These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / clk / ti / fapll.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License as
4  * published by the Free Software Foundation version 2.
5  *
6  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7  * kind, whether express or implied; without even the implied warranty
8  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  * GNU General Public License for more details.
10  */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/math64.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/clk/ti.h>
20
21 /* FAPLL Control Register PLL_CTRL */
22 #define FAPLL_MAIN_MULT_N_SHIFT 16
23 #define FAPLL_MAIN_DIV_P_SHIFT  8
24 #define FAPLL_MAIN_LOCK         BIT(7)
25 #define FAPLL_MAIN_PLLEN        BIT(3)
26 #define FAPLL_MAIN_BP           BIT(2)
27 #define FAPLL_MAIN_LOC_CTL      BIT(0)
28
29 #define FAPLL_MAIN_MAX_MULT_N   0xffff
30 #define FAPLL_MAIN_MAX_DIV_P    0xff
31 #define FAPLL_MAIN_CLEAR_MASK   \
32         ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
33          (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
34          FAPLL_MAIN_LOC_CTL)
35
36 /* FAPLL powerdown register PWD */
37 #define FAPLL_PWD_OFFSET        4
38
39 #define MAX_FAPLL_OUTPUTS       7
40 #define FAPLL_MAX_RETRIES       1000
41
42 #define to_fapll(_hw)           container_of(_hw, struct fapll_data, hw)
43 #define to_synth(_hw)           container_of(_hw, struct fapll_synth, hw)
44
45 /* The bypass bit is inverted on the ddr_pll.. */
46 #define fapll_is_ddr_pll(va)    (((u32)(va) & 0xffff) == 0x0440)
47
48 /*
49  * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
50  * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
51  */
52 #define is_ddr_pll_clk1(va)     (((u32)(va) & 0xffff) == 0x044c)
53 #define is_audio_pll_clk1(va)   (((u32)(va) & 0xffff) == 0x04a8)
54
55 /* Synthesizer divider register */
56 #define SYNTH_LDMDIV1           BIT(8)
57
58 /* Synthesizer frequency register */
59 #define SYNTH_LDFREQ            BIT(31)
60
61 #define SYNTH_PHASE_K           8
62 #define SYNTH_MAX_INT_DIV       0xf
63 #define SYNTH_MAX_DIV_M         0xff
64
65 struct fapll_data {
66         struct clk_hw hw;
67         void __iomem *base;
68         const char *name;
69         struct clk *clk_ref;
70         struct clk *clk_bypass;
71         struct clk_onecell_data outputs;
72         bool bypass_bit_inverted;
73 };
74
75 struct fapll_synth {
76         struct clk_hw hw;
77         struct fapll_data *fd;
78         int index;
79         void __iomem *freq;
80         void __iomem *div;
81         const char *name;
82         struct clk *clk_pll;
83 };
84
85 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
86 {
87         u32 v = readl_relaxed(fd->base);
88
89         if (fd->bypass_bit_inverted)
90                 return !(v & FAPLL_MAIN_BP);
91         else
92                 return !!(v & FAPLL_MAIN_BP);
93 }
94
95 static void ti_fapll_set_bypass(struct fapll_data *fd)
96 {
97         u32 v = readl_relaxed(fd->base);
98
99         if (fd->bypass_bit_inverted)
100                 v &= ~FAPLL_MAIN_BP;
101         else
102                 v |= FAPLL_MAIN_BP;
103         writel_relaxed(v, fd->base);
104 }
105
106 static void ti_fapll_clear_bypass(struct fapll_data *fd)
107 {
108         u32 v = readl_relaxed(fd->base);
109
110         if (fd->bypass_bit_inverted)
111                 v |= FAPLL_MAIN_BP;
112         else
113                 v &= ~FAPLL_MAIN_BP;
114         writel_relaxed(v, fd->base);
115 }
116
117 static int ti_fapll_wait_lock(struct fapll_data *fd)
118 {
119         int retries = FAPLL_MAX_RETRIES;
120         u32 v;
121
122         while ((v = readl_relaxed(fd->base))) {
123                 if (v & FAPLL_MAIN_LOCK)
124                         return 0;
125
126                 if (retries-- <= 0)
127                         break;
128
129                 udelay(1);
130         }
131
132         pr_err("%s failed to lock\n", fd->name);
133
134         return -ETIMEDOUT;
135 }
136
137 static int ti_fapll_enable(struct clk_hw *hw)
138 {
139         struct fapll_data *fd = to_fapll(hw);
140         u32 v = readl_relaxed(fd->base);
141
142         v |= FAPLL_MAIN_PLLEN;
143         writel_relaxed(v, fd->base);
144         ti_fapll_wait_lock(fd);
145
146         return 0;
147 }
148
149 static void ti_fapll_disable(struct clk_hw *hw)
150 {
151         struct fapll_data *fd = to_fapll(hw);
152         u32 v = readl_relaxed(fd->base);
153
154         v &= ~FAPLL_MAIN_PLLEN;
155         writel_relaxed(v, fd->base);
156 }
157
158 static int ti_fapll_is_enabled(struct clk_hw *hw)
159 {
160         struct fapll_data *fd = to_fapll(hw);
161         u32 v = readl_relaxed(fd->base);
162
163         return v & FAPLL_MAIN_PLLEN;
164 }
165
166 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
167                                           unsigned long parent_rate)
168 {
169         struct fapll_data *fd = to_fapll(hw);
170         u32 fapll_n, fapll_p, v;
171         u64 rate;
172
173         if (ti_fapll_clock_is_bypass(fd))
174                 return parent_rate;
175
176         rate = parent_rate;
177
178         /* PLL pre-divider is P and multiplier is N */
179         v = readl_relaxed(fd->base);
180         fapll_p = (v >> 8) & 0xff;
181         if (fapll_p)
182                 do_div(rate, fapll_p);
183         fapll_n = v >> 16;
184         if (fapll_n)
185                 rate *= fapll_n;
186
187         return rate;
188 }
189
190 static u8 ti_fapll_get_parent(struct clk_hw *hw)
191 {
192         struct fapll_data *fd = to_fapll(hw);
193
194         if (ti_fapll_clock_is_bypass(fd))
195                 return 1;
196
197         return 0;
198 }
199
200 static int ti_fapll_set_div_mult(unsigned long rate,
201                                  unsigned long parent_rate,
202                                  u32 *pre_div_p, u32 *mult_n)
203 {
204         /*
205          * So far no luck getting decent clock with PLL divider,
206          * PLL does not seem to lock and the signal does not look
207          * right. It seems the divider can only be used together
208          * with the multiplier?
209          */
210         if (rate < parent_rate) {
211                 pr_warn("FAPLL main divider rates unsupported\n");
212                 return -EINVAL;
213         }
214
215         *mult_n = rate / parent_rate;
216         if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
217                 return -EINVAL;
218         *pre_div_p = 1;
219
220         return 0;
221 }
222
223 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
224                                 unsigned long *parent_rate)
225 {
226         u32 pre_div_p, mult_n;
227         int error;
228
229         if (!rate)
230                 return -EINVAL;
231
232         error = ti_fapll_set_div_mult(rate, *parent_rate,
233                                       &pre_div_p, &mult_n);
234         if (error)
235                 return error;
236
237         rate = *parent_rate / pre_div_p;
238         rate *= mult_n;
239
240         return rate;
241 }
242
243 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
244                              unsigned long parent_rate)
245 {
246         struct fapll_data *fd = to_fapll(hw);
247         u32 pre_div_p, mult_n, v;
248         int error;
249
250         if (!rate)
251                 return -EINVAL;
252
253         error = ti_fapll_set_div_mult(rate, parent_rate,
254                                       &pre_div_p, &mult_n);
255         if (error)
256                 return error;
257
258         ti_fapll_set_bypass(fd);
259         v = readl_relaxed(fd->base);
260         v &= ~FAPLL_MAIN_CLEAR_MASK;
261         v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
262         v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
263         writel_relaxed(v, fd->base);
264         if (ti_fapll_is_enabled(hw))
265                 ti_fapll_wait_lock(fd);
266         ti_fapll_clear_bypass(fd);
267
268         return 0;
269 }
270
271 static struct clk_ops ti_fapll_ops = {
272         .enable = ti_fapll_enable,
273         .disable = ti_fapll_disable,
274         .is_enabled = ti_fapll_is_enabled,
275         .recalc_rate = ti_fapll_recalc_rate,
276         .get_parent = ti_fapll_get_parent,
277         .round_rate = ti_fapll_round_rate,
278         .set_rate = ti_fapll_set_rate,
279 };
280
281 static int ti_fapll_synth_enable(struct clk_hw *hw)
282 {
283         struct fapll_synth *synth = to_synth(hw);
284         u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
285
286         v &= ~(1 << synth->index);
287         writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
288
289         return 0;
290 }
291
292 static void ti_fapll_synth_disable(struct clk_hw *hw)
293 {
294         struct fapll_synth *synth = to_synth(hw);
295         u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
296
297         v |= 1 << synth->index;
298         writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
299 }
300
301 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
302 {
303         struct fapll_synth *synth = to_synth(hw);
304         u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
305
306         return !(v & (1 << synth->index));
307 }
308
309 /*
310  * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
311  */
312 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
313                                                 unsigned long parent_rate)
314 {
315         struct fapll_synth *synth = to_synth(hw);
316         u32 synth_div_m;
317         u64 rate;
318
319         /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
320         if (!synth->div)
321                 return 32768;
322
323         /*
324          * PLL in bypass sets the synths in bypass mode too. The PLL rate
325          * can be also be set to 27MHz, so we can't use parent_rate to
326          * check for bypass mode.
327          */
328         if (ti_fapll_clock_is_bypass(synth->fd))
329                 return parent_rate;
330
331         rate = parent_rate;
332
333         /*
334          * Synth frequency integer and fractional divider.
335          * Note that the phase output K is 8, so the result needs
336          * to be multiplied by SYNTH_PHASE_K.
337          */
338         if (synth->freq) {
339                 u32 v, synth_int_div, synth_frac_div, synth_div_freq;
340
341                 v = readl_relaxed(synth->freq);
342                 synth_int_div = (v >> 24) & 0xf;
343                 synth_frac_div = v & 0xffffff;
344                 synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
345                 rate *= 10000000;
346                 do_div(rate, synth_div_freq);
347                 rate *= SYNTH_PHASE_K;
348         }
349
350         /* Synth post-divider M */
351         synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
352
353         return DIV_ROUND_UP_ULL(rate, synth_div_m);
354 }
355
356 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
357                                                   unsigned long parent_rate)
358 {
359         struct fapll_synth *synth = to_synth(hw);
360         unsigned long current_rate, frac_rate;
361         u32 post_div_m;
362
363         current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
364         post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
365         frac_rate = current_rate * post_div_m;
366
367         return frac_rate;
368 }
369
370 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
371                                         unsigned long rate,
372                                         unsigned long parent_rate)
373 {
374         u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
375
376         post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
377         post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
378         if (post_div_m > SYNTH_MAX_DIV_M)
379                 return -EINVAL;
380         if (!post_div_m)
381                 post_div_m = 1;
382
383         for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
384                 synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
385                                                  SYNTH_PHASE_K *
386                                                  10000000,
387                                                  rate * post_div_m);
388                 synth_frac_div = synth_int_div % 10000000;
389                 synth_int_div /= 10000000;
390
391                 if (synth_int_div <= SYNTH_MAX_INT_DIV)
392                         break;
393         }
394
395         if (synth_int_div > SYNTH_MAX_INT_DIV)
396                 return -EINVAL;
397
398         v = readl_relaxed(synth->freq);
399         v &= ~0x1fffffff;
400         v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
401         v |= (synth_frac_div & 0xffffff);
402         v |= SYNTH_LDFREQ;
403         writel_relaxed(v, synth->freq);
404
405         return post_div_m;
406 }
407
408 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
409                                       unsigned long *parent_rate)
410 {
411         struct fapll_synth *synth = to_synth(hw);
412         struct fapll_data *fd = synth->fd;
413         unsigned long r;
414
415         if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
416                 return -EINVAL;
417
418         /* Only post divider m available with no fractional divider? */
419         if (!synth->freq) {
420                 unsigned long frac_rate;
421                 u32 synth_post_div_m;
422
423                 frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
424                 synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
425                 r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
426                 goto out;
427         }
428
429         r = *parent_rate * SYNTH_PHASE_K;
430         if (rate > r)
431                 goto out;
432
433         r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
434         if (rate < r)
435                 goto out;
436
437         r = rate;
438 out:
439         return r;
440 }
441
442 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
443                                    unsigned long parent_rate)
444 {
445         struct fapll_synth *synth = to_synth(hw);
446         struct fapll_data *fd = synth->fd;
447         unsigned long frac_rate, post_rate = 0;
448         u32 post_div_m = 0, v;
449
450         if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
451                 return -EINVAL;
452
453         /* Produce the rate with just post divider M? */
454         frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
455         if (frac_rate < rate) {
456                 if (!synth->freq)
457                         return -EINVAL;
458         } else {
459                 post_div_m = DIV_ROUND_UP(frac_rate, rate);
460                 if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
461                         post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
462                 if (!synth->freq && !post_rate)
463                         return -EINVAL;
464         }
465
466         /* Need to recalculate the fractional divider? */
467         if ((post_rate != rate) && synth->freq)
468                 post_div_m = ti_fapll_synth_set_frac_rate(synth,
469                                                           rate,
470                                                           parent_rate);
471
472         v = readl_relaxed(synth->div);
473         v &= ~SYNTH_MAX_DIV_M;
474         v |= post_div_m;
475         v |= SYNTH_LDMDIV1;
476         writel_relaxed(v, synth->div);
477
478         return 0;
479 }
480
481 static struct clk_ops ti_fapll_synt_ops = {
482         .enable = ti_fapll_synth_enable,
483         .disable = ti_fapll_synth_disable,
484         .is_enabled = ti_fapll_synth_is_enabled,
485         .recalc_rate = ti_fapll_synth_recalc_rate,
486         .round_rate = ti_fapll_synth_round_rate,
487         .set_rate = ti_fapll_synth_set_rate,
488 };
489
490 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
491                                                 void __iomem *freq,
492                                                 void __iomem *div,
493                                                 int index,
494                                                 const char *name,
495                                                 const char *parent,
496                                                 struct clk *pll_clk)
497 {
498         struct clk_init_data *init;
499         struct fapll_synth *synth;
500
501         init = kzalloc(sizeof(*init), GFP_KERNEL);
502         if (!init)
503                 return ERR_PTR(-ENOMEM);
504
505         init->ops = &ti_fapll_synt_ops;
506         init->name = name;
507         init->parent_names = &parent;
508         init->num_parents = 1;
509
510         synth = kzalloc(sizeof(*synth), GFP_KERNEL);
511         if (!synth)
512                 goto free;
513
514         synth->fd = fd;
515         synth->index = index;
516         synth->freq = freq;
517         synth->div = div;
518         synth->name = name;
519         synth->hw.init = init;
520         synth->clk_pll = pll_clk;
521
522         return clk_register(NULL, &synth->hw);
523
524 free:
525         kfree(synth);
526         kfree(init);
527
528         return ERR_PTR(-ENOMEM);
529 }
530
531 static void __init ti_fapll_setup(struct device_node *node)
532 {
533         struct fapll_data *fd;
534         struct clk_init_data *init = NULL;
535         const char *parent_name[2];
536         struct clk *pll_clk;
537         int i;
538
539         fd = kzalloc(sizeof(*fd), GFP_KERNEL);
540         if (!fd)
541                 return;
542
543         fd->outputs.clks = kzalloc(sizeof(struct clk *) *
544                                    MAX_FAPLL_OUTPUTS + 1,
545                                    GFP_KERNEL);
546         if (!fd->outputs.clks)
547                 goto free;
548
549         init = kzalloc(sizeof(*init), GFP_KERNEL);
550         if (!init)
551                 goto free;
552
553         init->ops = &ti_fapll_ops;
554         init->name = node->name;
555
556         init->num_parents = of_clk_get_parent_count(node);
557         if (init->num_parents != 2) {
558                 pr_err("%s must have two parents\n", node->name);
559                 goto free;
560         }
561
562         of_clk_parent_fill(node, parent_name, 2);
563         init->parent_names = parent_name;
564
565         fd->clk_ref = of_clk_get(node, 0);
566         if (IS_ERR(fd->clk_ref)) {
567                 pr_err("%s could not get clk_ref\n", node->name);
568                 goto free;
569         }
570
571         fd->clk_bypass = of_clk_get(node, 1);
572         if (IS_ERR(fd->clk_bypass)) {
573                 pr_err("%s could not get clk_bypass\n", node->name);
574                 goto free;
575         }
576
577         fd->base = of_iomap(node, 0);
578         if (!fd->base) {
579                 pr_err("%s could not get IO base\n", node->name);
580                 goto free;
581         }
582
583         if (fapll_is_ddr_pll(fd->base))
584                 fd->bypass_bit_inverted = true;
585
586         fd->name = node->name;
587         fd->hw.init = init;
588
589         /* Register the parent PLL */
590         pll_clk = clk_register(NULL, &fd->hw);
591         if (IS_ERR(pll_clk))
592                 goto unmap;
593
594         fd->outputs.clks[0] = pll_clk;
595         fd->outputs.clk_num++;
596
597         /*
598          * Set up the child synthesizers starting at index 1 as the
599          * PLL output is at index 0. We need to check the clock-indices
600          * for numbering in case there are holes in the synth mapping,
601          * and then probe the synth register to see if it has a FREQ
602          * register available.
603          */
604         for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
605                 const char *output_name;
606                 void __iomem *freq, *div;
607                 struct clk *synth_clk;
608                 int output_instance;
609                 u32 v;
610
611                 if (of_property_read_string_index(node, "clock-output-names",
612                                                   i, &output_name))
613                         continue;
614
615                 if (of_property_read_u32_index(node, "clock-indices", i,
616                                                &output_instance))
617                         output_instance = i;
618
619                 freq = fd->base + (output_instance * 8);
620                 div = freq + 4;
621
622                 /* Check for hardwired audio_pll_clk1 */
623                 if (is_audio_pll_clk1(freq)) {
624                         freq = NULL;
625                         div = NULL;
626                 } else {
627                         /* Does the synthesizer have a FREQ register? */
628                         v = readl_relaxed(freq);
629                         if (!v)
630                                 freq = NULL;
631                 }
632                 synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
633                                                  output_name, node->name,
634                                                  pll_clk);
635                 if (IS_ERR(synth_clk))
636                         continue;
637
638                 fd->outputs.clks[output_instance] = synth_clk;
639                 fd->outputs.clk_num++;
640
641                 clk_register_clkdev(synth_clk, output_name, NULL);
642         }
643
644         /* Register the child synthesizers as the FAPLL outputs */
645         of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
646         /* Add clock alias for the outputs */
647
648         kfree(init);
649
650         return;
651
652 unmap:
653         iounmap(fd->base);
654 free:
655         if (fd->clk_bypass)
656                 clk_put(fd->clk_bypass);
657         if (fd->clk_ref)
658                 clk_put(fd->clk_ref);
659         kfree(fd->outputs.clks);
660         kfree(fd);
661         kfree(init);
662 }
663
664 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);