if (machine_is_jornada720() || machine_is_h3600())
353                         name = "K4S281632B-1H";
354                 if (machine_is_nanoengine())
355                         name = "MT48LC8M16A2TG-75";
356         }
357
358         sdram = sa1110_find_sdram(name);
359         if (sdram) {
360                 printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
361                         " twr: %d refresh: %d cas_latency: %d\n",
362                         sdram->tck, sdram->trcd, sdram->trp,
363                         sdram->twr, sdram->refresh, sdram->cas_latency);
364
365                 memcpy(&sdram_params, sdram, sizeof(sdram_params));
366
367                 return cpufreq_register_driver(&sa1110_driver);
368         }
369
370         return 0;
371 }
372
373 module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
374 arch_initcall(sa1110_clk_init);