These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define ATOM_RATIOS             0x66a
38 #define ATOM_VIDS               0x66b
39 #define ATOM_TURBO_RATIOS       0x66c
40 #define ATOM_TURBO_VIDS         0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53         return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58         int mask, ret;
59
60         ret = fp_toint(x);
61         mask = (1 << FRAC_BITS) - 1;
62         if (x & mask)
63                 ret += 1;
64         return ret;
65 }
66
67 struct sample {
68         int32_t core_pct_busy;
69         u64 aperf;
70         u64 mperf;
71         u64 tsc;
72         int freq;
73         ktime_t time;
74 };
75
76 struct pstate_data {
77         int     current_pstate;
78         int     min_pstate;
79         int     max_pstate;
80         int     max_pstate_physical;
81         int     scaling;
82         int     turbo_pstate;
83 };
84
85 struct vid_data {
86         int min;
87         int max;
88         int turbo;
89         int32_t ratio;
90 };
91
92 struct _pid {
93         int setpoint;
94         int32_t integral;
95         int32_t p_gain;
96         int32_t i_gain;
97         int32_t d_gain;
98         int deadband;
99         int32_t last_err;
100 };
101
102 struct cpudata {
103         int cpu;
104
105         struct timer_list timer;
106
107         struct pstate_data pstate;
108         struct vid_data vid;
109         struct _pid pid;
110
111         ktime_t last_sample_time;
112         u64     prev_aperf;
113         u64     prev_mperf;
114         u64     prev_tsc;
115         struct sample sample;
116 };
117
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120         int sample_rate_ms;
121         int deadband;
122         int setpoint;
123         int p_gain_pct;
124         int d_gain_pct;
125         int i_gain_pct;
126 };
127
128 struct pstate_funcs {
129         int (*get_max)(void);
130         int (*get_max_physical)(void);
131         int (*get_min)(void);
132         int (*get_turbo)(void);
133         int (*get_scaling)(void);
134         void (*set)(struct cpudata*, int pstate);
135         void (*get_vid)(struct cpudata *);
136 };
137
138 struct cpu_defaults {
139         struct pstate_adjust_policy pid_policy;
140         struct pstate_funcs funcs;
141 };
142
143 static struct pstate_adjust_policy pid_params;
144 static struct pstate_funcs pstate_funcs;
145 static int hwp_active;
146
147 struct perf_limits {
148         int no_turbo;
149         int turbo_disabled;
150         int max_perf_pct;
151         int min_perf_pct;
152         int32_t max_perf;
153         int32_t min_perf;
154         int max_policy_pct;
155         int max_sysfs_pct;
156         int min_policy_pct;
157         int min_sysfs_pct;
158 };
159
160 static struct perf_limits performance_limits = {
161         .no_turbo = 0,
162         .turbo_disabled = 0,
163         .max_perf_pct = 100,
164         .max_perf = int_tofp(1),
165         .min_perf_pct = 100,
166         .min_perf = int_tofp(1),
167         .max_policy_pct = 100,
168         .max_sysfs_pct = 100,
169         .min_policy_pct = 0,
170         .min_sysfs_pct = 0,
171 };
172
173 static struct perf_limits powersave_limits = {
174         .no_turbo = 0,
175         .turbo_disabled = 0,
176         .max_perf_pct = 100,
177         .max_perf = int_tofp(1),
178         .min_perf_pct = 0,
179         .min_perf = 0,
180         .max_policy_pct = 100,
181         .max_sysfs_pct = 100,
182         .min_policy_pct = 0,
183         .min_sysfs_pct = 0,
184 };
185
186 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
187 static struct perf_limits *limits = &performance_limits;
188 #else
189 static struct perf_limits *limits = &powersave_limits;
190 #endif
191
192 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
193                              int deadband, int integral) {
194         pid->setpoint = setpoint;
195         pid->deadband  = deadband;
196         pid->integral  = int_tofp(integral);
197         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
198 }
199
200 static inline void pid_p_gain_set(struct _pid *pid, int percent)
201 {
202         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
203 }
204
205 static inline void pid_i_gain_set(struct _pid *pid, int percent)
206 {
207         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
208 }
209
210 static inline void pid_d_gain_set(struct _pid *pid, int percent)
211 {
212         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
213 }
214
215 static signed int pid_calc(struct _pid *pid, int32_t busy)
216 {
217         signed int result;
218         int32_t pterm, dterm, fp_error;
219         int32_t integral_limit;
220
221         fp_error = int_tofp(pid->setpoint) - busy;
222
223         if (abs(fp_error) <= int_tofp(pid->deadband))
224                 return 0;
225
226         pterm = mul_fp(pid->p_gain, fp_error);
227
228         pid->integral += fp_error;
229
230         /*
231          * We limit the integral here so that it will never
232          * get higher than 30.  This prevents it from becoming
233          * too large an input over long periods of time and allows
234          * it to get factored out sooner.
235          *
236          * The value of 30 was chosen through experimentation.
237          */
238         integral_limit = int_tofp(30);
239         if (pid->integral > integral_limit)
240                 pid->integral = integral_limit;
241         if (pid->integral < -integral_limit)
242                 pid->integral = -integral_limit;
243
244         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
245         pid->last_err = fp_error;
246
247         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
248         result = result + (1 << (FRAC_BITS-1));
249         return (signed int)fp_toint(result);
250 }
251
252 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
253 {
254         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
255         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
256         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
257
258         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
259 }
260
261 static inline void intel_pstate_reset_all_pid(void)
262 {
263         unsigned int cpu;
264
265         for_each_online_cpu(cpu) {
266                 if (all_cpu_data[cpu])
267                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
268         }
269 }
270
271 static inline void update_turbo_state(void)
272 {
273         u64 misc_en;
274         struct cpudata *cpu;
275
276         cpu = all_cpu_data[0];
277         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
278         limits->turbo_disabled =
279                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
280                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
281 }
282
283 static void intel_pstate_hwp_set(void)
284 {
285         int min, hw_min, max, hw_max, cpu, range, adj_range;
286         u64 value, cap;
287
288         rdmsrl(MSR_HWP_CAPABILITIES, cap);
289         hw_min = HWP_LOWEST_PERF(cap);
290         hw_max = HWP_HIGHEST_PERF(cap);
291         range = hw_max - hw_min;
292
293         get_online_cpus();
294
295         for_each_online_cpu(cpu) {
296                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
297                 adj_range = limits->min_perf_pct * range / 100;
298                 min = hw_min + adj_range;
299                 value &= ~HWP_MIN_PERF(~0L);
300                 value |= HWP_MIN_PERF(min);
301
302                 adj_range = limits->max_perf_pct * range / 100;
303                 max = hw_min + adj_range;
304                 if (limits->no_turbo) {
305                         hw_max = HWP_GUARANTEED_PERF(cap);
306                         if (hw_max < max)
307                                 max = hw_max;
308                 }
309
310                 value &= ~HWP_MAX_PERF(~0L);
311                 value |= HWP_MAX_PERF(max);
312                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
313         }
314
315         put_online_cpus();
316 }
317
318 /************************** debugfs begin ************************/
319 static int pid_param_set(void *data, u64 val)
320 {
321         *(u32 *)data = val;
322         intel_pstate_reset_all_pid();
323         return 0;
324 }
325
326 static int pid_param_get(void *data, u64 *val)
327 {
328         *val = *(u32 *)data;
329         return 0;
330 }
331 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
332
333 struct pid_param {
334         char *name;
335         void *value;
336 };
337
338 static struct pid_param pid_files[] = {
339         {"sample_rate_ms", &pid_params.sample_rate_ms},
340         {"d_gain_pct", &pid_params.d_gain_pct},
341         {"i_gain_pct", &pid_params.i_gain_pct},
342         {"deadband", &pid_params.deadband},
343         {"setpoint", &pid_params.setpoint},
344         {"p_gain_pct", &pid_params.p_gain_pct},
345         {NULL, NULL}
346 };
347
348 static void __init intel_pstate_debug_expose_params(void)
349 {
350         struct dentry *debugfs_parent;
351         int i = 0;
352
353         if (hwp_active)
354                 return;
355         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
356         if (IS_ERR_OR_NULL(debugfs_parent))
357                 return;
358         while (pid_files[i].name) {
359                 debugfs_create_file(pid_files[i].name, 0660,
360                                     debugfs_parent, pid_files[i].value,
361                                     &fops_pid_param);
362                 i++;
363         }
364 }
365
366 /************************** debugfs end ************************/
367
368 /************************** sysfs begin ************************/
369 #define show_one(file_name, object)                                     \
370         static ssize_t show_##file_name                                 \
371         (struct kobject *kobj, struct attribute *attr, char *buf)       \
372         {                                                               \
373                 return sprintf(buf, "%u\n", limits->object);            \
374         }
375
376 static ssize_t show_turbo_pct(struct kobject *kobj,
377                                 struct attribute *attr, char *buf)
378 {
379         struct cpudata *cpu;
380         int total, no_turbo, turbo_pct;
381         uint32_t turbo_fp;
382
383         cpu = all_cpu_data[0];
384
385         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
386         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
387         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
388         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
389         return sprintf(buf, "%u\n", turbo_pct);
390 }
391
392 static ssize_t show_num_pstates(struct kobject *kobj,
393                                 struct attribute *attr, char *buf)
394 {
395         struct cpudata *cpu;
396         int total;
397
398         cpu = all_cpu_data[0];
399         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
400         return sprintf(buf, "%u\n", total);
401 }
402
403 static ssize_t show_no_turbo(struct kobject *kobj,
404                              struct attribute *attr, char *buf)
405 {
406         ssize_t ret;
407
408         update_turbo_state();
409         if (limits->turbo_disabled)
410                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
411         else
412                 ret = sprintf(buf, "%u\n", limits->no_turbo);
413
414         return ret;
415 }
416
417 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
418                               const char *buf, size_t count)
419 {
420         unsigned int input;
421         int ret;
422
423         ret = sscanf(buf, "%u", &input);
424         if (ret != 1)
425                 return -EINVAL;
426
427         update_turbo_state();
428         if (limits->turbo_disabled) {
429                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
430                 return -EPERM;
431         }
432
433         limits->no_turbo = clamp_t(int, input, 0, 1);
434
435         if (hwp_active)
436                 intel_pstate_hwp_set();
437
438         return count;
439 }
440
441 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
442                                   const char *buf, size_t count)
443 {
444         unsigned int input;
445         int ret;
446
447         ret = sscanf(buf, "%u", &input);
448         if (ret != 1)
449                 return -EINVAL;
450
451         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
452         limits->max_perf_pct = min(limits->max_policy_pct,
453                                    limits->max_sysfs_pct);
454         limits->max_perf_pct = max(limits->min_policy_pct,
455                                    limits->max_perf_pct);
456         limits->max_perf_pct = max(limits->min_perf_pct,
457                                    limits->max_perf_pct);
458         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
459                                   int_tofp(100));
460
461         if (hwp_active)
462                 intel_pstate_hwp_set();
463         return count;
464 }
465
466 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
467                                   const char *buf, size_t count)
468 {
469         unsigned int input;
470         int ret;
471
472         ret = sscanf(buf, "%u", &input);
473         if (ret != 1)
474                 return -EINVAL;
475
476         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
477         limits->min_perf_pct = max(limits->min_policy_pct,
478                                    limits->min_sysfs_pct);
479         limits->min_perf_pct = min(limits->max_policy_pct,
480                                    limits->min_perf_pct);
481         limits->min_perf_pct = min(limits->max_perf_pct,
482                                    limits->min_perf_pct);
483         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
484                                   int_tofp(100));
485
486         if (hwp_active)
487                 intel_pstate_hwp_set();
488         return count;
489 }
490
491 show_one(max_perf_pct, max_perf_pct);
492 show_one(min_perf_pct, min_perf_pct);
493
494 define_one_global_rw(no_turbo);
495 define_one_global_rw(max_perf_pct);
496 define_one_global_rw(min_perf_pct);
497 define_one_global_ro(turbo_pct);
498 define_one_global_ro(num_pstates);
499
500 static struct attribute *intel_pstate_attributes[] = {
501         &no_turbo.attr,
502         &max_perf_pct.attr,
503         &min_perf_pct.attr,
504         &turbo_pct.attr,
505         &num_pstates.attr,
506         NULL
507 };
508
509 static struct attribute_group intel_pstate_attr_group = {
510         .attrs = intel_pstate_attributes,
511 };
512
513 static void __init intel_pstate_sysfs_expose_params(void)
514 {
515         struct kobject *intel_pstate_kobject;
516         int rc;
517
518         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
519                                                 &cpu_subsys.dev_root->kobj);
520         BUG_ON(!intel_pstate_kobject);
521         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
522         BUG_ON(rc);
523 }
524 /************************** sysfs end ************************/
525
526 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
527 {
528         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
529 }
530
531 static int atom_get_min_pstate(void)
532 {
533         u64 value;
534
535         rdmsrl(ATOM_RATIOS, value);
536         return (value >> 8) & 0x7F;
537 }
538
539 static int atom_get_max_pstate(void)
540 {
541         u64 value;
542
543         rdmsrl(ATOM_RATIOS, value);
544         return (value >> 16) & 0x7F;
545 }
546
547 static int atom_get_turbo_pstate(void)
548 {
549         u64 value;
550
551         rdmsrl(ATOM_TURBO_RATIOS, value);
552         return value & 0x7F;
553 }
554
555 static void atom_set_pstate(struct cpudata *cpudata, int pstate)
556 {
557         u64 val;
558         int32_t vid_fp;
559         u32 vid;
560
561         val = (u64)pstate << 8;
562         if (limits->no_turbo && !limits->turbo_disabled)
563                 val |= (u64)1 << 32;
564
565         vid_fp = cpudata->vid.min + mul_fp(
566                 int_tofp(pstate - cpudata->pstate.min_pstate),
567                 cpudata->vid.ratio);
568
569         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
570         vid = ceiling_fp(vid_fp);
571
572         if (pstate > cpudata->pstate.max_pstate)
573                 vid = cpudata->vid.turbo;
574
575         val |= vid;
576
577         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
578 }
579
580 static int silvermont_get_scaling(void)
581 {
582         u64 value;
583         int i;
584         /* Defined in Table 35-6 from SDM (Sept 2015) */
585         static int silvermont_freq_table[] = {
586                 83300, 100000, 133300, 116700, 80000};
587
588         rdmsrl(MSR_FSB_FREQ, value);
589         i = value & 0x7;
590         WARN_ON(i > 4);
591
592         return silvermont_freq_table[i];
593 }
594
595 static int airmont_get_scaling(void)
596 {
597         u64 value;
598         int i;
599         /* Defined in Table 35-10 from SDM (Sept 2015) */
600         static int airmont_freq_table[] = {
601                 83300, 100000, 133300, 116700, 80000,
602                 93300, 90000, 88900, 87500};
603
604         rdmsrl(MSR_FSB_FREQ, value);
605         i = value & 0xF;
606         WARN_ON(i > 8);
607
608         return airmont_freq_table[i];
609 }
610
611 static void atom_get_vid(struct cpudata *cpudata)
612 {
613         u64 value;
614
615         rdmsrl(ATOM_VIDS, value);
616         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
617         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
618         cpudata->vid.ratio = div_fp(
619                 cpudata->vid.max - cpudata->vid.min,
620                 int_tofp(cpudata->pstate.max_pstate -
621                         cpudata->pstate.min_pstate));
622
623         rdmsrl(ATOM_TURBO_VIDS, value);
624         cpudata->vid.turbo = value & 0x7f;
625 }
626
627 static int core_get_min_pstate(void)
628 {
629         u64 value;
630
631         rdmsrl(MSR_PLATFORM_INFO, value);
632         return (value >> 40) & 0xFF;
633 }
634
635 static int core_get_max_pstate_physical(void)
636 {
637         u64 value;
638
639         rdmsrl(MSR_PLATFORM_INFO, value);
640         return (value >> 8) & 0xFF;
641 }
642
643 static int core_get_max_pstate(void)
644 {
645         u64 tar;
646         u64 plat_info;
647         int max_pstate;
648         int err;
649
650         rdmsrl(MSR_PLATFORM_INFO, plat_info);
651         max_pstate = (plat_info >> 8) & 0xFF;
652
653         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
654         if (!err) {
655                 /* Do some sanity checking for safety */
656                 if (plat_info & 0x600000000) {
657                         u64 tdp_ctrl;
658                         u64 tdp_ratio;
659                         int tdp_msr;
660
661                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
662                         if (err)
663                                 goto skip_tar;
664
665                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
666                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
667                         if (err)
668                                 goto skip_tar;
669
670                         if (tdp_ratio - 1 == tar) {
671                                 max_pstate = tar;
672                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
673                         } else {
674                                 goto skip_tar;
675                         }
676                 }
677         }
678
679 skip_tar:
680         return max_pstate;
681 }
682
683 static int core_get_turbo_pstate(void)
684 {
685         u64 value;
686         int nont, ret;
687
688         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
689         nont = core_get_max_pstate();
690         ret = (value) & 255;
691         if (ret <= nont)
692                 ret = nont;
693         return ret;
694 }
695
696 static inline int core_get_scaling(void)
697 {
698         return 100000;
699 }
700
701 static void core_set_pstate(struct cpudata *cpudata, int pstate)
702 {
703         u64 val;
704
705         val = (u64)pstate << 8;
706         if (limits->no_turbo && !limits->turbo_disabled)
707                 val |= (u64)1 << 32;
708
709         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
710 }
711
712 static int knl_get_turbo_pstate(void)
713 {
714         u64 value;
715         int nont, ret;
716
717         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
718         nont = core_get_max_pstate();
719         ret = (((value) >> 8) & 0xFF);
720         if (ret <= nont)
721                 ret = nont;
722         return ret;
723 }
724
725 static struct cpu_defaults core_params = {
726         .pid_policy = {
727                 .sample_rate_ms = 10,
728                 .deadband = 0,
729                 .setpoint = 97,
730                 .p_gain_pct = 20,
731                 .d_gain_pct = 0,
732                 .i_gain_pct = 0,
733         },
734         .funcs = {
735                 .get_max = core_get_max_pstate,
736                 .get_max_physical = core_get_max_pstate_physical,
737                 .get_min = core_get_min_pstate,
738                 .get_turbo = core_get_turbo_pstate,
739                 .get_scaling = core_get_scaling,
740                 .set = core_set_pstate,
741         },
742 };
743
744 static struct cpu_defaults silvermont_params = {
745         .pid_policy = {
746                 .sample_rate_ms = 10,
747                 .deadband = 0,
748                 .setpoint = 60,
749                 .p_gain_pct = 14,
750                 .d_gain_pct = 0,
751                 .i_gain_pct = 4,
752         },
753         .funcs = {
754                 .get_max = atom_get_max_pstate,
755                 .get_max_physical = atom_get_max_pstate,
756                 .get_min = atom_get_min_pstate,
757                 .get_turbo = atom_get_turbo_pstate,
758                 .set = atom_set_pstate,
759                 .get_scaling = silvermont_get_scaling,
760                 .get_vid = atom_get_vid,
761         },
762 };
763
764 static struct cpu_defaults airmont_params = {
765         .pid_policy = {
766                 .sample_rate_ms = 10,
767                 .deadband = 0,
768                 .setpoint = 60,
769                 .p_gain_pct = 14,
770                 .d_gain_pct = 0,
771                 .i_gain_pct = 4,
772         },
773         .funcs = {
774                 .get_max = atom_get_max_pstate,
775                 .get_max_physical = atom_get_max_pstate,
776                 .get_min = atom_get_min_pstate,
777                 .get_turbo = atom_get_turbo_pstate,
778                 .set = atom_set_pstate,
779                 .get_scaling = airmont_get_scaling,
780                 .get_vid = atom_get_vid,
781         },
782 };
783
784 static struct cpu_defaults knl_params = {
785         .pid_policy = {
786                 .sample_rate_ms = 10,
787                 .deadband = 0,
788                 .setpoint = 97,
789                 .p_gain_pct = 20,
790                 .d_gain_pct = 0,
791                 .i_gain_pct = 0,
792         },
793         .funcs = {
794                 .get_max = core_get_max_pstate,
795                 .get_max_physical = core_get_max_pstate_physical,
796                 .get_min = core_get_min_pstate,
797                 .get_turbo = knl_get_turbo_pstate,
798                 .get_scaling = core_get_scaling,
799                 .set = core_set_pstate,
800         },
801 };
802
803 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
804 {
805         int max_perf = cpu->pstate.turbo_pstate;
806         int max_perf_adj;
807         int min_perf;
808
809         if (limits->no_turbo || limits->turbo_disabled)
810                 max_perf = cpu->pstate.max_pstate;
811
812         /*
813          * performance can be limited by user through sysfs, by cpufreq
814          * policy, or by cpu specific default values determined through
815          * experimentation.
816          */
817         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
818         *max = clamp_t(int, max_perf_adj,
819                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
820
821         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
822         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
823 }
824
825 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
826 {
827         int max_perf, min_perf;
828
829         if (force) {
830                 update_turbo_state();
831
832                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
833
834                 pstate = clamp_t(int, pstate, min_perf, max_perf);
835
836                 if (pstate == cpu->pstate.current_pstate)
837                         return;
838         }
839         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
840
841         cpu->pstate.current_pstate = pstate;
842
843         pstate_funcs.set(cpu, pstate);
844 }
845
846 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
847 {
848         cpu->pstate.min_pstate = pstate_funcs.get_min();
849         cpu->pstate.max_pstate = pstate_funcs.get_max();
850         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
851         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
852         cpu->pstate.scaling = pstate_funcs.get_scaling();
853
854         if (pstate_funcs.get_vid)
855                 pstate_funcs.get_vid(cpu);
856         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
857 }
858
859 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
860 {
861         struct sample *sample = &cpu->sample;
862         int64_t core_pct;
863
864         core_pct = int_tofp(sample->aperf) * int_tofp(100);
865         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
866
867         sample->freq = fp_toint(
868                 mul_fp(int_tofp(
869                         cpu->pstate.max_pstate_physical *
870                         cpu->pstate.scaling / 100),
871                         core_pct));
872
873         sample->core_pct_busy = (int32_t)core_pct;
874 }
875
876 static inline void intel_pstate_sample(struct cpudata *cpu)
877 {
878         u64 aperf, mperf;
879         unsigned long flags;
880         u64 tsc;
881
882         local_irq_save(flags);
883         rdmsrl(MSR_IA32_APERF, aperf);
884         rdmsrl(MSR_IA32_MPERF, mperf);
885         if (cpu->prev_mperf == mperf) {
886                 local_irq_restore(flags);
887                 return;
888         }
889
890         tsc = rdtsc();
891         local_irq_restore(flags);
892
893         cpu->last_sample_time = cpu->sample.time;
894         cpu->sample.time = ktime_get();
895         cpu->sample.aperf = aperf;
896         cpu->sample.mperf = mperf;
897         cpu->sample.tsc =  tsc;
898         cpu->sample.aperf -= cpu->prev_aperf;
899         cpu->sample.mperf -= cpu->prev_mperf;
900         cpu->sample.tsc -= cpu->prev_tsc;
901
902         intel_pstate_calc_busy(cpu);
903
904         cpu->prev_aperf = aperf;
905         cpu->prev_mperf = mperf;
906         cpu->prev_tsc = tsc;
907 }
908
909 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
910 {
911         int delay;
912
913         delay = msecs_to_jiffies(50);
914         mod_timer_pinned(&cpu->timer, jiffies + delay);
915 }
916
917 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
918 {
919         int delay;
920
921         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
922         mod_timer_pinned(&cpu->timer, jiffies + delay);
923 }
924
925 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
926 {
927         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
928         s64 duration_us;
929         u32 sample_time;
930
931         /*
932          * core_busy is the ratio of actual performance to max
933          * max_pstate is the max non turbo pstate available
934          * current_pstate was the pstate that was requested during
935          *      the last sample period.
936          *
937          * We normalize core_busy, which was our actual percent
938          * performance to what we requested during the last sample
939          * period. The result will be a percentage of busy at a
940          * specified pstate.
941          */
942         core_busy = cpu->sample.core_pct_busy;
943         max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
944         current_pstate = int_tofp(cpu->pstate.current_pstate);
945         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
946
947         /*
948          * Since we have a deferred timer, it will not fire unless
949          * we are in C0.  So, determine if the actual elapsed time
950          * is significantly greater (3x) than our sample interval.  If it
951          * is, then we were idle for a long enough period of time
952          * to adjust our busyness.
953          */
954         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
955         duration_us = ktime_us_delta(cpu->sample.time,
956                                      cpu->last_sample_time);
957         if (duration_us > sample_time * 3) {
958                 sample_ratio = div_fp(int_tofp(sample_time),
959                                       int_tofp(duration_us));
960                 core_busy = mul_fp(core_busy, sample_ratio);
961         }
962
963         return core_busy;
964 }
965
966 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
967 {
968         int32_t busy_scaled;
969         struct _pid *pid;
970         signed int ctl;
971         int from;
972         struct sample *sample;
973
974         from = cpu->pstate.current_pstate;
975
976         pid = &cpu->pid;
977         busy_scaled = intel_pstate_get_scaled_busy(cpu);
978
979         ctl = pid_calc(pid, busy_scaled);
980
981         /* Negative values of ctl increase the pstate and vice versa */
982         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
983
984         sample = &cpu->sample;
985         trace_pstate_sample(fp_toint(sample->core_pct_busy),
986                 fp_toint(busy_scaled),
987                 from,
988                 cpu->pstate.current_pstate,
989                 sample->mperf,
990                 sample->aperf,
991                 sample->tsc,
992                 sample->freq);
993 }
994
995 static void intel_hwp_timer_func(unsigned long __data)
996 {
997         struct cpudata *cpu = (struct cpudata *) __data;
998
999         intel_pstate_sample(cpu);
1000         intel_hwp_set_sample_time(cpu);
1001 }
1002
1003 static void intel_pstate_timer_func(unsigned long __data)
1004 {
1005         struct cpudata *cpu = (struct cpudata *) __data;
1006
1007         intel_pstate_sample(cpu);
1008
1009         intel_pstate_adjust_busy_pstate(cpu);
1010
1011         intel_pstate_set_sample_time(cpu);
1012 }
1013
1014 #define ICPU(model, policy) \
1015         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1016                         (unsigned long)&policy }
1017
1018 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1019         ICPU(0x2a, core_params),
1020         ICPU(0x2d, core_params),
1021         ICPU(0x37, silvermont_params),
1022         ICPU(0x3a, core_params),
1023         ICPU(0x3c, core_params),
1024         ICPU(0x3d, core_params),
1025         ICPU(0x3e, core_params),
1026         ICPU(0x3f, core_params),
1027         ICPU(0x45, core_params),
1028         ICPU(0x46, core_params),
1029         ICPU(0x47, core_params),
1030         ICPU(0x4c, airmont_params),
1031         ICPU(0x4e, core_params),
1032         ICPU(0x4f, core_params),
1033         ICPU(0x5e, core_params),
1034         ICPU(0x56, core_params),
1035         ICPU(0x57, knl_params),
1036         {}
1037 };
1038 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1039
1040 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1041         ICPU(0x56, core_params),
1042         {}
1043 };
1044
1045 static int intel_pstate_init_cpu(unsigned int cpunum)
1046 {
1047         struct cpudata *cpu;
1048
1049         if (!all_cpu_data[cpunum])
1050                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1051                                                GFP_KERNEL);
1052         if (!all_cpu_data[cpunum])
1053                 return -ENOMEM;
1054
1055         cpu = all_cpu_data[cpunum];
1056
1057         cpu->cpu = cpunum;
1058
1059         if (hwp_active)
1060                 intel_pstate_hwp_enable(cpu);
1061
1062         intel_pstate_get_cpu_pstates(cpu);
1063
1064         init_timer_deferrable(&cpu->timer);
1065         cpu->timer.data = (unsigned long)cpu;
1066         cpu->timer.expires = jiffies + HZ/100;
1067
1068         if (!hwp_active)
1069                 cpu->timer.function = intel_pstate_timer_func;
1070         else
1071                 cpu->timer.function = intel_hwp_timer_func;
1072
1073         intel_pstate_busy_pid_reset(cpu);
1074         intel_pstate_sample(cpu);
1075
1076         add_timer_on(&cpu->timer, cpunum);
1077
1078         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1079
1080         return 0;
1081 }
1082
1083 static unsigned int intel_pstate_get(unsigned int cpu_num)
1084 {
1085         struct sample *sample;
1086         struct cpudata *cpu;
1087
1088         cpu = all_cpu_data[cpu_num];
1089         if (!cpu)
1090                 return 0;
1091         sample = &cpu->sample;
1092         return sample->freq;
1093 }
1094
1095 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1096 {
1097         if (!policy->cpuinfo.max_freq)
1098                 return -ENODEV;
1099
1100         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1101             policy->max >= policy->cpuinfo.max_freq) {
1102                 pr_debug("intel_pstate: set performance\n");
1103                 limits = &performance_limits;
1104                 if (hwp_active)
1105                         intel_pstate_hwp_set();
1106                 return 0;
1107         }
1108
1109         pr_debug("intel_pstate: set powersave\n");
1110         limits = &powersave_limits;
1111         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1112         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1113         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1114                                               policy->cpuinfo.max_freq);
1115         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1116
1117         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1118         limits->min_perf_pct = max(limits->min_policy_pct,
1119                                    limits->min_sysfs_pct);
1120         limits->min_perf_pct = min(limits->max_policy_pct,
1121                                    limits->min_perf_pct);
1122         limits->max_perf_pct = min(limits->max_policy_pct,
1123                                    limits->max_sysfs_pct);
1124         limits->max_perf_pct = max(limits->min_policy_pct,
1125                                    limits->max_perf_pct);
1126         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1127
1128         /* Make sure min_perf_pct <= max_perf_pct */
1129         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1130
1131         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1132                                   int_tofp(100));
1133         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1134                                   int_tofp(100));
1135
1136         if (hwp_active)
1137                 intel_pstate_hwp_set();
1138
1139         return 0;
1140 }
1141
1142 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1143 {
1144         cpufreq_verify_within_cpu_limits(policy);
1145
1146         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1147             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1148                 return -EINVAL;
1149
1150         return 0;
1151 }
1152
1153 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1154 {
1155         int cpu_num = policy->cpu;
1156         struct cpudata *cpu = all_cpu_data[cpu_num];
1157
1158         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1159
1160         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1161         if (hwp_active)
1162                 return;
1163
1164         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1165 }
1166
1167 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1168 {
1169         struct cpudata *cpu;
1170         int rc;
1171
1172         rc = intel_pstate_init_cpu(policy->cpu);
1173         if (rc)
1174                 return rc;
1175
1176         cpu = all_cpu_data[policy->cpu];
1177
1178         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1179                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1180         else
1181                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1182
1183         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1184         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1185
1186         /* cpuinfo and default policy values */
1187         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1188         policy->cpuinfo.max_freq =
1189                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1190         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1191         cpumask_set_cpu(policy->cpu, policy->cpus);
1192
1193         return 0;
1194 }
1195
1196 static struct cpufreq_driver intel_pstate_driver = {
1197         .flags          = CPUFREQ_CONST_LOOPS,
1198         .verify         = intel_pstate_verify_policy,
1199         .setpolicy      = intel_pstate_set_policy,
1200         .get            = intel_pstate_get,
1201         .init           = intel_pstate_cpu_init,
1202         .stop_cpu       = intel_pstate_stop_cpu,
1203         .name           = "intel_pstate",
1204 };
1205
1206 static int __initdata no_load;
1207 static int __initdata no_hwp;
1208 static int __initdata hwp_only;
1209 static unsigned int force_load;
1210
1211 static int intel_pstate_msrs_not_valid(void)
1212 {
1213         if (!pstate_funcs.get_max() ||
1214             !pstate_funcs.get_min() ||
1215             !pstate_funcs.get_turbo())
1216                 return -ENODEV;
1217
1218         return 0;
1219 }
1220
1221 static void copy_pid_params(struct pstate_adjust_policy *policy)
1222 {
1223         pid_params.sample_rate_ms = policy->sample_rate_ms;
1224         pid_params.p_gain_pct = policy->p_gain_pct;
1225         pid_params.i_gain_pct = policy->i_gain_pct;
1226         pid_params.d_gain_pct = policy->d_gain_pct;
1227         pid_params.deadband = policy->deadband;
1228         pid_params.setpoint = policy->setpoint;
1229 }
1230
1231 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1232 {
1233         pstate_funcs.get_max   = funcs->get_max;
1234         pstate_funcs.get_max_physical = funcs->get_max_physical;
1235         pstate_funcs.get_min   = funcs->get_min;
1236         pstate_funcs.get_turbo = funcs->get_turbo;
1237         pstate_funcs.get_scaling = funcs->get_scaling;
1238         pstate_funcs.set       = funcs->set;
1239         pstate_funcs.get_vid   = funcs->get_vid;
1240 }
1241
1242 #if IS_ENABLED(CONFIG_ACPI)
1243 #include <acpi/processor.h>
1244
1245 static bool intel_pstate_no_acpi_pss(void)
1246 {
1247         int i;
1248
1249         for_each_possible_cpu(i) {
1250                 acpi_status status;
1251                 union acpi_object *pss;
1252                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1253                 struct acpi_processor *pr = per_cpu(processors, i);
1254
1255                 if (!pr)
1256                         continue;
1257
1258                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1259                 if (ACPI_FAILURE(status))
1260                         continue;
1261
1262                 pss = buffer.pointer;
1263                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1264                         kfree(pss);
1265                         return false;
1266                 }
1267
1268                 kfree(pss);
1269         }
1270
1271         return true;
1272 }
1273
1274 static bool intel_pstate_has_acpi_ppc(void)
1275 {
1276         int i;
1277
1278         for_each_possible_cpu(i) {
1279                 struct acpi_processor *pr = per_cpu(processors, i);
1280
1281                 if (!pr)
1282                         continue;
1283                 if (acpi_has_method(pr->handle, "_PPC"))
1284                         return true;
1285         }
1286         return false;
1287 }
1288
1289 enum {
1290         PSS,
1291         PPC,
1292 };
1293
1294 struct hw_vendor_info {
1295         u16  valid;
1296         char oem_id[ACPI_OEM_ID_SIZE];
1297         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1298         int  oem_pwr_table;
1299 };
1300
1301 /* Hardware vendor-specific info that has its own power management modes */
1302 static struct hw_vendor_info vendor_info[] = {
1303         {1, "HP    ", "ProLiant", PSS},
1304         {1, "ORACLE", "X4-2    ", PPC},
1305         {1, "ORACLE", "X4-2L   ", PPC},
1306         {1, "ORACLE", "X4-2B   ", PPC},
1307         {1, "ORACLE", "X3-2    ", PPC},
1308         {1, "ORACLE", "X3-2L   ", PPC},
1309         {1, "ORACLE", "X3-2B   ", PPC},
1310         {1, "ORACLE", "X4470M2 ", PPC},
1311         {1, "ORACLE", "X4270M3 ", PPC},
1312         {1, "ORACLE", "X4270M2 ", PPC},
1313         {1, "ORACLE", "X4170M2 ", PPC},
1314         {1, "ORACLE", "X4170 M3", PPC},
1315         {1, "ORACLE", "X4275 M3", PPC},
1316         {1, "ORACLE", "X6-2    ", PPC},
1317         {1, "ORACLE", "Sudbury ", PPC},
1318         {0, "", ""},
1319 };
1320
1321 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1322 {
1323         struct acpi_table_header hdr;
1324         struct hw_vendor_info *v_info;
1325         const struct x86_cpu_id *id;
1326         u64 misc_pwr;
1327
1328         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1329         if (id) {
1330                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1331                 if ( misc_pwr & (1 << 8))
1332                         return true;
1333         }
1334
1335         if (acpi_disabled ||
1336             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1337                 return false;
1338
1339         for (v_info = vendor_info; v_info->valid; v_info++) {
1340                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1341                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1342                                                 ACPI_OEM_TABLE_ID_SIZE))
1343                         switch (v_info->oem_pwr_table) {
1344                         case PSS:
1345                                 return intel_pstate_no_acpi_pss();
1346                         case PPC:
1347                                 return intel_pstate_has_acpi_ppc() &&
1348                                         (!force_load);
1349                         }
1350         }
1351
1352         return false;
1353 }
1354 #else /* CONFIG_ACPI not enabled */
1355 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1356 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1357 #endif /* CONFIG_ACPI */
1358
1359 static int __init intel_pstate_init(void)
1360 {
1361         int cpu, rc = 0;
1362         const struct x86_cpu_id *id;
1363         struct cpu_defaults *cpu_def;
1364
1365         if (no_load)
1366                 return -ENODEV;
1367
1368         id = x86_match_cpu(intel_pstate_cpu_ids);
1369         if (!id)
1370                 return -ENODEV;
1371
1372         /*
1373          * The Intel pstate driver will be ignored if the platform
1374          * firmware has its own power management modes.
1375          */
1376         if (intel_pstate_platform_pwr_mgmt_exists())
1377                 return -ENODEV;
1378
1379         cpu_def = (struct cpu_defaults *)id->driver_data;
1380
1381         copy_pid_params(&cpu_def->pid_policy);
1382         copy_cpu_funcs(&cpu_def->funcs);
1383
1384         if (intel_pstate_msrs_not_valid())
1385                 return -ENODEV;
1386
1387         pr_info("Intel P-state driver initializing.\n");
1388
1389         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1390         if (!all_cpu_data)
1391                 return -ENOMEM;
1392
1393         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
1394                 pr_info("intel_pstate: HWP enabled\n");
1395                 hwp_active++;
1396         }
1397
1398         if (!hwp_active && hwp_only)
1399                 goto out;
1400
1401         rc = cpufreq_register_driver(&intel_pstate_driver);
1402         if (rc)
1403                 goto out;
1404
1405         intel_pstate_debug_expose_params();
1406         intel_pstate_sysfs_expose_params();
1407
1408         return rc;
1409 out:
1410         get_online_cpus();
1411         for_each_online_cpu(cpu) {
1412                 if (all_cpu_data[cpu]) {
1413                         del_timer_sync(&all_cpu_data[cpu]->timer);
1414                         kfree(all_cpu_data[cpu]);
1415                 }
1416         }
1417
1418         put_online_cpus();
1419         vfree(all_cpu_data);
1420         return -ENODEV;
1421 }
1422 device_initcall(intel_pstate_init);
1423
1424 static int __init intel_pstate_setup(char *str)
1425 {
1426         if (!str)
1427                 return -EINVAL;
1428
1429         if (!strcmp(str, "disable"))
1430                 no_load = 1;
1431         if (!strcmp(str, "no_hwp")) {
1432                 pr_info("intel_pstate: HWP disabled\n");
1433                 no_hwp = 1;
1434         }
1435         if (!strcmp(str, "force"))
1436                 force_load = 1;
1437         if (!strcmp(str, "hwp_only"))
1438                 hwp_only = 1;
1439         return 0;
1440 }
1441 early_param("intel_pstate", intel_pstate_setup);
1442
1443 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1444 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1445 MODULE_LICENSE("GPL");