Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27         if (have_governor_per_policy())
28                 return dbs_data->cdata->attr_group_gov_pol;
29         else
30                 return dbs_data->cdata->attr_group_gov_sys;
31 }
32
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35         struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38         struct cpufreq_policy *policy;
39         unsigned int sampling_rate;
40         unsigned int max_load = 0;
41         unsigned int ignore_nice;
42         unsigned int j;
43
44         if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45                 struct od_cpu_dbs_info_s *od_dbs_info =
46                                 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48                 /*
49                  * Sometimes, the ondemand governor uses an additional
50                  * multiplier to give long delays. So apply this multiplier to
51                  * the 'sampling_rate', so as to keep the wake-up-from-idle
52                  * detection logic a bit conservative.
53                  */
54                 sampling_rate = od_tuners->sampling_rate;
55                 sampling_rate *= od_dbs_info->rate_mult;
56
57                 ignore_nice = od_tuners->ignore_nice_load;
58         } else {
59                 sampling_rate = cs_tuners->sampling_rate;
60                 ignore_nice = cs_tuners->ignore_nice_load;
61         }
62
63         policy = cdbs->cur_policy;
64
65         /* Get Absolute Load */
66         for_each_cpu(j, policy->cpus) {
67                 struct cpu_dbs_common_info *j_cdbs;
68                 u64 cur_wall_time, cur_idle_time;
69                 unsigned int idle_time, wall_time;
70                 unsigned int load;
71                 int io_busy = 0;
72
73                 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
74
75                 /*
76                  * For the purpose of ondemand, waiting for disk IO is
77                  * an indication that you're performance critical, and
78                  * not that the system is actually idle. So do not add
79                  * the iowait time to the cpu idle time.
80                  */
81                 if (dbs_data->cdata->governor == GOV_ONDEMAND)
82                         io_busy = od_tuners->io_is_busy;
83                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
84
85                 wall_time = (unsigned int)
86                         (cur_wall_time - j_cdbs->prev_cpu_wall);
87                 j_cdbs->prev_cpu_wall = cur_wall_time;
88
89                 idle_time = (unsigned int)
90                         (cur_idle_time - j_cdbs->prev_cpu_idle);
91                 j_cdbs->prev_cpu_idle = cur_idle_time;
92
93                 if (ignore_nice) {
94                         u64 cur_nice;
95                         unsigned long cur_nice_jiffies;
96
97                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
98                                          cdbs->prev_cpu_nice;
99                         /*
100                          * Assumption: nice time between sampling periods will
101                          * be less than 2^32 jiffies for 32 bit sys
102                          */
103                         cur_nice_jiffies = (unsigned long)
104                                         cputime64_to_jiffies64(cur_nice);
105
106                         cdbs->prev_cpu_nice =
107                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
108                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
109                 }
110
111                 if (unlikely(!wall_time || wall_time < idle_time))
112                         continue;
113
114                 /*
115                  * If the CPU had gone completely idle, and a task just woke up
116                  * on this CPU now, it would be unfair to calculate 'load' the
117                  * usual way for this elapsed time-window, because it will show
118                  * near-zero load, irrespective of how CPU intensive that task
119                  * actually is. This is undesirable for latency-sensitive bursty
120                  * workloads.
121                  *
122                  * To avoid this, we reuse the 'load' from the previous
123                  * time-window and give this task a chance to start with a
124                  * reasonably high CPU frequency. (However, we shouldn't over-do
125                  * this copy, lest we get stuck at a high load (high frequency)
126                  * for too long, even when the current system load has actually
127                  * dropped down. So we perform the copy only once, upon the
128                  * first wake-up from idle.)
129                  *
130                  * Detecting this situation is easy: the governor's deferrable
131                  * timer would not have fired during CPU-idle periods. Hence
132                  * an unusually large 'wall_time' (as compared to the sampling
133                  * rate) indicates this scenario.
134                  *
135                  * prev_load can be zero in two cases and we must recalculate it
136                  * for both cases:
137                  * - during long idle intervals
138                  * - explicitly set to zero
139                  */
140                 if (unlikely(wall_time > (2 * sampling_rate) &&
141                              j_cdbs->prev_load)) {
142                         load = j_cdbs->prev_load;
143
144                         /*
145                          * Perform a destructive copy, to ensure that we copy
146                          * the previous load only once, upon the first wake-up
147                          * from idle.
148                          */
149                         j_cdbs->prev_load = 0;
150                 } else {
151                         load = 100 * (wall_time - idle_time) / wall_time;
152                         j_cdbs->prev_load = load;
153                 }
154
155                 if (load > max_load)
156                         max_load = load;
157         }
158
159         dbs_data->cdata->gov_check_cpu(cpu, max_load);
160 }
161 EXPORT_SYMBOL_GPL(dbs_check_cpu);
162
163 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
164                 unsigned int delay)
165 {
166         struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
167
168         mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
169 }
170
171 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
172                 unsigned int delay, bool all_cpus)
173 {
174         int i;
175
176         mutex_lock(&cpufreq_governor_lock);
177         if (!policy->governor_enabled)
178                 goto out_unlock;
179
180         if (!all_cpus) {
181                 /*
182                  * Use raw_smp_processor_id() to avoid preemptible warnings.
183                  * We know that this is only called with all_cpus == false from
184                  * works that have been queued with *_work_on() functions and
185                  * those works are canceled during CPU_DOWN_PREPARE so they
186                  * can't possibly run on any other CPU.
187                  */
188                 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
189         } else {
190                 for_each_cpu(i, policy->cpus)
191                         __gov_queue_work(i, dbs_data, delay);
192         }
193
194 out_unlock:
195         mutex_unlock(&cpufreq_governor_lock);
196 }
197 EXPORT_SYMBOL_GPL(gov_queue_work);
198
199 static inline void gov_cancel_work(struct dbs_data *dbs_data,
200                 struct cpufreq_policy *policy)
201 {
202         struct cpu_dbs_common_info *cdbs;
203         int i;
204
205         for_each_cpu(i, policy->cpus) {
206                 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
207                 cancel_delayed_work_sync(&cdbs->work);
208         }
209 }
210
211 /* Will return if we need to evaluate cpu load again or not */
212 bool need_load_eval(struct cpu_dbs_common_info *cdbs,
213                 unsigned int sampling_rate)
214 {
215         if (policy_is_shared(cdbs->cur_policy)) {
216                 ktime_t time_now = ktime_get();
217                 s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
218
219                 /* Do nothing if we recently have sampled */
220                 if (delta_us < (s64)(sampling_rate / 2))
221                         return false;
222                 else
223                         cdbs->time_stamp = time_now;
224         }
225
226         return true;
227 }
228 EXPORT_SYMBOL_GPL(need_load_eval);
229
230 static void set_sampling_rate(struct dbs_data *dbs_data,
231                 unsigned int sampling_rate)
232 {
233         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
234                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
235                 cs_tuners->sampling_rate = sampling_rate;
236         } else {
237                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
238                 od_tuners->sampling_rate = sampling_rate;
239         }
240 }
241
242 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
243                 struct common_dbs_data *cdata, unsigned int event)
244 {
245         struct dbs_data *dbs_data;
246         struct od_cpu_dbs_info_s *od_dbs_info = NULL;
247         struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
248         struct od_ops *od_ops = NULL;
249         struct od_dbs_tuners *od_tuners = NULL;
250         struct cs_dbs_tuners *cs_tuners = NULL;
251         struct cpu_dbs_common_info *cpu_cdbs;
252         unsigned int sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
253         int io_busy = 0;
254         int rc;
255
256         if (have_governor_per_policy())
257                 dbs_data = policy->governor_data;
258         else
259                 dbs_data = cdata->gdbs_data;
260
261         WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));
262
263         switch (event) {
264         case CPUFREQ_GOV_POLICY_INIT:
265                 if (have_governor_per_policy()) {
266                         WARN_ON(dbs_data);
267                 } else if (dbs_data) {
268                         dbs_data->usage_count++;
269                         policy->governor_data = dbs_data;
270                         return 0;
271                 }
272
273                 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
274                 if (!dbs_data) {
275                         pr_err("%s: POLICY_INIT: kzalloc failed\n", __func__);
276                         return -ENOMEM;
277                 }
278
279                 dbs_data->cdata = cdata;
280                 dbs_data->usage_count = 1;
281                 rc = cdata->init(dbs_data);
282                 if (rc) {
283                         pr_err("%s: POLICY_INIT: init() failed\n", __func__);
284                         kfree(dbs_data);
285                         return rc;
286                 }
287
288                 if (!have_governor_per_policy())
289                         WARN_ON(cpufreq_get_global_kobject());
290
291                 rc = sysfs_create_group(get_governor_parent_kobj(policy),
292                                 get_sysfs_attr(dbs_data));
293                 if (rc) {
294                         cdata->exit(dbs_data);
295                         kfree(dbs_data);
296                         return rc;
297                 }
298
299                 policy->governor_data = dbs_data;
300
301                 /* policy latency is in ns. Convert it to us first */
302                 latency = policy->cpuinfo.transition_latency / 1000;
303                 if (latency == 0)
304                         latency = 1;
305
306                 /* Bring kernel and HW constraints together */
307                 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
308                                 MIN_LATENCY_MULTIPLIER * latency);
309                 set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
310                                         latency * LATENCY_MULTIPLIER));
311
312                 if ((cdata->governor == GOV_CONSERVATIVE) &&
313                                 (!policy->governor->initialized)) {
314                         struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
315
316                         cpufreq_register_notifier(cs_ops->notifier_block,
317                                         CPUFREQ_TRANSITION_NOTIFIER);
318                 }
319
320                 if (!have_governor_per_policy())
321                         cdata->gdbs_data = dbs_data;
322
323                 return 0;
324         case CPUFREQ_GOV_POLICY_EXIT:
325                 if (!--dbs_data->usage_count) {
326                         sysfs_remove_group(get_governor_parent_kobj(policy),
327                                         get_sysfs_attr(dbs_data));
328
329                         if (!have_governor_per_policy())
330                                 cpufreq_put_global_kobject();
331
332                         if ((dbs_data->cdata->governor == GOV_CONSERVATIVE) &&
333                                 (policy->governor->initialized == 1)) {
334                                 struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
335
336                                 cpufreq_unregister_notifier(cs_ops->notifier_block,
337                                                 CPUFREQ_TRANSITION_NOTIFIER);
338                         }
339
340                         cdata->exit(dbs_data);
341                         kfree(dbs_data);
342                         cdata->gdbs_data = NULL;
343                 }
344
345                 policy->governor_data = NULL;
346                 return 0;
347         }
348
349         cpu_cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
350
351         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
352                 cs_tuners = dbs_data->tuners;
353                 cs_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
354                 sampling_rate = cs_tuners->sampling_rate;
355                 ignore_nice = cs_tuners->ignore_nice_load;
356         } else {
357                 od_tuners = dbs_data->tuners;
358                 od_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
359                 sampling_rate = od_tuners->sampling_rate;
360                 ignore_nice = od_tuners->ignore_nice_load;
361                 od_ops = dbs_data->cdata->gov_ops;
362                 io_busy = od_tuners->io_is_busy;
363         }
364
365         switch (event) {
366         case CPUFREQ_GOV_START:
367                 if (!policy->cur)
368                         return -EINVAL;
369
370                 mutex_lock(&dbs_data->mutex);
371
372                 for_each_cpu(j, policy->cpus) {
373                         struct cpu_dbs_common_info *j_cdbs =
374                                 dbs_data->cdata->get_cpu_cdbs(j);
375                         unsigned int prev_load;
376
377                         j_cdbs->cpu = j;
378                         j_cdbs->cur_policy = policy;
379                         j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
380                                                &j_cdbs->prev_cpu_wall, io_busy);
381
382                         prev_load = (unsigned int)
383                                 (j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle);
384                         j_cdbs->prev_load = 100 * prev_load /
385                                         (unsigned int) j_cdbs->prev_cpu_wall;
386
387                         if (ignore_nice)
388                                 j_cdbs->prev_cpu_nice =
389                                         kcpustat_cpu(j).cpustat[CPUTIME_NICE];
390
391                         mutex_init(&j_cdbs->timer_mutex);
392                         INIT_DEFERRABLE_WORK(&j_cdbs->work,
393                                              dbs_data->cdata->gov_dbs_timer);
394                 }
395
396                 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
397                         cs_dbs_info->down_skip = 0;
398                         cs_dbs_info->enable = 1;
399                         cs_dbs_info->requested_freq = policy->cur;
400                 } else {
401                         od_dbs_info->rate_mult = 1;
402                         od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
403                         od_ops->powersave_bias_init_cpu(cpu);
404                 }
405
406                 mutex_unlock(&dbs_data->mutex);
407
408                 /* Initiate timer time stamp */
409                 cpu_cdbs->time_stamp = ktime_get();
410
411                 gov_queue_work(dbs_data, policy,
412                                 delay_for_sampling_rate(sampling_rate), true);
413                 break;
414
415         case CPUFREQ_GOV_STOP:
416                 if (dbs_data->cdata->governor == GOV_CONSERVATIVE)
417                         cs_dbs_info->enable = 0;
418
419                 gov_cancel_work(dbs_data, policy);
420
421                 mutex_lock(&dbs_data->mutex);
422                 mutex_destroy(&cpu_cdbs->timer_mutex);
423                 cpu_cdbs->cur_policy = NULL;
424
425                 mutex_unlock(&dbs_data->mutex);
426
427                 break;
428
429         case CPUFREQ_GOV_LIMITS:
430                 mutex_lock(&dbs_data->mutex);
431                 if (!cpu_cdbs->cur_policy) {
432                         mutex_unlock(&dbs_data->mutex);
433                         break;
434                 }
435                 mutex_lock(&cpu_cdbs->timer_mutex);
436                 if (policy->max < cpu_cdbs->cur_policy->cur)
437                         __cpufreq_driver_target(cpu_cdbs->cur_policy,
438                                         policy->max, CPUFREQ_RELATION_H);
439                 else if (policy->min > cpu_cdbs->cur_policy->cur)
440                         __cpufreq_driver_target(cpu_cdbs->cur_policy,
441                                         policy->min, CPUFREQ_RELATION_L);
442                 dbs_check_cpu(dbs_data, cpu);
443                 mutex_unlock(&cpu_cdbs->timer_mutex);
444                 mutex_unlock(&dbs_data->mutex);
445                 break;
446         }
447         return 0;
448 }
449 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);