Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / cpufreq / ia64-acpi-cpufreq.c
1 /*
2  * This file provides the ACPI based P-state support. This
3  * module works with generic cpufreq infrastructure. Most of
4  * the code is based on i386 version
5  * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
6  *
7  * Copyright (C) 2005 Intel Corp
8  *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/cpufreq.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <asm/io.h>
19 #include <asm/uaccess.h>
20 #include <asm/pal.h>
21
22 #include <linux/acpi.h>
23 #include <acpi/processor.h>
24
25 MODULE_AUTHOR("Venkatesh Pallipadi");
26 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
27 MODULE_LICENSE("GPL");
28
29
30 struct cpufreq_acpi_io {
31         struct acpi_processor_performance       acpi_data;
32         struct cpufreq_frequency_table          *freq_table;
33         unsigned int                            resume;
34 };
35
36 static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
37
38 static struct cpufreq_driver acpi_cpufreq_driver;
39
40
41 static int
42 processor_set_pstate (
43         u32     value)
44 {
45         s64 retval;
46
47         pr_debug("processor_set_pstate\n");
48
49         retval = ia64_pal_set_pstate((u64)value);
50
51         if (retval) {
52                 pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
53                         value, retval);
54                 return -ENODEV;
55         }
56         return (int)retval;
57 }
58
59
60 static int
61 processor_get_pstate (
62         u32     *value)
63 {
64         u64     pstate_index = 0;
65         s64     retval;
66
67         pr_debug("processor_get_pstate\n");
68
69         retval = ia64_pal_get_pstate(&pstate_index,
70                                      PAL_GET_PSTATE_TYPE_INSTANT);
71         *value = (u32) pstate_index;
72
73         if (retval)
74                 pr_debug("Failed to get current freq with "
75                         "error 0x%lx, idx 0x%x\n", retval, *value);
76
77         return (int)retval;
78 }
79
80
81 /* To be used only after data->acpi_data is initialized */
82 static unsigned
83 extract_clock (
84         struct cpufreq_acpi_io *data,
85         unsigned value,
86         unsigned int cpu)
87 {
88         unsigned long i;
89
90         pr_debug("extract_clock\n");
91
92         for (i = 0; i < data->acpi_data.state_count; i++) {
93                 if (value == data->acpi_data.states[i].status)
94                         return data->acpi_data.states[i].core_frequency;
95         }
96         return data->acpi_data.states[i-1].core_frequency;
97 }
98
99
100 static unsigned int
101 processor_get_freq (
102         struct cpufreq_acpi_io  *data,
103         unsigned int            cpu)
104 {
105         int                     ret = 0;
106         u32                     value = 0;
107         cpumask_t               saved_mask;
108         unsigned long           clock_freq;
109
110         pr_debug("processor_get_freq\n");
111
112         saved_mask = current->cpus_allowed;
113         set_cpus_allowed_ptr(current, cpumask_of(cpu));
114         if (smp_processor_id() != cpu)
115                 goto migrate_end;
116
117         /* processor_get_pstate gets the instantaneous frequency */
118         ret = processor_get_pstate(&value);
119
120         if (ret) {
121                 set_cpus_allowed_ptr(current, &saved_mask);
122                 printk(KERN_WARNING "get performance failed with error %d\n",
123                        ret);
124                 ret = 0;
125                 goto migrate_end;
126         }
127         clock_freq = extract_clock(data, value, cpu);
128         ret = (clock_freq*1000);
129
130 migrate_end:
131         set_cpus_allowed_ptr(current, &saved_mask);
132         return ret;
133 }
134
135
136 static int
137 processor_set_freq (
138         struct cpufreq_acpi_io  *data,
139         struct cpufreq_policy   *policy,
140         int                     state)
141 {
142         int                     ret = 0;
143         u32                     value = 0;
144         cpumask_t               saved_mask;
145         int                     retval;
146
147         pr_debug("processor_set_freq\n");
148
149         saved_mask = current->cpus_allowed;
150         set_cpus_allowed_ptr(current, cpumask_of(policy->cpu));
151         if (smp_processor_id() != policy->cpu) {
152                 retval = -EAGAIN;
153                 goto migrate_end;
154         }
155
156         if (state == data->acpi_data.state) {
157                 if (unlikely(data->resume)) {
158                         pr_debug("Called after resume, resetting to P%d\n", state);
159                         data->resume = 0;
160                 } else {
161                         pr_debug("Already at target state (P%d)\n", state);
162                         retval = 0;
163                         goto migrate_end;
164                 }
165         }
166
167         pr_debug("Transitioning from P%d to P%d\n",
168                 data->acpi_data.state, state);
169
170         /*
171          * First we write the target state's 'control' value to the
172          * control_register.
173          */
174
175         value = (u32) data->acpi_data.states[state].control;
176
177         pr_debug("Transitioning to state: 0x%08x\n", value);
178
179         ret = processor_set_pstate(value);
180         if (ret) {
181                 printk(KERN_WARNING "Transition failed with error %d\n", ret);
182                 retval = -ENODEV;
183                 goto migrate_end;
184         }
185
186         data->acpi_data.state = state;
187
188         retval = 0;
189
190 migrate_end:
191         set_cpus_allowed_ptr(current, &saved_mask);
192         return (retval);
193 }
194
195
196 static unsigned int
197 acpi_cpufreq_get (
198         unsigned int            cpu)
199 {
200         struct cpufreq_acpi_io *data = acpi_io_data[cpu];
201
202         pr_debug("acpi_cpufreq_get\n");
203
204         return processor_get_freq(data, cpu);
205 }
206
207
208 static int
209 acpi_cpufreq_target (
210         struct cpufreq_policy   *policy,
211         unsigned int index)
212 {
213         return processor_set_freq(acpi_io_data[policy->cpu], policy, index);
214 }
215
216 static int
217 acpi_cpufreq_cpu_init (
218         struct cpufreq_policy   *policy)
219 {
220         unsigned int            i;
221         unsigned int            cpu = policy->cpu;
222         struct cpufreq_acpi_io  *data;
223         unsigned int            result = 0;
224
225         pr_debug("acpi_cpufreq_cpu_init\n");
226
227         data = kzalloc(sizeof(*data), GFP_KERNEL);
228         if (!data)
229                 return (-ENOMEM);
230
231         acpi_io_data[cpu] = data;
232
233         result = acpi_processor_register_performance(&data->acpi_data, cpu);
234
235         if (result)
236                 goto err_free;
237
238         /* capability check */
239         if (data->acpi_data.state_count <= 1) {
240                 pr_debug("No P-States\n");
241                 result = -ENODEV;
242                 goto err_unreg;
243         }
244
245         if ((data->acpi_data.control_register.space_id !=
246                                         ACPI_ADR_SPACE_FIXED_HARDWARE) ||
247             (data->acpi_data.status_register.space_id !=
248                                         ACPI_ADR_SPACE_FIXED_HARDWARE)) {
249                 pr_debug("Unsupported address space [%d, %d]\n",
250                         (u32) (data->acpi_data.control_register.space_id),
251                         (u32) (data->acpi_data.status_register.space_id));
252                 result = -ENODEV;
253                 goto err_unreg;
254         }
255
256         /* alloc freq_table */
257         data->freq_table = kzalloc(sizeof(*data->freq_table) *
258                                    (data->acpi_data.state_count + 1),
259                                    GFP_KERNEL);
260         if (!data->freq_table) {
261                 result = -ENOMEM;
262                 goto err_unreg;
263         }
264
265         /* detect transition latency */
266         policy->cpuinfo.transition_latency = 0;
267         for (i=0; i<data->acpi_data.state_count; i++) {
268                 if ((data->acpi_data.states[i].transition_latency * 1000) >
269                     policy->cpuinfo.transition_latency) {
270                         policy->cpuinfo.transition_latency =
271                             data->acpi_data.states[i].transition_latency * 1000;
272                 }
273         }
274
275         /* table init */
276         for (i = 0; i <= data->acpi_data.state_count; i++)
277         {
278                 if (i < data->acpi_data.state_count) {
279                         data->freq_table[i].frequency =
280                               data->acpi_data.states[i].core_frequency * 1000;
281                 } else {
282                         data->freq_table[i].frequency = CPUFREQ_TABLE_END;
283                 }
284         }
285
286         result = cpufreq_table_validate_and_show(policy, data->freq_table);
287         if (result) {
288                 goto err_freqfree;
289         }
290
291         /* notify BIOS that we exist */
292         acpi_processor_notify_smm(THIS_MODULE);
293
294         printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
295                "activated.\n", cpu);
296
297         for (i = 0; i < data->acpi_data.state_count; i++)
298                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
299                         (i == data->acpi_data.state?'*':' '), i,
300                         (u32) data->acpi_data.states[i].core_frequency,
301                         (u32) data->acpi_data.states[i].power,
302                         (u32) data->acpi_data.states[i].transition_latency,
303                         (u32) data->acpi_data.states[i].bus_master_latency,
304                         (u32) data->acpi_data.states[i].status,
305                         (u32) data->acpi_data.states[i].control);
306
307         /* the first call to ->target() should result in us actually
308          * writing something to the appropriate registers. */
309         data->resume = 1;
310
311         return (result);
312
313  err_freqfree:
314         kfree(data->freq_table);
315  err_unreg:
316         acpi_processor_unregister_performance(&data->acpi_data, cpu);
317  err_free:
318         kfree(data);
319         acpi_io_data[cpu] = NULL;
320
321         return (result);
322 }
323
324
325 static int
326 acpi_cpufreq_cpu_exit (
327         struct cpufreq_policy   *policy)
328 {
329         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
330
331         pr_debug("acpi_cpufreq_cpu_exit\n");
332
333         if (data) {
334                 acpi_io_data[policy->cpu] = NULL;
335                 acpi_processor_unregister_performance(&data->acpi_data,
336                                                       policy->cpu);
337                 kfree(data);
338         }
339
340         return (0);
341 }
342
343
344 static struct cpufreq_driver acpi_cpufreq_driver = {
345         .verify         = cpufreq_generic_frequency_table_verify,
346         .target_index   = acpi_cpufreq_target,
347         .get            = acpi_cpufreq_get,
348         .init           = acpi_cpufreq_cpu_init,
349         .exit           = acpi_cpufreq_cpu_exit,
350         .name           = "acpi-cpufreq",
351         .attr           = cpufreq_generic_attr,
352 };
353
354
355 static int __init
356 acpi_cpufreq_init (void)
357 {
358         pr_debug("acpi_cpufreq_init\n");
359
360         return cpufreq_register_driver(&acpi_cpufreq_driver);
361 }
362
363
364 static void __exit
365 acpi_cpufreq_exit (void)
366 {
367         pr_debug("acpi_cpufreq_exit\n");
368
369         cpufreq_unregister_driver(&acpi_cpufreq_driver);
370         return;
371 }
372
373
374 late_initcall(acpi_cpufreq_init);
375 module_exit(acpi_cpufreq_exit);
376