Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / cpufreq / arm_big_little.c
1 /*
2  * ARM big.LITTLE Platforms CPUFreq support
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
6  *
7  * Copyright (C) 2013 Linaro.
8  * Viresh Kumar <viresh.kumar@linaro.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15  * kind, whether express or implied; without even the implied warranty
16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/clk.h>
23 #include <linux/cpu.h>
24 #include <linux/cpufreq.h>
25 #include <linux/cpumask.h>
26 #include <linux/export.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/of_platform.h>
30 #include <linux/pm_opp.h>
31 #include <linux/slab.h>
32 #include <linux/topology.h>
33 #include <linux/types.h>
34 #include <asm/bL_switcher.h>
35
36 #include "arm_big_little.h"
37
38 /* Currently we support only two clusters */
39 #define A15_CLUSTER     0
40 #define A7_CLUSTER      1
41 #define MAX_CLUSTERS    2
42
43 #ifdef CONFIG_BL_SWITCHER
44 static bool bL_switching_enabled;
45 #define is_bL_switching_enabled()       bL_switching_enabled
46 #define set_switching_enabled(x)        (bL_switching_enabled = (x))
47 #else
48 #define is_bL_switching_enabled()       false
49 #define set_switching_enabled(x)        do { } while (0)
50 #endif
51
52 #define ACTUAL_FREQ(cluster, freq)  ((cluster == A7_CLUSTER) ? freq << 1 : freq)
53 #define VIRT_FREQ(cluster, freq)    ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
54
55 static struct cpufreq_arm_bL_ops *arm_bL_ops;
56 static struct clk *clk[MAX_CLUSTERS];
57 static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
58 static atomic_t cluster_usage[MAX_CLUSTERS + 1];
59
60 static unsigned int clk_big_min;        /* (Big) clock frequencies */
61 static unsigned int clk_little_max;     /* Maximum clock frequency (Little) */
62
63 static DEFINE_PER_CPU(unsigned int, physical_cluster);
64 static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
65
66 static struct mutex cluster_lock[MAX_CLUSTERS];
67
68 static inline int raw_cpu_to_cluster(int cpu)
69 {
70         return topology_physical_package_id(cpu);
71 }
72
73 static inline int cpu_to_cluster(int cpu)
74 {
75         return is_bL_switching_enabled() ?
76                 MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
77 }
78
79 static unsigned int find_cluster_maxfreq(int cluster)
80 {
81         int j;
82         u32 max_freq = 0, cpu_freq;
83
84         for_each_online_cpu(j) {
85                 cpu_freq = per_cpu(cpu_last_req_freq, j);
86
87                 if ((cluster == per_cpu(physical_cluster, j)) &&
88                                 (max_freq < cpu_freq))
89                         max_freq = cpu_freq;
90         }
91
92         pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
93                         max_freq);
94
95         return max_freq;
96 }
97
98 static unsigned int clk_get_cpu_rate(unsigned int cpu)
99 {
100         u32 cur_cluster = per_cpu(physical_cluster, cpu);
101         u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
102
103         /* For switcher we use virtual A7 clock rates */
104         if (is_bL_switching_enabled())
105                 rate = VIRT_FREQ(cur_cluster, rate);
106
107         pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
108                         cur_cluster, rate);
109
110         return rate;
111 }
112
113 static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
114 {
115         if (is_bL_switching_enabled()) {
116                 pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
117                                         cpu));
118
119                 return per_cpu(cpu_last_req_freq, cpu);
120         } else {
121                 return clk_get_cpu_rate(cpu);
122         }
123 }
124
125 static unsigned int
126 bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
127 {
128         u32 new_rate, prev_rate;
129         int ret;
130         bool bLs = is_bL_switching_enabled();
131
132         mutex_lock(&cluster_lock[new_cluster]);
133
134         if (bLs) {
135                 prev_rate = per_cpu(cpu_last_req_freq, cpu);
136                 per_cpu(cpu_last_req_freq, cpu) = rate;
137                 per_cpu(physical_cluster, cpu) = new_cluster;
138
139                 new_rate = find_cluster_maxfreq(new_cluster);
140                 new_rate = ACTUAL_FREQ(new_cluster, new_rate);
141         } else {
142                 new_rate = rate;
143         }
144
145         pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
146                         __func__, cpu, old_cluster, new_cluster, new_rate);
147
148         ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
149         if (WARN_ON(ret)) {
150                 pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
151                                 new_cluster);
152                 if (bLs) {
153                         per_cpu(cpu_last_req_freq, cpu) = prev_rate;
154                         per_cpu(physical_cluster, cpu) = old_cluster;
155                 }
156
157                 mutex_unlock(&cluster_lock[new_cluster]);
158
159                 return ret;
160         }
161
162         mutex_unlock(&cluster_lock[new_cluster]);
163
164         /* Recalc freq for old cluster when switching clusters */
165         if (old_cluster != new_cluster) {
166                 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
167                                 __func__, cpu, old_cluster, new_cluster);
168
169                 /* Switch cluster */
170                 bL_switch_request(cpu, new_cluster);
171
172                 mutex_lock(&cluster_lock[old_cluster]);
173
174                 /* Set freq of old cluster if there are cpus left on it */
175                 new_rate = find_cluster_maxfreq(old_cluster);
176                 new_rate = ACTUAL_FREQ(old_cluster, new_rate);
177
178                 if (new_rate) {
179                         pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
180                                         __func__, old_cluster, new_rate);
181
182                         if (clk_set_rate(clk[old_cluster], new_rate * 1000))
183                                 pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
184                                                 __func__, ret, old_cluster);
185                 }
186                 mutex_unlock(&cluster_lock[old_cluster]);
187         }
188
189         return 0;
190 }
191
192 /* Set clock frequency */
193 static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
194                 unsigned int index)
195 {
196         u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
197         unsigned int freqs_new;
198
199         cur_cluster = cpu_to_cluster(cpu);
200         new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
201
202         freqs_new = freq_table[cur_cluster][index].frequency;
203
204         if (is_bL_switching_enabled()) {
205                 if ((actual_cluster == A15_CLUSTER) &&
206                                 (freqs_new < clk_big_min)) {
207                         new_cluster = A7_CLUSTER;
208                 } else if ((actual_cluster == A7_CLUSTER) &&
209                                 (freqs_new > clk_little_max)) {
210                         new_cluster = A15_CLUSTER;
211                 }
212         }
213
214         return bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
215 }
216
217 static inline u32 get_table_count(struct cpufreq_frequency_table *table)
218 {
219         int count;
220
221         for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
222                 ;
223
224         return count;
225 }
226
227 /* get the minimum frequency in the cpufreq_frequency_table */
228 static inline u32 get_table_min(struct cpufreq_frequency_table *table)
229 {
230         struct cpufreq_frequency_table *pos;
231         uint32_t min_freq = ~0;
232         cpufreq_for_each_entry(pos, table)
233                 if (pos->frequency < min_freq)
234                         min_freq = pos->frequency;
235         return min_freq;
236 }
237
238 /* get the maximum frequency in the cpufreq_frequency_table */
239 static inline u32 get_table_max(struct cpufreq_frequency_table *table)
240 {
241         struct cpufreq_frequency_table *pos;
242         uint32_t max_freq = 0;
243         cpufreq_for_each_entry(pos, table)
244                 if (pos->frequency > max_freq)
245                         max_freq = pos->frequency;
246         return max_freq;
247 }
248
249 static int merge_cluster_tables(void)
250 {
251         int i, j, k = 0, count = 1;
252         struct cpufreq_frequency_table *table;
253
254         for (i = 0; i < MAX_CLUSTERS; i++)
255                 count += get_table_count(freq_table[i]);
256
257         table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
258         if (!table)
259                 return -ENOMEM;
260
261         freq_table[MAX_CLUSTERS] = table;
262
263         /* Add in reverse order to get freqs in increasing order */
264         for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
265                 for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
266                                 j++) {
267                         table[k].frequency = VIRT_FREQ(i,
268                                         freq_table[i][j].frequency);
269                         pr_debug("%s: index: %d, freq: %d\n", __func__, k,
270                                         table[k].frequency);
271                         k++;
272                 }
273         }
274
275         table[k].driver_data = k;
276         table[k].frequency = CPUFREQ_TABLE_END;
277
278         pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
279
280         return 0;
281 }
282
283 static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
284 {
285         u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
286
287         if (!freq_table[cluster])
288                 return;
289
290         clk_put(clk[cluster]);
291         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
292         if (arm_bL_ops->free_opp_table)
293                 arm_bL_ops->free_opp_table(cpu_dev);
294         dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
295 }
296
297 static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
298 {
299         u32 cluster = cpu_to_cluster(cpu_dev->id);
300         int i;
301
302         if (atomic_dec_return(&cluster_usage[cluster]))
303                 return;
304
305         if (cluster < MAX_CLUSTERS)
306                 return _put_cluster_clk_and_freq_table(cpu_dev);
307
308         for_each_present_cpu(i) {
309                 struct device *cdev = get_cpu_device(i);
310                 if (!cdev) {
311                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
312                         return;
313                 }
314
315                 _put_cluster_clk_and_freq_table(cdev);
316         }
317
318         /* free virtual table */
319         kfree(freq_table[cluster]);
320 }
321
322 static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
323 {
324         u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
325         char name[14] = "cpu-cluster.";
326         int ret;
327
328         if (freq_table[cluster])
329                 return 0;
330
331         ret = arm_bL_ops->init_opp_table(cpu_dev);
332         if (ret) {
333                 dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
334                                 __func__, cpu_dev->id, ret);
335                 goto out;
336         }
337
338         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
339         if (ret) {
340                 dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
341                                 __func__, cpu_dev->id, ret);
342                 goto free_opp_table;
343         }
344
345         name[12] = cluster + '0';
346         clk[cluster] = clk_get(cpu_dev, name);
347         if (!IS_ERR(clk[cluster])) {
348                 dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
349                                 __func__, clk[cluster], freq_table[cluster],
350                                 cluster);
351                 return 0;
352         }
353
354         dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
355                         __func__, cpu_dev->id, cluster);
356         ret = PTR_ERR(clk[cluster]);
357         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
358
359 free_opp_table:
360         if (arm_bL_ops->free_opp_table)
361                 arm_bL_ops->free_opp_table(cpu_dev);
362 out:
363         dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
364                         cluster);
365         return ret;
366 }
367
368 static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
369 {
370         u32 cluster = cpu_to_cluster(cpu_dev->id);
371         int i, ret;
372
373         if (atomic_inc_return(&cluster_usage[cluster]) != 1)
374                 return 0;
375
376         if (cluster < MAX_CLUSTERS) {
377                 ret = _get_cluster_clk_and_freq_table(cpu_dev);
378                 if (ret)
379                         atomic_dec(&cluster_usage[cluster]);
380                 return ret;
381         }
382
383         /*
384          * Get data for all clusters and fill virtual cluster with a merge of
385          * both
386          */
387         for_each_present_cpu(i) {
388                 struct device *cdev = get_cpu_device(i);
389                 if (!cdev) {
390                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
391                         return -ENODEV;
392                 }
393
394                 ret = _get_cluster_clk_and_freq_table(cdev);
395                 if (ret)
396                         goto put_clusters;
397         }
398
399         ret = merge_cluster_tables();
400         if (ret)
401                 goto put_clusters;
402
403         /* Assuming 2 cluster, set clk_big_min and clk_little_max */
404         clk_big_min = get_table_min(freq_table[0]);
405         clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
406
407         pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
408                         __func__, cluster, clk_big_min, clk_little_max);
409
410         return 0;
411
412 put_clusters:
413         for_each_present_cpu(i) {
414                 struct device *cdev = get_cpu_device(i);
415                 if (!cdev) {
416                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
417                         return -ENODEV;
418                 }
419
420                 _put_cluster_clk_and_freq_table(cdev);
421         }
422
423         atomic_dec(&cluster_usage[cluster]);
424
425         return ret;
426 }
427
428 /* Per-CPU initialization */
429 static int bL_cpufreq_init(struct cpufreq_policy *policy)
430 {
431         u32 cur_cluster = cpu_to_cluster(policy->cpu);
432         struct device *cpu_dev;
433         int ret;
434
435         cpu_dev = get_cpu_device(policy->cpu);
436         if (!cpu_dev) {
437                 pr_err("%s: failed to get cpu%d device\n", __func__,
438                                 policy->cpu);
439                 return -ENODEV;
440         }
441
442         ret = get_cluster_clk_and_freq_table(cpu_dev);
443         if (ret)
444                 return ret;
445
446         ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
447         if (ret) {
448                 dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
449                                 policy->cpu, cur_cluster);
450                 put_cluster_clk_and_freq_table(cpu_dev);
451                 return ret;
452         }
453
454         if (cur_cluster < MAX_CLUSTERS) {
455                 int cpu;
456
457                 cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
458
459                 for_each_cpu(cpu, policy->cpus)
460                         per_cpu(physical_cluster, cpu) = cur_cluster;
461         } else {
462                 /* Assumption: during init, we are always running on A15 */
463                 per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
464         }
465
466         if (arm_bL_ops->get_transition_latency)
467                 policy->cpuinfo.transition_latency =
468                         arm_bL_ops->get_transition_latency(cpu_dev);
469         else
470                 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
471
472         if (is_bL_switching_enabled())
473                 per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
474
475         dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
476         return 0;
477 }
478
479 static int bL_cpufreq_exit(struct cpufreq_policy *policy)
480 {
481         struct device *cpu_dev;
482
483         cpu_dev = get_cpu_device(policy->cpu);
484         if (!cpu_dev) {
485                 pr_err("%s: failed to get cpu%d device\n", __func__,
486                                 policy->cpu);
487                 return -ENODEV;
488         }
489
490         put_cluster_clk_and_freq_table(cpu_dev);
491         dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
492
493         return 0;
494 }
495
496 static struct cpufreq_driver bL_cpufreq_driver = {
497         .name                   = "arm-big-little",
498         .flags                  = CPUFREQ_STICKY |
499                                         CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
500                                         CPUFREQ_NEED_INITIAL_FREQ_CHECK,
501         .verify                 = cpufreq_generic_frequency_table_verify,
502         .target_index           = bL_cpufreq_set_target,
503         .get                    = bL_cpufreq_get_rate,
504         .init                   = bL_cpufreq_init,
505         .exit                   = bL_cpufreq_exit,
506         .attr                   = cpufreq_generic_attr,
507 };
508
509 static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
510                                         unsigned long action, void *_arg)
511 {
512         pr_debug("%s: action: %ld\n", __func__, action);
513
514         switch (action) {
515         case BL_NOTIFY_PRE_ENABLE:
516         case BL_NOTIFY_PRE_DISABLE:
517                 cpufreq_unregister_driver(&bL_cpufreq_driver);
518                 break;
519
520         case BL_NOTIFY_POST_ENABLE:
521                 set_switching_enabled(true);
522                 cpufreq_register_driver(&bL_cpufreq_driver);
523                 break;
524
525         case BL_NOTIFY_POST_DISABLE:
526                 set_switching_enabled(false);
527                 cpufreq_register_driver(&bL_cpufreq_driver);
528                 break;
529
530         default:
531                 return NOTIFY_DONE;
532         }
533
534         return NOTIFY_OK;
535 }
536
537 static struct notifier_block bL_switcher_notifier = {
538         .notifier_call = bL_cpufreq_switcher_notifier,
539 };
540
541 int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
542 {
543         int ret, i;
544
545         if (arm_bL_ops) {
546                 pr_debug("%s: Already registered: %s, exiting\n", __func__,
547                                 arm_bL_ops->name);
548                 return -EBUSY;
549         }
550
551         if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
552                 pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
553                 return -ENODEV;
554         }
555
556         arm_bL_ops = ops;
557
558         ret = bL_switcher_get_enabled();
559         set_switching_enabled(ret);
560
561         for (i = 0; i < MAX_CLUSTERS; i++)
562                 mutex_init(&cluster_lock[i]);
563
564         ret = cpufreq_register_driver(&bL_cpufreq_driver);
565         if (ret) {
566                 pr_info("%s: Failed registering platform driver: %s, err: %d\n",
567                                 __func__, ops->name, ret);
568                 arm_bL_ops = NULL;
569         } else {
570                 ret = bL_switcher_register_notifier(&bL_switcher_notifier);
571                 if (ret) {
572                         cpufreq_unregister_driver(&bL_cpufreq_driver);
573                         arm_bL_ops = NULL;
574                 } else {
575                         pr_info("%s: Registered platform driver: %s\n",
576                                         __func__, ops->name);
577                 }
578         }
579
580         bL_switcher_put_enabled();
581         return ret;
582 }
583 EXPORT_SYMBOL_GPL(bL_cpufreq_register);
584
585 void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
586 {
587         if (arm_bL_ops != ops) {
588                 pr_err("%s: Registered with: %s, can't unregister, exiting\n",
589                                 __func__, arm_bL_ops->name);
590                 return;
591         }
592
593         bL_switcher_get_enabled();
594         bL_switcher_unregister_notifier(&bL_switcher_notifier);
595         cpufreq_unregister_driver(&bL_cpufreq_driver);
596         bL_switcher_put_enabled();
597         pr_info("%s: Un-registered platform driver: %s\n", __func__,
598                         arm_bL_ops->name);
599         arm_bL_ops = NULL;
600 }
601 EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);
602
603 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
604 MODULE_DESCRIPTION("Generic ARM big LITTLE cpufreq driver");
605 MODULE_LICENSE("GPL v2");