Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35
36 #define BYT_RATIOS              0x66a
37 #define BYT_VIDS                0x66b
38 #define BYT_TURBO_RATIOS        0x66c
39 #define BYT_TURBO_VIDS          0x66d
40
41 #define FRAC_BITS 8
42 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
43 #define fp_toint(X) ((X) >> FRAC_BITS)
44
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(int32_t x, int32_t y)
52 {
53         return div_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58         int mask, ret;
59
60         ret = fp_toint(x);
61         mask = (1 << FRAC_BITS) - 1;
62         if (x & mask)
63                 ret += 1;
64         return ret;
65 }
66
67 struct sample {
68         int32_t core_pct_busy;
69         u64 aperf;
70         u64 mperf;
71         int freq;
72         ktime_t time;
73 };
74
75 struct pstate_data {
76         int     current_pstate;
77         int     min_pstate;
78         int     max_pstate;
79         int     scaling;
80         int     turbo_pstate;
81 };
82
83 struct vid_data {
84         int min;
85         int max;
86         int turbo;
87         int32_t ratio;
88 };
89
90 struct _pid {
91         int setpoint;
92         int32_t integral;
93         int32_t p_gain;
94         int32_t i_gain;
95         int32_t d_gain;
96         int deadband;
97         int32_t last_err;
98 };
99
100 struct cpudata {
101         int cpu;
102
103         struct timer_list timer;
104
105         struct pstate_data pstate;
106         struct vid_data vid;
107         struct _pid pid;
108
109         ktime_t last_sample_time;
110         u64     prev_aperf;
111         u64     prev_mperf;
112         struct sample sample;
113 };
114
115 static struct cpudata **all_cpu_data;
116 struct pstate_adjust_policy {
117         int sample_rate_ms;
118         int deadband;
119         int setpoint;
120         int p_gain_pct;
121         int d_gain_pct;
122         int i_gain_pct;
123 };
124
125 struct pstate_funcs {
126         int (*get_max)(void);
127         int (*get_min)(void);
128         int (*get_turbo)(void);
129         int (*get_scaling)(void);
130         void (*set)(struct cpudata*, int pstate);
131         void (*get_vid)(struct cpudata *);
132 };
133
134 struct cpu_defaults {
135         struct pstate_adjust_policy pid_policy;
136         struct pstate_funcs funcs;
137 };
138
139 static struct pstate_adjust_policy pid_params;
140 static struct pstate_funcs pstate_funcs;
141 static int hwp_active;
142
143 struct perf_limits {
144         int no_turbo;
145         int turbo_disabled;
146         int max_perf_pct;
147         int min_perf_pct;
148         int32_t max_perf;
149         int32_t min_perf;
150         int max_policy_pct;
151         int max_sysfs_pct;
152         int min_policy_pct;
153         int min_sysfs_pct;
154 };
155
156 static struct perf_limits limits = {
157         .no_turbo = 0,
158         .turbo_disabled = 0,
159         .max_perf_pct = 100,
160         .max_perf = int_tofp(1),
161         .min_perf_pct = 0,
162         .min_perf = 0,
163         .max_policy_pct = 100,
164         .max_sysfs_pct = 100,
165         .min_policy_pct = 0,
166         .min_sysfs_pct = 0,
167 };
168
169 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
170                              int deadband, int integral) {
171         pid->setpoint = setpoint;
172         pid->deadband  = deadband;
173         pid->integral  = int_tofp(integral);
174         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
175 }
176
177 static inline void pid_p_gain_set(struct _pid *pid, int percent)
178 {
179         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181
182 static inline void pid_i_gain_set(struct _pid *pid, int percent)
183 {
184         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186
187 static inline void pid_d_gain_set(struct _pid *pid, int percent)
188 {
189         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
190 }
191
192 static signed int pid_calc(struct _pid *pid, int32_t busy)
193 {
194         signed int result;
195         int32_t pterm, dterm, fp_error;
196         int32_t integral_limit;
197
198         fp_error = int_tofp(pid->setpoint) - busy;
199
200         if (abs(fp_error) <= int_tofp(pid->deadband))
201                 return 0;
202
203         pterm = mul_fp(pid->p_gain, fp_error);
204
205         pid->integral += fp_error;
206
207         /*
208          * We limit the integral here so that it will never
209          * get higher than 30.  This prevents it from becoming
210          * too large an input over long periods of time and allows
211          * it to get factored out sooner.
212          *
213          * The value of 30 was chosen through experimentation.
214          */
215         integral_limit = int_tofp(30);
216         if (pid->integral > integral_limit)
217                 pid->integral = integral_limit;
218         if (pid->integral < -integral_limit)
219                 pid->integral = -integral_limit;
220
221         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
222         pid->last_err = fp_error;
223
224         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
225         result = result + (1 << (FRAC_BITS-1));
226         return (signed int)fp_toint(result);
227 }
228
229 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
230 {
231         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
232         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
233         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
234
235         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
236 }
237
238 static inline void intel_pstate_reset_all_pid(void)
239 {
240         unsigned int cpu;
241
242         for_each_online_cpu(cpu) {
243                 if (all_cpu_data[cpu])
244                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
245         }
246 }
247
248 static inline void update_turbo_state(void)
249 {
250         u64 misc_en;
251         struct cpudata *cpu;
252
253         cpu = all_cpu_data[0];
254         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
255         limits.turbo_disabled =
256                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
257                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
258 }
259
260 #define PCT_TO_HWP(x) (x * 255 / 100)
261 static void intel_pstate_hwp_set(void)
262 {
263         int min, max, cpu;
264         u64 value, freq;
265
266         get_online_cpus();
267
268         for_each_online_cpu(cpu) {
269                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
270                 min = PCT_TO_HWP(limits.min_perf_pct);
271                 value &= ~HWP_MIN_PERF(~0L);
272                 value |= HWP_MIN_PERF(min);
273
274                 max = PCT_TO_HWP(limits.max_perf_pct);
275                 if (limits.no_turbo) {
276                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
277                         max = HWP_GUARANTEED_PERF(freq);
278                 }
279
280                 value &= ~HWP_MAX_PERF(~0L);
281                 value |= HWP_MAX_PERF(max);
282                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
283         }
284
285         put_online_cpus();
286 }
287
288 /************************** debugfs begin ************************/
289 static int pid_param_set(void *data, u64 val)
290 {
291         *(u32 *)data = val;
292         intel_pstate_reset_all_pid();
293         return 0;
294 }
295
296 static int pid_param_get(void *data, u64 *val)
297 {
298         *val = *(u32 *)data;
299         return 0;
300 }
301 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
302
303 struct pid_param {
304         char *name;
305         void *value;
306 };
307
308 static struct pid_param pid_files[] = {
309         {"sample_rate_ms", &pid_params.sample_rate_ms},
310         {"d_gain_pct", &pid_params.d_gain_pct},
311         {"i_gain_pct", &pid_params.i_gain_pct},
312         {"deadband", &pid_params.deadband},
313         {"setpoint", &pid_params.setpoint},
314         {"p_gain_pct", &pid_params.p_gain_pct},
315         {NULL, NULL}
316 };
317
318 static void __init intel_pstate_debug_expose_params(void)
319 {
320         struct dentry *debugfs_parent;
321         int i = 0;
322
323         if (hwp_active)
324                 return;
325         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
326         if (IS_ERR_OR_NULL(debugfs_parent))
327                 return;
328         while (pid_files[i].name) {
329                 debugfs_create_file(pid_files[i].name, 0660,
330                                     debugfs_parent, pid_files[i].value,
331                                     &fops_pid_param);
332                 i++;
333         }
334 }
335
336 /************************** debugfs end ************************/
337
338 /************************** sysfs begin ************************/
339 #define show_one(file_name, object)                                     \
340         static ssize_t show_##file_name                                 \
341         (struct kobject *kobj, struct attribute *attr, char *buf)       \
342         {                                                               \
343                 return sprintf(buf, "%u\n", limits.object);             \
344         }
345
346 static ssize_t show_turbo_pct(struct kobject *kobj,
347                                 struct attribute *attr, char *buf)
348 {
349         struct cpudata *cpu;
350         int total, no_turbo, turbo_pct;
351         uint32_t turbo_fp;
352
353         cpu = all_cpu_data[0];
354
355         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
356         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
357         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
358         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
359         return sprintf(buf, "%u\n", turbo_pct);
360 }
361
362 static ssize_t show_num_pstates(struct kobject *kobj,
363                                 struct attribute *attr, char *buf)
364 {
365         struct cpudata *cpu;
366         int total;
367
368         cpu = all_cpu_data[0];
369         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
370         return sprintf(buf, "%u\n", total);
371 }
372
373 static ssize_t show_no_turbo(struct kobject *kobj,
374                              struct attribute *attr, char *buf)
375 {
376         ssize_t ret;
377
378         update_turbo_state();
379         if (limits.turbo_disabled)
380                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
381         else
382                 ret = sprintf(buf, "%u\n", limits.no_turbo);
383
384         return ret;
385 }
386
387 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
388                               const char *buf, size_t count)
389 {
390         unsigned int input;
391         int ret;
392
393         ret = sscanf(buf, "%u", &input);
394         if (ret != 1)
395                 return -EINVAL;
396
397         update_turbo_state();
398         if (limits.turbo_disabled) {
399                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
400                 return -EPERM;
401         }
402
403         limits.no_turbo = clamp_t(int, input, 0, 1);
404
405         if (hwp_active)
406                 intel_pstate_hwp_set();
407
408         return count;
409 }
410
411 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
412                                   const char *buf, size_t count)
413 {
414         unsigned int input;
415         int ret;
416
417         ret = sscanf(buf, "%u", &input);
418         if (ret != 1)
419                 return -EINVAL;
420
421         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
422         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
423         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
424
425         if (hwp_active)
426                 intel_pstate_hwp_set();
427         return count;
428 }
429
430 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
431                                   const char *buf, size_t count)
432 {
433         unsigned int input;
434         int ret;
435
436         ret = sscanf(buf, "%u", &input);
437         if (ret != 1)
438                 return -EINVAL;
439
440         limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
441         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
442         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
443
444         if (hwp_active)
445                 intel_pstate_hwp_set();
446         return count;
447 }
448
449 show_one(max_perf_pct, max_perf_pct);
450 show_one(min_perf_pct, min_perf_pct);
451
452 define_one_global_rw(no_turbo);
453 define_one_global_rw(max_perf_pct);
454 define_one_global_rw(min_perf_pct);
455 define_one_global_ro(turbo_pct);
456 define_one_global_ro(num_pstates);
457
458 static struct attribute *intel_pstate_attributes[] = {
459         &no_turbo.attr,
460         &max_perf_pct.attr,
461         &min_perf_pct.attr,
462         &turbo_pct.attr,
463         &num_pstates.attr,
464         NULL
465 };
466
467 static struct attribute_group intel_pstate_attr_group = {
468         .attrs = intel_pstate_attributes,
469 };
470
471 static void __init intel_pstate_sysfs_expose_params(void)
472 {
473         struct kobject *intel_pstate_kobject;
474         int rc;
475
476         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
477                                                 &cpu_subsys.dev_root->kobj);
478         BUG_ON(!intel_pstate_kobject);
479         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
480         BUG_ON(rc);
481 }
482 /************************** sysfs end ************************/
483
484 static void intel_pstate_hwp_enable(void)
485 {
486         hwp_active++;
487         pr_info("intel_pstate HWP enabled\n");
488
489         wrmsrl( MSR_PM_ENABLE, 0x1);
490 }
491
492 static int byt_get_min_pstate(void)
493 {
494         u64 value;
495
496         rdmsrl(BYT_RATIOS, value);
497         return (value >> 8) & 0x7F;
498 }
499
500 static int byt_get_max_pstate(void)
501 {
502         u64 value;
503
504         rdmsrl(BYT_RATIOS, value);
505         return (value >> 16) & 0x7F;
506 }
507
508 static int byt_get_turbo_pstate(void)
509 {
510         u64 value;
511
512         rdmsrl(BYT_TURBO_RATIOS, value);
513         return value & 0x7F;
514 }
515
516 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
517 {
518         u64 val;
519         int32_t vid_fp;
520         u32 vid;
521
522         val = pstate << 8;
523         if (limits.no_turbo && !limits.turbo_disabled)
524                 val |= (u64)1 << 32;
525
526         vid_fp = cpudata->vid.min + mul_fp(
527                 int_tofp(pstate - cpudata->pstate.min_pstate),
528                 cpudata->vid.ratio);
529
530         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
531         vid = ceiling_fp(vid_fp);
532
533         if (pstate > cpudata->pstate.max_pstate)
534                 vid = cpudata->vid.turbo;
535
536         val |= vid;
537
538         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
539 }
540
541 #define BYT_BCLK_FREQS 5
542 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
543
544 static int byt_get_scaling(void)
545 {
546         u64 value;
547         int i;
548
549         rdmsrl(MSR_FSB_FREQ, value);
550         i = value & 0x3;
551
552         BUG_ON(i > BYT_BCLK_FREQS);
553
554         return byt_freq_table[i] * 100;
555 }
556
557 static void byt_get_vid(struct cpudata *cpudata)
558 {
559         u64 value;
560
561         rdmsrl(BYT_VIDS, value);
562         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
563         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
564         cpudata->vid.ratio = div_fp(
565                 cpudata->vid.max - cpudata->vid.min,
566                 int_tofp(cpudata->pstate.max_pstate -
567                         cpudata->pstate.min_pstate));
568
569         rdmsrl(BYT_TURBO_VIDS, value);
570         cpudata->vid.turbo = value & 0x7f;
571 }
572
573 static int core_get_min_pstate(void)
574 {
575         u64 value;
576
577         rdmsrl(MSR_PLATFORM_INFO, value);
578         return (value >> 40) & 0xFF;
579 }
580
581 static int core_get_max_pstate(void)
582 {
583         u64 value;
584
585         rdmsrl(MSR_PLATFORM_INFO, value);
586         return (value >> 8) & 0xFF;
587 }
588
589 static int core_get_turbo_pstate(void)
590 {
591         u64 value;
592         int nont, ret;
593
594         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
595         nont = core_get_max_pstate();
596         ret = (value) & 255;
597         if (ret <= nont)
598                 ret = nont;
599         return ret;
600 }
601
602 static inline int core_get_scaling(void)
603 {
604         return 100000;
605 }
606
607 static void core_set_pstate(struct cpudata *cpudata, int pstate)
608 {
609         u64 val;
610
611         val = pstate << 8;
612         if (limits.no_turbo && !limits.turbo_disabled)
613                 val |= (u64)1 << 32;
614
615         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
616 }
617
618 static int knl_get_turbo_pstate(void)
619 {
620         u64 value;
621         int nont, ret;
622
623         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
624         nont = core_get_max_pstate();
625         ret = (((value) >> 8) & 0xFF);
626         if (ret <= nont)
627                 ret = nont;
628         return ret;
629 }
630
631 static struct cpu_defaults core_params = {
632         .pid_policy = {
633                 .sample_rate_ms = 10,
634                 .deadband = 0,
635                 .setpoint = 97,
636                 .p_gain_pct = 20,
637                 .d_gain_pct = 0,
638                 .i_gain_pct = 0,
639         },
640         .funcs = {
641                 .get_max = core_get_max_pstate,
642                 .get_min = core_get_min_pstate,
643                 .get_turbo = core_get_turbo_pstate,
644                 .get_scaling = core_get_scaling,
645                 .set = core_set_pstate,
646         },
647 };
648
649 static struct cpu_defaults byt_params = {
650         .pid_policy = {
651                 .sample_rate_ms = 10,
652                 .deadband = 0,
653                 .setpoint = 60,
654                 .p_gain_pct = 14,
655                 .d_gain_pct = 0,
656                 .i_gain_pct = 4,
657         },
658         .funcs = {
659                 .get_max = byt_get_max_pstate,
660                 .get_min = byt_get_min_pstate,
661                 .get_turbo = byt_get_turbo_pstate,
662                 .set = byt_set_pstate,
663                 .get_scaling = byt_get_scaling,
664                 .get_vid = byt_get_vid,
665         },
666 };
667
668 static struct cpu_defaults knl_params = {
669         .pid_policy = {
670                 .sample_rate_ms = 10,
671                 .deadband = 0,
672                 .setpoint = 97,
673                 .p_gain_pct = 20,
674                 .d_gain_pct = 0,
675                 .i_gain_pct = 0,
676         },
677         .funcs = {
678                 .get_max = core_get_max_pstate,
679                 .get_min = core_get_min_pstate,
680                 .get_turbo = knl_get_turbo_pstate,
681                 .get_scaling = core_get_scaling,
682                 .set = core_set_pstate,
683         },
684 };
685
686 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
687 {
688         int max_perf = cpu->pstate.turbo_pstate;
689         int max_perf_adj;
690         int min_perf;
691
692         if (limits.no_turbo || limits.turbo_disabled)
693                 max_perf = cpu->pstate.max_pstate;
694
695         /*
696          * performance can be limited by user through sysfs, by cpufreq
697          * policy, or by cpu specific default values determined through
698          * experimentation.
699          */
700         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
701         *max = clamp_t(int, max_perf_adj,
702                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
703
704         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
705         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
706 }
707
708 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
709 {
710         int max_perf, min_perf;
711
712         update_turbo_state();
713
714         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
715
716         pstate = clamp_t(int, pstate, min_perf, max_perf);
717
718         if (pstate == cpu->pstate.current_pstate)
719                 return;
720
721         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
722
723         cpu->pstate.current_pstate = pstate;
724
725         pstate_funcs.set(cpu, pstate);
726 }
727
728 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
729 {
730         cpu->pstate.min_pstate = pstate_funcs.get_min();
731         cpu->pstate.max_pstate = pstate_funcs.get_max();
732         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
733         cpu->pstate.scaling = pstate_funcs.get_scaling();
734
735         if (pstate_funcs.get_vid)
736                 pstate_funcs.get_vid(cpu);
737         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
738 }
739
740 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
741 {
742         struct sample *sample = &cpu->sample;
743         int64_t core_pct;
744
745         core_pct = int_tofp(sample->aperf) * int_tofp(100);
746         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
747
748         sample->freq = fp_toint(
749                 mul_fp(int_tofp(
750                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
751                         core_pct));
752
753         sample->core_pct_busy = (int32_t)core_pct;
754 }
755
756 static inline void intel_pstate_sample(struct cpudata *cpu)
757 {
758         u64 aperf, mperf;
759         unsigned long flags;
760
761         local_irq_save(flags);
762         rdmsrl(MSR_IA32_APERF, aperf);
763         rdmsrl(MSR_IA32_MPERF, mperf);
764         local_irq_restore(flags);
765
766         cpu->last_sample_time = cpu->sample.time;
767         cpu->sample.time = ktime_get();
768         cpu->sample.aperf = aperf;
769         cpu->sample.mperf = mperf;
770         cpu->sample.aperf -= cpu->prev_aperf;
771         cpu->sample.mperf -= cpu->prev_mperf;
772
773         intel_pstate_calc_busy(cpu);
774
775         cpu->prev_aperf = aperf;
776         cpu->prev_mperf = mperf;
777 }
778
779 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
780 {
781         int delay;
782
783         delay = msecs_to_jiffies(50);
784         mod_timer_pinned(&cpu->timer, jiffies + delay);
785 }
786
787 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
788 {
789         int delay;
790
791         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
792         mod_timer_pinned(&cpu->timer, jiffies + delay);
793 }
794
795 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
796 {
797         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
798         u32 duration_us;
799         u32 sample_time;
800
801         /*
802          * core_busy is the ratio of actual performance to max
803          * max_pstate is the max non turbo pstate available
804          * current_pstate was the pstate that was requested during
805          *      the last sample period.
806          *
807          * We normalize core_busy, which was our actual percent
808          * performance to what we requested during the last sample
809          * period. The result will be a percentage of busy at a
810          * specified pstate.
811          */
812         core_busy = cpu->sample.core_pct_busy;
813         max_pstate = int_tofp(cpu->pstate.max_pstate);
814         current_pstate = int_tofp(cpu->pstate.current_pstate);
815         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
816
817         /*
818          * Since we have a deferred timer, it will not fire unless
819          * we are in C0.  So, determine if the actual elapsed time
820          * is significantly greater (3x) than our sample interval.  If it
821          * is, then we were idle for a long enough period of time
822          * to adjust our busyness.
823          */
824         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
825         duration_us = (u32) ktime_us_delta(cpu->sample.time,
826                                            cpu->last_sample_time);
827         if (duration_us > sample_time * 3) {
828                 sample_ratio = div_fp(int_tofp(sample_time),
829                                       int_tofp(duration_us));
830                 core_busy = mul_fp(core_busy, sample_ratio);
831         }
832
833         return core_busy;
834 }
835
836 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
837 {
838         int32_t busy_scaled;
839         struct _pid *pid;
840         signed int ctl;
841
842         pid = &cpu->pid;
843         busy_scaled = intel_pstate_get_scaled_busy(cpu);
844
845         ctl = pid_calc(pid, busy_scaled);
846
847         /* Negative values of ctl increase the pstate and vice versa */
848         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
849 }
850
851 static void intel_hwp_timer_func(unsigned long __data)
852 {
853         struct cpudata *cpu = (struct cpudata *) __data;
854
855         intel_pstate_sample(cpu);
856         intel_hwp_set_sample_time(cpu);
857 }
858
859 static void intel_pstate_timer_func(unsigned long __data)
860 {
861         struct cpudata *cpu = (struct cpudata *) __data;
862         struct sample *sample;
863
864         intel_pstate_sample(cpu);
865
866         sample = &cpu->sample;
867
868         intel_pstate_adjust_busy_pstate(cpu);
869
870         trace_pstate_sample(fp_toint(sample->core_pct_busy),
871                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
872                         cpu->pstate.current_pstate,
873                         sample->mperf,
874                         sample->aperf,
875                         sample->freq);
876
877         intel_pstate_set_sample_time(cpu);
878 }
879
880 #define ICPU(model, policy) \
881         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
882                         (unsigned long)&policy }
883
884 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
885         ICPU(0x2a, core_params),
886         ICPU(0x2d, core_params),
887         ICPU(0x37, byt_params),
888         ICPU(0x3a, core_params),
889         ICPU(0x3c, core_params),
890         ICPU(0x3d, core_params),
891         ICPU(0x3e, core_params),
892         ICPU(0x3f, core_params),
893         ICPU(0x45, core_params),
894         ICPU(0x46, core_params),
895         ICPU(0x47, core_params),
896         ICPU(0x4c, byt_params),
897         ICPU(0x4e, core_params),
898         ICPU(0x4f, core_params),
899         ICPU(0x56, core_params),
900         ICPU(0x57, knl_params),
901         {}
902 };
903 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
904
905 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
906         ICPU(0x56, core_params),
907         {}
908 };
909
910 static int intel_pstate_init_cpu(unsigned int cpunum)
911 {
912         struct cpudata *cpu;
913
914         if (!all_cpu_data[cpunum])
915                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
916                                                GFP_KERNEL);
917         if (!all_cpu_data[cpunum])
918                 return -ENOMEM;
919
920         cpu = all_cpu_data[cpunum];
921
922         cpu->cpu = cpunum;
923         intel_pstate_get_cpu_pstates(cpu);
924
925         init_timer_deferrable(&cpu->timer);
926         cpu->timer.data = (unsigned long)cpu;
927         cpu->timer.expires = jiffies + HZ/100;
928
929         if (!hwp_active)
930                 cpu->timer.function = intel_pstate_timer_func;
931         else
932                 cpu->timer.function = intel_hwp_timer_func;
933
934         intel_pstate_busy_pid_reset(cpu);
935         intel_pstate_sample(cpu);
936
937         add_timer_on(&cpu->timer, cpunum);
938
939         pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
940
941         return 0;
942 }
943
944 static unsigned int intel_pstate_get(unsigned int cpu_num)
945 {
946         struct sample *sample;
947         struct cpudata *cpu;
948
949         cpu = all_cpu_data[cpu_num];
950         if (!cpu)
951                 return 0;
952         sample = &cpu->sample;
953         return sample->freq;
954 }
955
956 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
957 {
958         if (!policy->cpuinfo.max_freq)
959                 return -ENODEV;
960
961         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
962             policy->max >= policy->cpuinfo.max_freq) {
963                 limits.min_policy_pct = 100;
964                 limits.min_perf_pct = 100;
965                 limits.min_perf = int_tofp(1);
966                 limits.max_policy_pct = 100;
967                 limits.max_perf_pct = 100;
968                 limits.max_perf = int_tofp(1);
969                 limits.no_turbo = 0;
970                 return 0;
971         }
972
973         limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
974         limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
975         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
976         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
977
978         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
979         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
980         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
981         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
982
983         if (hwp_active)
984                 intel_pstate_hwp_set();
985
986         return 0;
987 }
988
989 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
990 {
991         cpufreq_verify_within_cpu_limits(policy);
992
993         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
994             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
995                 return -EINVAL;
996
997         return 0;
998 }
999
1000 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1001 {
1002         int cpu_num = policy->cpu;
1003         struct cpudata *cpu = all_cpu_data[cpu_num];
1004
1005         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
1006
1007         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1008         if (hwp_active)
1009                 return;
1010
1011         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1012 }
1013
1014 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1015 {
1016         struct cpudata *cpu;
1017         int rc;
1018
1019         rc = intel_pstate_init_cpu(policy->cpu);
1020         if (rc)
1021                 return rc;
1022
1023         cpu = all_cpu_data[policy->cpu];
1024
1025         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1026                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1027         else
1028                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1029
1030         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1031         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1032
1033         /* cpuinfo and default policy values */
1034         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1035         policy->cpuinfo.max_freq =
1036                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1037         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1038         cpumask_set_cpu(policy->cpu, policy->cpus);
1039
1040         return 0;
1041 }
1042
1043 static struct cpufreq_driver intel_pstate_driver = {
1044         .flags          = CPUFREQ_CONST_LOOPS,
1045         .verify         = intel_pstate_verify_policy,
1046         .setpolicy      = intel_pstate_set_policy,
1047         .get            = intel_pstate_get,
1048         .init           = intel_pstate_cpu_init,
1049         .stop_cpu       = intel_pstate_stop_cpu,
1050         .name           = "intel_pstate",
1051 };
1052
1053 static int __initdata no_load;
1054 static int __initdata no_hwp;
1055 static int __initdata hwp_only;
1056 static unsigned int force_load;
1057
1058 static int intel_pstate_msrs_not_valid(void)
1059 {
1060         if (!pstate_funcs.get_max() ||
1061             !pstate_funcs.get_min() ||
1062             !pstate_funcs.get_turbo())
1063                 return -ENODEV;
1064
1065         return 0;
1066 }
1067
1068 static void copy_pid_params(struct pstate_adjust_policy *policy)
1069 {
1070         pid_params.sample_rate_ms = policy->sample_rate_ms;
1071         pid_params.p_gain_pct = policy->p_gain_pct;
1072         pid_params.i_gain_pct = policy->i_gain_pct;
1073         pid_params.d_gain_pct = policy->d_gain_pct;
1074         pid_params.deadband = policy->deadband;
1075         pid_params.setpoint = policy->setpoint;
1076 }
1077
1078 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1079 {
1080         pstate_funcs.get_max   = funcs->get_max;
1081         pstate_funcs.get_min   = funcs->get_min;
1082         pstate_funcs.get_turbo = funcs->get_turbo;
1083         pstate_funcs.get_scaling = funcs->get_scaling;
1084         pstate_funcs.set       = funcs->set;
1085         pstate_funcs.get_vid   = funcs->get_vid;
1086 }
1087
1088 #if IS_ENABLED(CONFIG_ACPI)
1089 #include <acpi/processor.h>
1090
1091 static bool intel_pstate_no_acpi_pss(void)
1092 {
1093         int i;
1094
1095         for_each_possible_cpu(i) {
1096                 acpi_status status;
1097                 union acpi_object *pss;
1098                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1099                 struct acpi_processor *pr = per_cpu(processors, i);
1100
1101                 if (!pr)
1102                         continue;
1103
1104                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1105                 if (ACPI_FAILURE(status))
1106                         continue;
1107
1108                 pss = buffer.pointer;
1109                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1110                         kfree(pss);
1111                         return false;
1112                 }
1113
1114                 kfree(pss);
1115         }
1116
1117         return true;
1118 }
1119
1120 static bool intel_pstate_has_acpi_ppc(void)
1121 {
1122         int i;
1123
1124         for_each_possible_cpu(i) {
1125                 struct acpi_processor *pr = per_cpu(processors, i);
1126
1127                 if (!pr)
1128                         continue;
1129                 if (acpi_has_method(pr->handle, "_PPC"))
1130                         return true;
1131         }
1132         return false;
1133 }
1134
1135 enum {
1136         PSS,
1137         PPC,
1138 };
1139
1140 struct hw_vendor_info {
1141         u16  valid;
1142         char oem_id[ACPI_OEM_ID_SIZE];
1143         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1144         int  oem_pwr_table;
1145 };
1146
1147 /* Hardware vendor-specific info that has its own power management modes */
1148 static struct hw_vendor_info vendor_info[] = {
1149         {1, "HP    ", "ProLiant", PSS},
1150         {1, "ORACLE", "X4-2    ", PPC},
1151         {1, "ORACLE", "X4-2L   ", PPC},
1152         {1, "ORACLE", "X4-2B   ", PPC},
1153         {1, "ORACLE", "X3-2    ", PPC},
1154         {1, "ORACLE", "X3-2L   ", PPC},
1155         {1, "ORACLE", "X3-2B   ", PPC},
1156         {1, "ORACLE", "X4470M2 ", PPC},
1157         {1, "ORACLE", "X4270M3 ", PPC},
1158         {1, "ORACLE", "X4270M2 ", PPC},
1159         {1, "ORACLE", "X4170M2 ", PPC},
1160         {0, "", ""},
1161 };
1162
1163 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1164 {
1165         struct acpi_table_header hdr;
1166         struct hw_vendor_info *v_info;
1167         const struct x86_cpu_id *id;
1168         u64 misc_pwr;
1169
1170         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1171         if (id) {
1172                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1173                 if ( misc_pwr & (1 << 8))
1174                         return true;
1175         }
1176
1177         if (acpi_disabled ||
1178             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1179                 return false;
1180
1181         for (v_info = vendor_info; v_info->valid; v_info++) {
1182                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1183                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1184                                                 ACPI_OEM_TABLE_ID_SIZE))
1185                         switch (v_info->oem_pwr_table) {
1186                         case PSS:
1187                                 return intel_pstate_no_acpi_pss();
1188                         case PPC:
1189                                 return intel_pstate_has_acpi_ppc() &&
1190                                         (!force_load);
1191                         }
1192         }
1193
1194         return false;
1195 }
1196 #else /* CONFIG_ACPI not enabled */
1197 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1198 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1199 #endif /* CONFIG_ACPI */
1200
1201 static int __init intel_pstate_init(void)
1202 {
1203         int cpu, rc = 0;
1204         const struct x86_cpu_id *id;
1205         struct cpu_defaults *cpu_def;
1206
1207         if (no_load)
1208                 return -ENODEV;
1209
1210         id = x86_match_cpu(intel_pstate_cpu_ids);
1211         if (!id)
1212                 return -ENODEV;
1213
1214         /*
1215          * The Intel pstate driver will be ignored if the platform
1216          * firmware has its own power management modes.
1217          */
1218         if (intel_pstate_platform_pwr_mgmt_exists())
1219                 return -ENODEV;
1220
1221         cpu_def = (struct cpu_defaults *)id->driver_data;
1222
1223         copy_pid_params(&cpu_def->pid_policy);
1224         copy_cpu_funcs(&cpu_def->funcs);
1225
1226         if (intel_pstate_msrs_not_valid())
1227                 return -ENODEV;
1228
1229         pr_info("Intel P-state driver initializing.\n");
1230
1231         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1232         if (!all_cpu_data)
1233                 return -ENOMEM;
1234
1235         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1236                 intel_pstate_hwp_enable();
1237
1238         if (!hwp_active && hwp_only)
1239                 goto out;
1240
1241         rc = cpufreq_register_driver(&intel_pstate_driver);
1242         if (rc)
1243                 goto out;
1244
1245         intel_pstate_debug_expose_params();
1246         intel_pstate_sysfs_expose_params();
1247
1248         return rc;
1249 out:
1250         get_online_cpus();
1251         for_each_online_cpu(cpu) {
1252                 if (all_cpu_data[cpu]) {
1253                         del_timer_sync(&all_cpu_data[cpu]->timer);
1254                         kfree(all_cpu_data[cpu]);
1255                 }
1256         }
1257
1258         put_online_cpus();
1259         vfree(all_cpu_data);
1260         return -ENODEV;
1261 }
1262 device_initcall(intel_pstate_init);
1263
1264 static int __init intel_pstate_setup(char *str)
1265 {
1266         if (!str)
1267                 return -EINVAL;
1268
1269         if (!strcmp(str, "disable"))
1270                 no_load = 1;
1271         if (!strcmp(str, "no_hwp"))
1272                 no_hwp = 1;
1273         if (!strcmp(str, "force"))
1274                 force_load = 1;
1275         if (!strcmp(str, "hwp_only"))
1276                 hwp_only = 1;
1277         return 0;
1278 }
1279 early_param("intel_pstate", intel_pstate_setup);
1280
1281 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1282 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1283 MODULE_LICENSE("GPL");