Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49
50 #define PFX "IPMI message handler: "
51
52 #define IPMI_DRIVER_VERSION "39.2"
53
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t          intf,
60                                struct ipmi_smi_msg *msg);
61
62 static int initialized;
63
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70
71 #define MAX_EVENTS_IN_QUEUE     25
72
73 /*
74  * Don't let a message sit in a queue forever, always time it with at lest
75  * the max message timer.  This is in milliseconds.
76  */
77 #define MAX_MSG_TIMEOUT         60000
78
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME       1000
81
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
84
85 /*
86  * Request events from the queue every second (this is the number of
87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88  * future, IPMI will add a way to know immediately if an event is in
89  * the queue and this silliness can go away.
90  */
91 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
92
93 /*
94  * The main "user" data structure.
95  */
96 struct ipmi_user {
97         struct list_head link;
98
99         /* Set to false when the user is destroyed. */
100         bool valid;
101
102         struct kref refcount;
103
104         /* The upper layer that handles receive messages. */
105         struct ipmi_user_hndl *handler;
106         void             *handler_data;
107
108         /* The interface this user is bound to. */
109         ipmi_smi_t intf;
110
111         /* Does this interface receive IPMI events? */
112         bool gets_events;
113 };
114
115 struct cmd_rcvr {
116         struct list_head link;
117
118         ipmi_user_t   user;
119         unsigned char netfn;
120         unsigned char cmd;
121         unsigned int  chans;
122
123         /*
124          * This is used to form a linked lised during mass deletion.
125          * Since this is in an RCU list, we cannot use the link above
126          * or change any data until the RCU period completes.  So we
127          * use this next variable during mass deletion so we can have
128          * a list and don't have to wait and restart the search on
129          * every individual deletion of a command.
130          */
131         struct cmd_rcvr *next;
132 };
133
134 struct seq_table {
135         unsigned int         inuse : 1;
136         unsigned int         broadcast : 1;
137
138         unsigned long        timeout;
139         unsigned long        orig_timeout;
140         unsigned int         retries_left;
141
142         /*
143          * To verify on an incoming send message response that this is
144          * the message that the response is for, we keep a sequence id
145          * and increment it every time we send a message.
146          */
147         long                 seqid;
148
149         /*
150          * This is held so we can properly respond to the message on a
151          * timeout, and it is used to hold the temporary data for
152          * retransmission, too.
153          */
154         struct ipmi_recv_msg *recv_msg;
155 };
156
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164         do {                                                            \
165                 seq = ((msgid >> 26) & 0x3f);                           \
166                 seqid = (msgid & 0x3fffff);                             \
167         } while (0)
168
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170
171 struct ipmi_channel {
172         unsigned char medium;
173         unsigned char protocol;
174
175         /*
176          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177          * but may be changed by the user.
178          */
179         unsigned char address;
180
181         /*
182          * My LUN.  This should generally stay the SMS LUN, but just in
183          * case...
184          */
185         unsigned char lun;
186 };
187
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190         char                   *name;
191         struct ipmi_proc_entry *next;
192 };
193 #endif
194
195 struct bmc_device {
196         struct platform_device pdev;
197         struct ipmi_device_id  id;
198         unsigned char          guid[16];
199         int                    guid_set;
200         char                   name[16];
201         struct kref            usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204
205 /*
206  * Various statistics for IPMI, these index stats[] in the ipmi_smi
207  * structure.
208  */
209 enum ipmi_stat_indexes {
210         /* Commands we got from the user that were invalid. */
211         IPMI_STAT_sent_invalid_commands = 0,
212
213         /* Commands we sent to the MC. */
214         IPMI_STAT_sent_local_commands,
215
216         /* Responses from the MC that were delivered to a user. */
217         IPMI_STAT_handled_local_responses,
218
219         /* Responses from the MC that were not delivered to a user. */
220         IPMI_STAT_unhandled_local_responses,
221
222         /* Commands we sent out to the IPMB bus. */
223         IPMI_STAT_sent_ipmb_commands,
224
225         /* Commands sent on the IPMB that had errors on the SEND CMD */
226         IPMI_STAT_sent_ipmb_command_errs,
227
228         /* Each retransmit increments this count. */
229         IPMI_STAT_retransmitted_ipmb_commands,
230
231         /*
232          * When a message times out (runs out of retransmits) this is
233          * incremented.
234          */
235         IPMI_STAT_timed_out_ipmb_commands,
236
237         /*
238          * This is like above, but for broadcasts.  Broadcasts are
239          * *not* included in the above count (they are expected to
240          * time out).
241          */
242         IPMI_STAT_timed_out_ipmb_broadcasts,
243
244         /* Responses I have sent to the IPMB bus. */
245         IPMI_STAT_sent_ipmb_responses,
246
247         /* The response was delivered to the user. */
248         IPMI_STAT_handled_ipmb_responses,
249
250         /* The response had invalid data in it. */
251         IPMI_STAT_invalid_ipmb_responses,
252
253         /* The response didn't have anyone waiting for it. */
254         IPMI_STAT_unhandled_ipmb_responses,
255
256         /* Commands we sent out to the IPMB bus. */
257         IPMI_STAT_sent_lan_commands,
258
259         /* Commands sent on the IPMB that had errors on the SEND CMD */
260         IPMI_STAT_sent_lan_command_errs,
261
262         /* Each retransmit increments this count. */
263         IPMI_STAT_retransmitted_lan_commands,
264
265         /*
266          * When a message times out (runs out of retransmits) this is
267          * incremented.
268          */
269         IPMI_STAT_timed_out_lan_commands,
270
271         /* Responses I have sent to the IPMB bus. */
272         IPMI_STAT_sent_lan_responses,
273
274         /* The response was delivered to the user. */
275         IPMI_STAT_handled_lan_responses,
276
277         /* The response had invalid data in it. */
278         IPMI_STAT_invalid_lan_responses,
279
280         /* The response didn't have anyone waiting for it. */
281         IPMI_STAT_unhandled_lan_responses,
282
283         /* The command was delivered to the user. */
284         IPMI_STAT_handled_commands,
285
286         /* The command had invalid data in it. */
287         IPMI_STAT_invalid_commands,
288
289         /* The command didn't have anyone waiting for it. */
290         IPMI_STAT_unhandled_commands,
291
292         /* Invalid data in an event. */
293         IPMI_STAT_invalid_events,
294
295         /* Events that were received with the proper format. */
296         IPMI_STAT_events,
297
298         /* Retransmissions on IPMB that failed. */
299         IPMI_STAT_dropped_rexmit_ipmb_commands,
300
301         /* Retransmissions on LAN that failed. */
302         IPMI_STAT_dropped_rexmit_lan_commands,
303
304         /* This *must* remain last, add new values above this. */
305         IPMI_NUM_STATS
306 };
307
308
309 #define IPMI_IPMB_NUM_SEQ       64
310 #define IPMI_MAX_CHANNELS       16
311 struct ipmi_smi {
312         /* What interface number are we? */
313         int intf_num;
314
315         struct kref refcount;
316
317         /* Set when the interface is being unregistered. */
318         bool in_shutdown;
319
320         /* Used for a list of interfaces. */
321         struct list_head link;
322
323         /*
324          * The list of upper layers that are using me.  seq_lock
325          * protects this.
326          */
327         struct list_head users;
328
329         /* Information to supply to users. */
330         unsigned char ipmi_version_major;
331         unsigned char ipmi_version_minor;
332
333         /* Used for wake ups at startup. */
334         wait_queue_head_t waitq;
335
336         struct bmc_device *bmc;
337         char *my_dev_name;
338
339         /*
340          * This is the lower-layer's sender routine.  Note that you
341          * must either be holding the ipmi_interfaces_mutex or be in
342          * an umpreemptible region to use this.  You must fetch the
343          * value into a local variable and make sure it is not NULL.
344          */
345         struct ipmi_smi_handlers *handlers;
346         void                     *send_info;
347
348 #ifdef CONFIG_PROC_FS
349         /* A list of proc entries for this interface. */
350         struct mutex           proc_entry_lock;
351         struct ipmi_proc_entry *proc_entries;
352 #endif
353
354         /* Driver-model device for the system interface. */
355         struct device          *si_dev;
356
357         /*
358          * A table of sequence numbers for this interface.  We use the
359          * sequence numbers for IPMB messages that go out of the
360          * interface to match them up with their responses.  A routine
361          * is called periodically to time the items in this list.
362          */
363         spinlock_t       seq_lock;
364         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365         int curr_seq;
366
367         /*
368          * Messages queued for delivery.  If delivery fails (out of memory
369          * for instance), They will stay in here to be processed later in a
370          * periodic timer interrupt.  The tasklet is for handling received
371          * messages directly from the handler.
372          */
373         spinlock_t       waiting_rcv_msgs_lock;
374         struct list_head waiting_rcv_msgs;
375         atomic_t         watchdog_pretimeouts_to_deliver;
376         struct tasklet_struct recv_tasklet;
377
378         spinlock_t             xmit_msgs_lock;
379         struct list_head       xmit_msgs;
380         struct ipmi_smi_msg    *curr_msg;
381         struct list_head       hp_xmit_msgs;
382
383         /*
384          * The list of command receivers that are registered for commands
385          * on this interface.
386          */
387         struct mutex     cmd_rcvrs_mutex;
388         struct list_head cmd_rcvrs;
389
390         /*
391          * Events that were queues because no one was there to receive
392          * them.
393          */
394         spinlock_t       events_lock; /* For dealing with event stuff. */
395         struct list_head waiting_events;
396         unsigned int     waiting_events_count; /* How many events in queue? */
397         char             delivering_events;
398         char             event_msg_printed;
399         atomic_t         event_waiters;
400         unsigned int     ticks_to_req_ev;
401         int              last_needs_timer;
402
403         /*
404          * The event receiver for my BMC, only really used at panic
405          * shutdown as a place to store this.
406          */
407         unsigned char event_receiver;
408         unsigned char event_receiver_lun;
409         unsigned char local_sel_device;
410         unsigned char local_event_generator;
411
412         /* For handling of maintenance mode. */
413         int maintenance_mode;
414         bool maintenance_mode_enable;
415         int auto_maintenance_timeout;
416         spinlock_t maintenance_mode_lock; /* Used in a timer... */
417
418         /*
419          * A cheap hack, if this is non-null and a message to an
420          * interface comes in with a NULL user, call this routine with
421          * it.  Note that the message will still be freed by the
422          * caller.  This only works on the system interface.
423          */
424         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425
426         /*
427          * When we are scanning the channels for an SMI, this will
428          * tell which channel we are scanning.
429          */
430         int curr_channel;
431
432         /* Channel information */
433         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434
435         /* Proc FS stuff. */
436         struct proc_dir_entry *proc_dir;
437         char                  proc_dir_name[10];
438
439         atomic_t stats[IPMI_NUM_STATS];
440
441         /*
442          * run_to_completion duplicate of smb_info, smi_info
443          * and ipmi_serial_info structures. Used to decrease numbers of
444          * parameters passed by "low" level IPMI code.
445          */
446         int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449
450 /**
451  * The driver model view of the IPMI messaging driver.
452  */
453 static struct platform_driver ipmidriver = {
454         .driver = {
455                 .name = "ipmi",
456                 .bus = &platform_bus_type
457         }
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463
464 /*
465  * List of watchers that want to know when smi's are added and deleted.
466  */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469
470 #define ipmi_inc_stat(intf, stat) \
471         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474
475 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476                                    "ACPI", "SMBIOS", "PCI",
477                                    "device-tree", "default" };
478
479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
480 {
481         if (src > SI_DEFAULT)
482                 src = 0; /* Invalid */
483         return addr_src_to_str[src];
484 }
485 EXPORT_SYMBOL(ipmi_addr_src_to_str);
486
487 static int is_lan_addr(struct ipmi_addr *addr)
488 {
489         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
490 }
491
492 static int is_ipmb_addr(struct ipmi_addr *addr)
493 {
494         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
495 }
496
497 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
498 {
499         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
500 }
501
502 static void free_recv_msg_list(struct list_head *q)
503 {
504         struct ipmi_recv_msg *msg, *msg2;
505
506         list_for_each_entry_safe(msg, msg2, q, link) {
507                 list_del(&msg->link);
508                 ipmi_free_recv_msg(msg);
509         }
510 }
511
512 static void free_smi_msg_list(struct list_head *q)
513 {
514         struct ipmi_smi_msg *msg, *msg2;
515
516         list_for_each_entry_safe(msg, msg2, q, link) {
517                 list_del(&msg->link);
518                 ipmi_free_smi_msg(msg);
519         }
520 }
521
522 static void clean_up_interface_data(ipmi_smi_t intf)
523 {
524         int              i;
525         struct cmd_rcvr  *rcvr, *rcvr2;
526         struct list_head list;
527
528         tasklet_kill(&intf->recv_tasklet);
529
530         free_smi_msg_list(&intf->waiting_rcv_msgs);
531         free_recv_msg_list(&intf->waiting_events);
532
533         /*
534          * Wholesale remove all the entries from the list in the
535          * interface and wait for RCU to know that none are in use.
536          */
537         mutex_lock(&intf->cmd_rcvrs_mutex);
538         INIT_LIST_HEAD(&list);
539         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
540         mutex_unlock(&intf->cmd_rcvrs_mutex);
541
542         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
543                 kfree(rcvr);
544
545         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
546                 if ((intf->seq_table[i].inuse)
547                                         && (intf->seq_table[i].recv_msg))
548                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
549         }
550 }
551
552 static void intf_free(struct kref *ref)
553 {
554         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
555
556         clean_up_interface_data(intf);
557         kfree(intf);
558 }
559
560 struct watcher_entry {
561         int              intf_num;
562         ipmi_smi_t       intf;
563         struct list_head link;
564 };
565
566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
567 {
568         ipmi_smi_t intf;
569         LIST_HEAD(to_deliver);
570         struct watcher_entry *e, *e2;
571
572         mutex_lock(&smi_watchers_mutex);
573
574         mutex_lock(&ipmi_interfaces_mutex);
575
576         /* Build a list of things to deliver. */
577         list_for_each_entry(intf, &ipmi_interfaces, link) {
578                 if (intf->intf_num == -1)
579                         continue;
580                 e = kmalloc(sizeof(*e), GFP_KERNEL);
581                 if (!e)
582                         goto out_err;
583                 kref_get(&intf->refcount);
584                 e->intf = intf;
585                 e->intf_num = intf->intf_num;
586                 list_add_tail(&e->link, &to_deliver);
587         }
588
589         /* We will succeed, so add it to the list. */
590         list_add(&watcher->link, &smi_watchers);
591
592         mutex_unlock(&ipmi_interfaces_mutex);
593
594         list_for_each_entry_safe(e, e2, &to_deliver, link) {
595                 list_del(&e->link);
596                 watcher->new_smi(e->intf_num, e->intf->si_dev);
597                 kref_put(&e->intf->refcount, intf_free);
598                 kfree(e);
599         }
600
601         mutex_unlock(&smi_watchers_mutex);
602
603         return 0;
604
605  out_err:
606         mutex_unlock(&ipmi_interfaces_mutex);
607         mutex_unlock(&smi_watchers_mutex);
608         list_for_each_entry_safe(e, e2, &to_deliver, link) {
609                 list_del(&e->link);
610                 kref_put(&e->intf->refcount, intf_free);
611                 kfree(e);
612         }
613         return -ENOMEM;
614 }
615 EXPORT_SYMBOL(ipmi_smi_watcher_register);
616
617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
618 {
619         mutex_lock(&smi_watchers_mutex);
620         list_del(&(watcher->link));
621         mutex_unlock(&smi_watchers_mutex);
622         return 0;
623 }
624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
625
626 /*
627  * Must be called with smi_watchers_mutex held.
628  */
629 static void
630 call_smi_watchers(int i, struct device *dev)
631 {
632         struct ipmi_smi_watcher *w;
633
634         list_for_each_entry(w, &smi_watchers, link) {
635                 if (try_module_get(w->owner)) {
636                         w->new_smi(i, dev);
637                         module_put(w->owner);
638                 }
639         }
640 }
641
642 static int
643 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
644 {
645         if (addr1->addr_type != addr2->addr_type)
646                 return 0;
647
648         if (addr1->channel != addr2->channel)
649                 return 0;
650
651         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
652                 struct ipmi_system_interface_addr *smi_addr1
653                     = (struct ipmi_system_interface_addr *) addr1;
654                 struct ipmi_system_interface_addr *smi_addr2
655                     = (struct ipmi_system_interface_addr *) addr2;
656                 return (smi_addr1->lun == smi_addr2->lun);
657         }
658
659         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
660                 struct ipmi_ipmb_addr *ipmb_addr1
661                     = (struct ipmi_ipmb_addr *) addr1;
662                 struct ipmi_ipmb_addr *ipmb_addr2
663                     = (struct ipmi_ipmb_addr *) addr2;
664
665                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
666                         && (ipmb_addr1->lun == ipmb_addr2->lun));
667         }
668
669         if (is_lan_addr(addr1)) {
670                 struct ipmi_lan_addr *lan_addr1
671                         = (struct ipmi_lan_addr *) addr1;
672                 struct ipmi_lan_addr *lan_addr2
673                     = (struct ipmi_lan_addr *) addr2;
674
675                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
676                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
677                         && (lan_addr1->session_handle
678                             == lan_addr2->session_handle)
679                         && (lan_addr1->lun == lan_addr2->lun));
680         }
681
682         return 1;
683 }
684
685 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
686 {
687         if (len < sizeof(struct ipmi_system_interface_addr))
688                 return -EINVAL;
689
690         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
691                 if (addr->channel != IPMI_BMC_CHANNEL)
692                         return -EINVAL;
693                 return 0;
694         }
695
696         if ((addr->channel == IPMI_BMC_CHANNEL)
697             || (addr->channel >= IPMI_MAX_CHANNELS)
698             || (addr->channel < 0))
699                 return -EINVAL;
700
701         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
702                 if (len < sizeof(struct ipmi_ipmb_addr))
703                         return -EINVAL;
704                 return 0;
705         }
706
707         if (is_lan_addr(addr)) {
708                 if (len < sizeof(struct ipmi_lan_addr))
709                         return -EINVAL;
710                 return 0;
711         }
712
713         return -EINVAL;
714 }
715 EXPORT_SYMBOL(ipmi_validate_addr);
716
717 unsigned int ipmi_addr_length(int addr_type)
718 {
719         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
720                 return sizeof(struct ipmi_system_interface_addr);
721
722         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
723                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
724                 return sizeof(struct ipmi_ipmb_addr);
725
726         if (addr_type == IPMI_LAN_ADDR_TYPE)
727                 return sizeof(struct ipmi_lan_addr);
728
729         return 0;
730 }
731 EXPORT_SYMBOL(ipmi_addr_length);
732
733 static void deliver_response(struct ipmi_recv_msg *msg)
734 {
735         if (!msg->user) {
736                 ipmi_smi_t    intf = msg->user_msg_data;
737
738                 /* Special handling for NULL users. */
739                 if (intf->null_user_handler) {
740                         intf->null_user_handler(intf, msg);
741                         ipmi_inc_stat(intf, handled_local_responses);
742                 } else {
743                         /* No handler, so give up. */
744                         ipmi_inc_stat(intf, unhandled_local_responses);
745                 }
746                 ipmi_free_recv_msg(msg);
747         } else {
748                 ipmi_user_t user = msg->user;
749                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
750         }
751 }
752
753 static void
754 deliver_err_response(struct ipmi_recv_msg *msg, int err)
755 {
756         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
757         msg->msg_data[0] = err;
758         msg->msg.netfn |= 1; /* Convert to a response. */
759         msg->msg.data_len = 1;
760         msg->msg.data = msg->msg_data;
761         deliver_response(msg);
762 }
763
764 /*
765  * Find the next sequence number not being used and add the given
766  * message with the given timeout to the sequence table.  This must be
767  * called with the interface's seq_lock held.
768  */
769 static int intf_next_seq(ipmi_smi_t           intf,
770                          struct ipmi_recv_msg *recv_msg,
771                          unsigned long        timeout,
772                          int                  retries,
773                          int                  broadcast,
774                          unsigned char        *seq,
775                          long                 *seqid)
776 {
777         int          rv = 0;
778         unsigned int i;
779
780         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
781                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
782                 if (!intf->seq_table[i].inuse)
783                         break;
784         }
785
786         if (!intf->seq_table[i].inuse) {
787                 intf->seq_table[i].recv_msg = recv_msg;
788
789                 /*
790                  * Start with the maximum timeout, when the send response
791                  * comes in we will start the real timer.
792                  */
793                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
794                 intf->seq_table[i].orig_timeout = timeout;
795                 intf->seq_table[i].retries_left = retries;
796                 intf->seq_table[i].broadcast = broadcast;
797                 intf->seq_table[i].inuse = 1;
798                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
799                 *seq = i;
800                 *seqid = intf->seq_table[i].seqid;
801                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
802                 need_waiter(intf);
803         } else {
804                 rv = -EAGAIN;
805         }
806
807         return rv;
808 }
809
810 /*
811  * Return the receive message for the given sequence number and
812  * release the sequence number so it can be reused.  Some other data
813  * is passed in to be sure the message matches up correctly (to help
814  * guard against message coming in after their timeout and the
815  * sequence number being reused).
816  */
817 static int intf_find_seq(ipmi_smi_t           intf,
818                          unsigned char        seq,
819                          short                channel,
820                          unsigned char        cmd,
821                          unsigned char        netfn,
822                          struct ipmi_addr     *addr,
823                          struct ipmi_recv_msg **recv_msg)
824 {
825         int           rv = -ENODEV;
826         unsigned long flags;
827
828         if (seq >= IPMI_IPMB_NUM_SEQ)
829                 return -EINVAL;
830
831         spin_lock_irqsave(&(intf->seq_lock), flags);
832         if (intf->seq_table[seq].inuse) {
833                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
834
835                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
836                                 && (msg->msg.netfn == netfn)
837                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
838                         *recv_msg = msg;
839                         intf->seq_table[seq].inuse = 0;
840                         rv = 0;
841                 }
842         }
843         spin_unlock_irqrestore(&(intf->seq_lock), flags);
844
845         return rv;
846 }
847
848
849 /* Start the timer for a specific sequence table entry. */
850 static int intf_start_seq_timer(ipmi_smi_t intf,
851                                 long       msgid)
852 {
853         int           rv = -ENODEV;
854         unsigned long flags;
855         unsigned char seq;
856         unsigned long seqid;
857
858
859         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
860
861         spin_lock_irqsave(&(intf->seq_lock), flags);
862         /*
863          * We do this verification because the user can be deleted
864          * while a message is outstanding.
865          */
866         if ((intf->seq_table[seq].inuse)
867                                 && (intf->seq_table[seq].seqid == seqid)) {
868                 struct seq_table *ent = &(intf->seq_table[seq]);
869                 ent->timeout = ent->orig_timeout;
870                 rv = 0;
871         }
872         spin_unlock_irqrestore(&(intf->seq_lock), flags);
873
874         return rv;
875 }
876
877 /* Got an error for the send message for a specific sequence number. */
878 static int intf_err_seq(ipmi_smi_t   intf,
879                         long         msgid,
880                         unsigned int err)
881 {
882         int                  rv = -ENODEV;
883         unsigned long        flags;
884         unsigned char        seq;
885         unsigned long        seqid;
886         struct ipmi_recv_msg *msg = NULL;
887
888
889         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
890
891         spin_lock_irqsave(&(intf->seq_lock), flags);
892         /*
893          * We do this verification because the user can be deleted
894          * while a message is outstanding.
895          */
896         if ((intf->seq_table[seq].inuse)
897                                 && (intf->seq_table[seq].seqid == seqid)) {
898                 struct seq_table *ent = &(intf->seq_table[seq]);
899
900                 ent->inuse = 0;
901                 msg = ent->recv_msg;
902                 rv = 0;
903         }
904         spin_unlock_irqrestore(&(intf->seq_lock), flags);
905
906         if (msg)
907                 deliver_err_response(msg, err);
908
909         return rv;
910 }
911
912
913 int ipmi_create_user(unsigned int          if_num,
914                      struct ipmi_user_hndl *handler,
915                      void                  *handler_data,
916                      ipmi_user_t           *user)
917 {
918         unsigned long flags;
919         ipmi_user_t   new_user;
920         int           rv = 0;
921         ipmi_smi_t    intf;
922
923         /*
924          * There is no module usecount here, because it's not
925          * required.  Since this can only be used by and called from
926          * other modules, they will implicitly use this module, and
927          * thus this can't be removed unless the other modules are
928          * removed.
929          */
930
931         if (handler == NULL)
932                 return -EINVAL;
933
934         /*
935          * Make sure the driver is actually initialized, this handles
936          * problems with initialization order.
937          */
938         if (!initialized) {
939                 rv = ipmi_init_msghandler();
940                 if (rv)
941                         return rv;
942
943                 /*
944                  * The init code doesn't return an error if it was turned
945                  * off, but it won't initialize.  Check that.
946                  */
947                 if (!initialized)
948                         return -ENODEV;
949         }
950
951         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
952         if (!new_user)
953                 return -ENOMEM;
954
955         mutex_lock(&ipmi_interfaces_mutex);
956         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
957                 if (intf->intf_num == if_num)
958                         goto found;
959         }
960         /* Not found, return an error */
961         rv = -EINVAL;
962         goto out_kfree;
963
964  found:
965         /* Note that each existing user holds a refcount to the interface. */
966         kref_get(&intf->refcount);
967
968         kref_init(&new_user->refcount);
969         new_user->handler = handler;
970         new_user->handler_data = handler_data;
971         new_user->intf = intf;
972         new_user->gets_events = false;
973
974         if (!try_module_get(intf->handlers->owner)) {
975                 rv = -ENODEV;
976                 goto out_kref;
977         }
978
979         if (intf->handlers->inc_usecount) {
980                 rv = intf->handlers->inc_usecount(intf->send_info);
981                 if (rv) {
982                         module_put(intf->handlers->owner);
983                         goto out_kref;
984                 }
985         }
986
987         /*
988          * Hold the lock so intf->handlers is guaranteed to be good
989          * until now
990          */
991         mutex_unlock(&ipmi_interfaces_mutex);
992
993         new_user->valid = true;
994         spin_lock_irqsave(&intf->seq_lock, flags);
995         list_add_rcu(&new_user->link, &intf->users);
996         spin_unlock_irqrestore(&intf->seq_lock, flags);
997         if (handler->ipmi_watchdog_pretimeout) {
998                 /* User wants pretimeouts, so make sure to watch for them. */
999                 if (atomic_inc_return(&intf->event_waiters) == 1)
1000                         need_waiter(intf);
1001         }
1002         *user = new_user;
1003         return 0;
1004
1005 out_kref:
1006         kref_put(&intf->refcount, intf_free);
1007 out_kfree:
1008         mutex_unlock(&ipmi_interfaces_mutex);
1009         kfree(new_user);
1010         return rv;
1011 }
1012 EXPORT_SYMBOL(ipmi_create_user);
1013
1014 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1015 {
1016         int           rv = 0;
1017         ipmi_smi_t    intf;
1018         struct ipmi_smi_handlers *handlers;
1019
1020         mutex_lock(&ipmi_interfaces_mutex);
1021         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1022                 if (intf->intf_num == if_num)
1023                         goto found;
1024         }
1025         /* Not found, return an error */
1026         rv = -EINVAL;
1027         mutex_unlock(&ipmi_interfaces_mutex);
1028         return rv;
1029
1030 found:
1031         handlers = intf->handlers;
1032         rv = -ENOSYS;
1033         if (handlers->get_smi_info)
1034                 rv = handlers->get_smi_info(intf->send_info, data);
1035         mutex_unlock(&ipmi_interfaces_mutex);
1036
1037         return rv;
1038 }
1039 EXPORT_SYMBOL(ipmi_get_smi_info);
1040
1041 static void free_user(struct kref *ref)
1042 {
1043         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1044         kfree(user);
1045 }
1046
1047 int ipmi_destroy_user(ipmi_user_t user)
1048 {
1049         ipmi_smi_t       intf = user->intf;
1050         int              i;
1051         unsigned long    flags;
1052         struct cmd_rcvr  *rcvr;
1053         struct cmd_rcvr  *rcvrs = NULL;
1054
1055         user->valid = false;
1056
1057         if (user->handler->ipmi_watchdog_pretimeout)
1058                 atomic_dec(&intf->event_waiters);
1059
1060         if (user->gets_events)
1061                 atomic_dec(&intf->event_waiters);
1062
1063         /* Remove the user from the interface's sequence table. */
1064         spin_lock_irqsave(&intf->seq_lock, flags);
1065         list_del_rcu(&user->link);
1066
1067         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1068                 if (intf->seq_table[i].inuse
1069                     && (intf->seq_table[i].recv_msg->user == user)) {
1070                         intf->seq_table[i].inuse = 0;
1071                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1072                 }
1073         }
1074         spin_unlock_irqrestore(&intf->seq_lock, flags);
1075
1076         /*
1077          * Remove the user from the command receiver's table.  First
1078          * we build a list of everything (not using the standard link,
1079          * since other things may be using it till we do
1080          * synchronize_rcu()) then free everything in that list.
1081          */
1082         mutex_lock(&intf->cmd_rcvrs_mutex);
1083         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1084                 if (rcvr->user == user) {
1085                         list_del_rcu(&rcvr->link);
1086                         rcvr->next = rcvrs;
1087                         rcvrs = rcvr;
1088                 }
1089         }
1090         mutex_unlock(&intf->cmd_rcvrs_mutex);
1091         synchronize_rcu();
1092         while (rcvrs) {
1093                 rcvr = rcvrs;
1094                 rcvrs = rcvr->next;
1095                 kfree(rcvr);
1096         }
1097
1098         mutex_lock(&ipmi_interfaces_mutex);
1099         if (intf->handlers) {
1100                 module_put(intf->handlers->owner);
1101                 if (intf->handlers->dec_usecount)
1102                         intf->handlers->dec_usecount(intf->send_info);
1103         }
1104         mutex_unlock(&ipmi_interfaces_mutex);
1105
1106         kref_put(&intf->refcount, intf_free);
1107
1108         kref_put(&user->refcount, free_user);
1109
1110         return 0;
1111 }
1112 EXPORT_SYMBOL(ipmi_destroy_user);
1113
1114 void ipmi_get_version(ipmi_user_t   user,
1115                       unsigned char *major,
1116                       unsigned char *minor)
1117 {
1118         *major = user->intf->ipmi_version_major;
1119         *minor = user->intf->ipmi_version_minor;
1120 }
1121 EXPORT_SYMBOL(ipmi_get_version);
1122
1123 int ipmi_set_my_address(ipmi_user_t   user,
1124                         unsigned int  channel,
1125                         unsigned char address)
1126 {
1127         if (channel >= IPMI_MAX_CHANNELS)
1128                 return -EINVAL;
1129         user->intf->channels[channel].address = address;
1130         return 0;
1131 }
1132 EXPORT_SYMBOL(ipmi_set_my_address);
1133
1134 int ipmi_get_my_address(ipmi_user_t   user,
1135                         unsigned int  channel,
1136                         unsigned char *address)
1137 {
1138         if (channel >= IPMI_MAX_CHANNELS)
1139                 return -EINVAL;
1140         *address = user->intf->channels[channel].address;
1141         return 0;
1142 }
1143 EXPORT_SYMBOL(ipmi_get_my_address);
1144
1145 int ipmi_set_my_LUN(ipmi_user_t   user,
1146                     unsigned int  channel,
1147                     unsigned char LUN)
1148 {
1149         if (channel >= IPMI_MAX_CHANNELS)
1150                 return -EINVAL;
1151         user->intf->channels[channel].lun = LUN & 0x3;
1152         return 0;
1153 }
1154 EXPORT_SYMBOL(ipmi_set_my_LUN);
1155
1156 int ipmi_get_my_LUN(ipmi_user_t   user,
1157                     unsigned int  channel,
1158                     unsigned char *address)
1159 {
1160         if (channel >= IPMI_MAX_CHANNELS)
1161                 return -EINVAL;
1162         *address = user->intf->channels[channel].lun;
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(ipmi_get_my_LUN);
1166
1167 int ipmi_get_maintenance_mode(ipmi_user_t user)
1168 {
1169         int           mode;
1170         unsigned long flags;
1171
1172         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1173         mode = user->intf->maintenance_mode;
1174         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1175
1176         return mode;
1177 }
1178 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1179
1180 static void maintenance_mode_update(ipmi_smi_t intf)
1181 {
1182         if (intf->handlers->set_maintenance_mode)
1183                 intf->handlers->set_maintenance_mode(
1184                         intf->send_info, intf->maintenance_mode_enable);
1185 }
1186
1187 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1188 {
1189         int           rv = 0;
1190         unsigned long flags;
1191         ipmi_smi_t    intf = user->intf;
1192
1193         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1194         if (intf->maintenance_mode != mode) {
1195                 switch (mode) {
1196                 case IPMI_MAINTENANCE_MODE_AUTO:
1197                         intf->maintenance_mode_enable
1198                                 = (intf->auto_maintenance_timeout > 0);
1199                         break;
1200
1201                 case IPMI_MAINTENANCE_MODE_OFF:
1202                         intf->maintenance_mode_enable = false;
1203                         break;
1204
1205                 case IPMI_MAINTENANCE_MODE_ON:
1206                         intf->maintenance_mode_enable = true;
1207                         break;
1208
1209                 default:
1210                         rv = -EINVAL;
1211                         goto out_unlock;
1212                 }
1213                 intf->maintenance_mode = mode;
1214
1215                 maintenance_mode_update(intf);
1216         }
1217  out_unlock:
1218         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1219
1220         return rv;
1221 }
1222 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1223
1224 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1225 {
1226         unsigned long        flags;
1227         ipmi_smi_t           intf = user->intf;
1228         struct ipmi_recv_msg *msg, *msg2;
1229         struct list_head     msgs;
1230
1231         INIT_LIST_HEAD(&msgs);
1232
1233         spin_lock_irqsave(&intf->events_lock, flags);
1234         if (user->gets_events == val)
1235                 goto out;
1236
1237         user->gets_events = val;
1238
1239         if (val) {
1240                 if (atomic_inc_return(&intf->event_waiters) == 1)
1241                         need_waiter(intf);
1242         } else {
1243                 atomic_dec(&intf->event_waiters);
1244         }
1245
1246         if (intf->delivering_events)
1247                 /*
1248                  * Another thread is delivering events for this, so
1249                  * let it handle any new events.
1250                  */
1251                 goto out;
1252
1253         /* Deliver any queued events. */
1254         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1255                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1256                         list_move_tail(&msg->link, &msgs);
1257                 intf->waiting_events_count = 0;
1258                 if (intf->event_msg_printed) {
1259                         printk(KERN_WARNING PFX "Event queue no longer"
1260                                " full\n");
1261                         intf->event_msg_printed = 0;
1262                 }
1263
1264                 intf->delivering_events = 1;
1265                 spin_unlock_irqrestore(&intf->events_lock, flags);
1266
1267                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1268                         msg->user = user;
1269                         kref_get(&user->refcount);
1270                         deliver_response(msg);
1271                 }
1272
1273                 spin_lock_irqsave(&intf->events_lock, flags);
1274                 intf->delivering_events = 0;
1275         }
1276
1277  out:
1278         spin_unlock_irqrestore(&intf->events_lock, flags);
1279
1280         return 0;
1281 }
1282 EXPORT_SYMBOL(ipmi_set_gets_events);
1283
1284 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1285                                       unsigned char netfn,
1286                                       unsigned char cmd,
1287                                       unsigned char chan)
1288 {
1289         struct cmd_rcvr *rcvr;
1290
1291         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1292                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1293                                         && (rcvr->chans & (1 << chan)))
1294                         return rcvr;
1295         }
1296         return NULL;
1297 }
1298
1299 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1300                                  unsigned char netfn,
1301                                  unsigned char cmd,
1302                                  unsigned int  chans)
1303 {
1304         struct cmd_rcvr *rcvr;
1305
1306         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1307                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1308                                         && (rcvr->chans & chans))
1309                         return 0;
1310         }
1311         return 1;
1312 }
1313
1314 int ipmi_register_for_cmd(ipmi_user_t   user,
1315                           unsigned char netfn,
1316                           unsigned char cmd,
1317                           unsigned int  chans)
1318 {
1319         ipmi_smi_t      intf = user->intf;
1320         struct cmd_rcvr *rcvr;
1321         int             rv = 0;
1322
1323
1324         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1325         if (!rcvr)
1326                 return -ENOMEM;
1327         rcvr->cmd = cmd;
1328         rcvr->netfn = netfn;
1329         rcvr->chans = chans;
1330         rcvr->user = user;
1331
1332         mutex_lock(&intf->cmd_rcvrs_mutex);
1333         /* Make sure the command/netfn is not already registered. */
1334         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1335                 rv = -EBUSY;
1336                 goto out_unlock;
1337         }
1338
1339         if (atomic_inc_return(&intf->event_waiters) == 1)
1340                 need_waiter(intf);
1341
1342         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1343
1344  out_unlock:
1345         mutex_unlock(&intf->cmd_rcvrs_mutex);
1346         if (rv)
1347                 kfree(rcvr);
1348
1349         return rv;
1350 }
1351 EXPORT_SYMBOL(ipmi_register_for_cmd);
1352
1353 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1354                             unsigned char netfn,
1355                             unsigned char cmd,
1356                             unsigned int  chans)
1357 {
1358         ipmi_smi_t      intf = user->intf;
1359         struct cmd_rcvr *rcvr;
1360         struct cmd_rcvr *rcvrs = NULL;
1361         int i, rv = -ENOENT;
1362
1363         mutex_lock(&intf->cmd_rcvrs_mutex);
1364         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1365                 if (((1 << i) & chans) == 0)
1366                         continue;
1367                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1368                 if (rcvr == NULL)
1369                         continue;
1370                 if (rcvr->user == user) {
1371                         rv = 0;
1372                         rcvr->chans &= ~chans;
1373                         if (rcvr->chans == 0) {
1374                                 list_del_rcu(&rcvr->link);
1375                                 rcvr->next = rcvrs;
1376                                 rcvrs = rcvr;
1377                         }
1378                 }
1379         }
1380         mutex_unlock(&intf->cmd_rcvrs_mutex);
1381         synchronize_rcu();
1382         while (rcvrs) {
1383                 atomic_dec(&intf->event_waiters);
1384                 rcvr = rcvrs;
1385                 rcvrs = rcvr->next;
1386                 kfree(rcvr);
1387         }
1388         return rv;
1389 }
1390 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1391
1392 static unsigned char
1393 ipmb_checksum(unsigned char *data, int size)
1394 {
1395         unsigned char csum = 0;
1396
1397         for (; size > 0; size--, data++)
1398                 csum += *data;
1399
1400         return -csum;
1401 }
1402
1403 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1404                                    struct kernel_ipmi_msg *msg,
1405                                    struct ipmi_ipmb_addr *ipmb_addr,
1406                                    long                  msgid,
1407                                    unsigned char         ipmb_seq,
1408                                    int                   broadcast,
1409                                    unsigned char         source_address,
1410                                    unsigned char         source_lun)
1411 {
1412         int i = broadcast;
1413
1414         /* Format the IPMB header data. */
1415         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1416         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1417         smi_msg->data[2] = ipmb_addr->channel;
1418         if (broadcast)
1419                 smi_msg->data[3] = 0;
1420         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1421         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1422         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1423         smi_msg->data[i+6] = source_address;
1424         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1425         smi_msg->data[i+8] = msg->cmd;
1426
1427         /* Now tack on the data to the message. */
1428         if (msg->data_len > 0)
1429                 memcpy(&(smi_msg->data[i+9]), msg->data,
1430                        msg->data_len);
1431         smi_msg->data_size = msg->data_len + 9;
1432
1433         /* Now calculate the checksum and tack it on. */
1434         smi_msg->data[i+smi_msg->data_size]
1435                 = ipmb_checksum(&(smi_msg->data[i+6]),
1436                                 smi_msg->data_size-6);
1437
1438         /*
1439          * Add on the checksum size and the offset from the
1440          * broadcast.
1441          */
1442         smi_msg->data_size += 1 + i;
1443
1444         smi_msg->msgid = msgid;
1445 }
1446
1447 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1448                                   struct kernel_ipmi_msg *msg,
1449                                   struct ipmi_lan_addr  *lan_addr,
1450                                   long                  msgid,
1451                                   unsigned char         ipmb_seq,
1452                                   unsigned char         source_lun)
1453 {
1454         /* Format the IPMB header data. */
1455         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1456         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1457         smi_msg->data[2] = lan_addr->channel;
1458         smi_msg->data[3] = lan_addr->session_handle;
1459         smi_msg->data[4] = lan_addr->remote_SWID;
1460         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1461         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1462         smi_msg->data[7] = lan_addr->local_SWID;
1463         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1464         smi_msg->data[9] = msg->cmd;
1465
1466         /* Now tack on the data to the message. */
1467         if (msg->data_len > 0)
1468                 memcpy(&(smi_msg->data[10]), msg->data,
1469                        msg->data_len);
1470         smi_msg->data_size = msg->data_len + 10;
1471
1472         /* Now calculate the checksum and tack it on. */
1473         smi_msg->data[smi_msg->data_size]
1474                 = ipmb_checksum(&(smi_msg->data[7]),
1475                                 smi_msg->data_size-7);
1476
1477         /*
1478          * Add on the checksum size and the offset from the
1479          * broadcast.
1480          */
1481         smi_msg->data_size += 1;
1482
1483         smi_msg->msgid = msgid;
1484 }
1485
1486 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1487                                              struct ipmi_smi_msg *smi_msg,
1488                                              int priority)
1489 {
1490         if (intf->curr_msg) {
1491                 if (priority > 0)
1492                         list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1493                 else
1494                         list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1495                 smi_msg = NULL;
1496         } else {
1497                 intf->curr_msg = smi_msg;
1498         }
1499
1500         return smi_msg;
1501 }
1502
1503
1504 static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers,
1505                      struct ipmi_smi_msg *smi_msg, int priority)
1506 {
1507         int run_to_completion = intf->run_to_completion;
1508
1509         if (run_to_completion) {
1510                 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1511         } else {
1512                 unsigned long flags;
1513
1514                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1515                 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1516                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1517         }
1518
1519         if (smi_msg)
1520                 handlers->sender(intf->send_info, smi_msg);
1521 }
1522
1523 /*
1524  * Separate from ipmi_request so that the user does not have to be
1525  * supplied in certain circumstances (mainly at panic time).  If
1526  * messages are supplied, they will be freed, even if an error
1527  * occurs.
1528  */
1529 static int i_ipmi_request(ipmi_user_t          user,
1530                           ipmi_smi_t           intf,
1531                           struct ipmi_addr     *addr,
1532                           long                 msgid,
1533                           struct kernel_ipmi_msg *msg,
1534                           void                 *user_msg_data,
1535                           void                 *supplied_smi,
1536                           struct ipmi_recv_msg *supplied_recv,
1537                           int                  priority,
1538                           unsigned char        source_address,
1539                           unsigned char        source_lun,
1540                           int                  retries,
1541                           unsigned int         retry_time_ms)
1542 {
1543         int                      rv = 0;
1544         struct ipmi_smi_msg      *smi_msg;
1545         struct ipmi_recv_msg     *recv_msg;
1546         unsigned long            flags;
1547
1548
1549         if (supplied_recv)
1550                 recv_msg = supplied_recv;
1551         else {
1552                 recv_msg = ipmi_alloc_recv_msg();
1553                 if (recv_msg == NULL)
1554                         return -ENOMEM;
1555         }
1556         recv_msg->user_msg_data = user_msg_data;
1557
1558         if (supplied_smi)
1559                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1560         else {
1561                 smi_msg = ipmi_alloc_smi_msg();
1562                 if (smi_msg == NULL) {
1563                         ipmi_free_recv_msg(recv_msg);
1564                         return -ENOMEM;
1565                 }
1566         }
1567
1568         rcu_read_lock();
1569         if (intf->in_shutdown) {
1570                 rv = -ENODEV;
1571                 goto out_err;
1572         }
1573
1574         recv_msg->user = user;
1575         if (user)
1576                 kref_get(&user->refcount);
1577         recv_msg->msgid = msgid;
1578         /*
1579          * Store the message to send in the receive message so timeout
1580          * responses can get the proper response data.
1581          */
1582         recv_msg->msg = *msg;
1583
1584         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1585                 struct ipmi_system_interface_addr *smi_addr;
1586
1587                 if (msg->netfn & 1) {
1588                         /* Responses are not allowed to the SMI. */
1589                         rv = -EINVAL;
1590                         goto out_err;
1591                 }
1592
1593                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1594                 if (smi_addr->lun > 3) {
1595                         ipmi_inc_stat(intf, sent_invalid_commands);
1596                         rv = -EINVAL;
1597                         goto out_err;
1598                 }
1599
1600                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1601
1602                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1603                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1604                         || (msg->cmd == IPMI_GET_MSG_CMD)
1605                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1606                         /*
1607                          * We don't let the user do these, since we manage
1608                          * the sequence numbers.
1609                          */
1610                         ipmi_inc_stat(intf, sent_invalid_commands);
1611                         rv = -EINVAL;
1612                         goto out_err;
1613                 }
1614
1615                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1616                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1617                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1618                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1619                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1620                         intf->auto_maintenance_timeout
1621                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1622                         if (!intf->maintenance_mode
1623                             && !intf->maintenance_mode_enable) {
1624                                 intf->maintenance_mode_enable = true;
1625                                 maintenance_mode_update(intf);
1626                         }
1627                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1628                                                flags);
1629                 }
1630
1631                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1632                         ipmi_inc_stat(intf, sent_invalid_commands);
1633                         rv = -EMSGSIZE;
1634                         goto out_err;
1635                 }
1636
1637                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1638                 smi_msg->data[1] = msg->cmd;
1639                 smi_msg->msgid = msgid;
1640                 smi_msg->user_data = recv_msg;
1641                 if (msg->data_len > 0)
1642                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1643                 smi_msg->data_size = msg->data_len + 2;
1644                 ipmi_inc_stat(intf, sent_local_commands);
1645         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1646                 struct ipmi_ipmb_addr *ipmb_addr;
1647                 unsigned char         ipmb_seq;
1648                 long                  seqid;
1649                 int                   broadcast = 0;
1650
1651                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1652                         ipmi_inc_stat(intf, sent_invalid_commands);
1653                         rv = -EINVAL;
1654                         goto out_err;
1655                 }
1656
1657                 if (intf->channels[addr->channel].medium
1658                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1659                         ipmi_inc_stat(intf, sent_invalid_commands);
1660                         rv = -EINVAL;
1661                         goto out_err;
1662                 }
1663
1664                 if (retries < 0) {
1665                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1666                         retries = 0; /* Don't retry broadcasts. */
1667                     else
1668                         retries = 4;
1669                 }
1670                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1671                     /*
1672                      * Broadcasts add a zero at the beginning of the
1673                      * message, but otherwise is the same as an IPMB
1674                      * address.
1675                      */
1676                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1677                     broadcast = 1;
1678                 }
1679
1680
1681                 /* Default to 1 second retries. */
1682                 if (retry_time_ms == 0)
1683                     retry_time_ms = 1000;
1684
1685                 /*
1686                  * 9 for the header and 1 for the checksum, plus
1687                  * possibly one for the broadcast.
1688                  */
1689                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1690                         ipmi_inc_stat(intf, sent_invalid_commands);
1691                         rv = -EMSGSIZE;
1692                         goto out_err;
1693                 }
1694
1695                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1696                 if (ipmb_addr->lun > 3) {
1697                         ipmi_inc_stat(intf, sent_invalid_commands);
1698                         rv = -EINVAL;
1699                         goto out_err;
1700                 }
1701
1702                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1703
1704                 if (recv_msg->msg.netfn & 0x1) {
1705                         /*
1706                          * It's a response, so use the user's sequence
1707                          * from msgid.
1708                          */
1709                         ipmi_inc_stat(intf, sent_ipmb_responses);
1710                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1711                                         msgid, broadcast,
1712                                         source_address, source_lun);
1713
1714                         /*
1715                          * Save the receive message so we can use it
1716                          * to deliver the response.
1717                          */
1718                         smi_msg->user_data = recv_msg;
1719                 } else {
1720                         /* It's a command, so get a sequence for it. */
1721
1722                         spin_lock_irqsave(&(intf->seq_lock), flags);
1723
1724                         /*
1725                          * Create a sequence number with a 1 second
1726                          * timeout and 4 retries.
1727                          */
1728                         rv = intf_next_seq(intf,
1729                                            recv_msg,
1730                                            retry_time_ms,
1731                                            retries,
1732                                            broadcast,
1733                                            &ipmb_seq,
1734                                            &seqid);
1735                         if (rv) {
1736                                 /*
1737                                  * We have used up all the sequence numbers,
1738                                  * probably, so abort.
1739                                  */
1740                                 spin_unlock_irqrestore(&(intf->seq_lock),
1741                                                        flags);
1742                                 goto out_err;
1743                         }
1744
1745                         ipmi_inc_stat(intf, sent_ipmb_commands);
1746
1747                         /*
1748                          * Store the sequence number in the message,
1749                          * so that when the send message response
1750                          * comes back we can start the timer.
1751                          */
1752                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1753                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1754                                         ipmb_seq, broadcast,
1755                                         source_address, source_lun);
1756
1757                         /*
1758                          * Copy the message into the recv message data, so we
1759                          * can retransmit it later if necessary.
1760                          */
1761                         memcpy(recv_msg->msg_data, smi_msg->data,
1762                                smi_msg->data_size);
1763                         recv_msg->msg.data = recv_msg->msg_data;
1764                         recv_msg->msg.data_len = smi_msg->data_size;
1765
1766                         /*
1767                          * We don't unlock until here, because we need
1768                          * to copy the completed message into the
1769                          * recv_msg before we release the lock.
1770                          * Otherwise, race conditions may bite us.  I
1771                          * know that's pretty paranoid, but I prefer
1772                          * to be correct.
1773                          */
1774                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1775                 }
1776         } else if (is_lan_addr(addr)) {
1777                 struct ipmi_lan_addr  *lan_addr;
1778                 unsigned char         ipmb_seq;
1779                 long                  seqid;
1780
1781                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1782                         ipmi_inc_stat(intf, sent_invalid_commands);
1783                         rv = -EINVAL;
1784                         goto out_err;
1785                 }
1786
1787                 if ((intf->channels[addr->channel].medium
1788                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1789                     && (intf->channels[addr->channel].medium
1790                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1791                         ipmi_inc_stat(intf, sent_invalid_commands);
1792                         rv = -EINVAL;
1793                         goto out_err;
1794                 }
1795
1796                 retries = 4;
1797
1798                 /* Default to 1 second retries. */
1799                 if (retry_time_ms == 0)
1800                     retry_time_ms = 1000;
1801
1802                 /* 11 for the header and 1 for the checksum. */
1803                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1804                         ipmi_inc_stat(intf, sent_invalid_commands);
1805                         rv = -EMSGSIZE;
1806                         goto out_err;
1807                 }
1808
1809                 lan_addr = (struct ipmi_lan_addr *) addr;
1810                 if (lan_addr->lun > 3) {
1811                         ipmi_inc_stat(intf, sent_invalid_commands);
1812                         rv = -EINVAL;
1813                         goto out_err;
1814                 }
1815
1816                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1817
1818                 if (recv_msg->msg.netfn & 0x1) {
1819                         /*
1820                          * It's a response, so use the user's sequence
1821                          * from msgid.
1822                          */
1823                         ipmi_inc_stat(intf, sent_lan_responses);
1824                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1825                                        msgid, source_lun);
1826
1827                         /*
1828                          * Save the receive message so we can use it
1829                          * to deliver the response.
1830                          */
1831                         smi_msg->user_data = recv_msg;
1832                 } else {
1833                         /* It's a command, so get a sequence for it. */
1834
1835                         spin_lock_irqsave(&(intf->seq_lock), flags);
1836
1837                         /*
1838                          * Create a sequence number with a 1 second
1839                          * timeout and 4 retries.
1840                          */
1841                         rv = intf_next_seq(intf,
1842                                            recv_msg,
1843                                            retry_time_ms,
1844                                            retries,
1845                                            0,
1846                                            &ipmb_seq,
1847                                            &seqid);
1848                         if (rv) {
1849                                 /*
1850                                  * We have used up all the sequence numbers,
1851                                  * probably, so abort.
1852                                  */
1853                                 spin_unlock_irqrestore(&(intf->seq_lock),
1854                                                        flags);
1855                                 goto out_err;
1856                         }
1857
1858                         ipmi_inc_stat(intf, sent_lan_commands);
1859
1860                         /*
1861                          * Store the sequence number in the message,
1862                          * so that when the send message response
1863                          * comes back we can start the timer.
1864                          */
1865                         format_lan_msg(smi_msg, msg, lan_addr,
1866                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1867                                        ipmb_seq, source_lun);
1868
1869                         /*
1870                          * Copy the message into the recv message data, so we
1871                          * can retransmit it later if necessary.
1872                          */
1873                         memcpy(recv_msg->msg_data, smi_msg->data,
1874                                smi_msg->data_size);
1875                         recv_msg->msg.data = recv_msg->msg_data;
1876                         recv_msg->msg.data_len = smi_msg->data_size;
1877
1878                         /*
1879                          * We don't unlock until here, because we need
1880                          * to copy the completed message into the
1881                          * recv_msg before we release the lock.
1882                          * Otherwise, race conditions may bite us.  I
1883                          * know that's pretty paranoid, but I prefer
1884                          * to be correct.
1885                          */
1886                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1887                 }
1888         } else {
1889             /* Unknown address type. */
1890                 ipmi_inc_stat(intf, sent_invalid_commands);
1891                 rv = -EINVAL;
1892                 goto out_err;
1893         }
1894
1895 #ifdef DEBUG_MSGING
1896         {
1897                 int m;
1898                 for (m = 0; m < smi_msg->data_size; m++)
1899                         printk(" %2.2x", smi_msg->data[m]);
1900                 printk("\n");
1901         }
1902 #endif
1903
1904         smi_send(intf, intf->handlers, smi_msg, priority);
1905         rcu_read_unlock();
1906
1907         return 0;
1908
1909  out_err:
1910         rcu_read_unlock();
1911         ipmi_free_smi_msg(smi_msg);
1912         ipmi_free_recv_msg(recv_msg);
1913         return rv;
1914 }
1915
1916 static int check_addr(ipmi_smi_t       intf,
1917                       struct ipmi_addr *addr,
1918                       unsigned char    *saddr,
1919                       unsigned char    *lun)
1920 {
1921         if (addr->channel >= IPMI_MAX_CHANNELS)
1922                 return -EINVAL;
1923         *lun = intf->channels[addr->channel].lun;
1924         *saddr = intf->channels[addr->channel].address;
1925         return 0;
1926 }
1927
1928 int ipmi_request_settime(ipmi_user_t      user,
1929                          struct ipmi_addr *addr,
1930                          long             msgid,
1931                          struct kernel_ipmi_msg  *msg,
1932                          void             *user_msg_data,
1933                          int              priority,
1934                          int              retries,
1935                          unsigned int     retry_time_ms)
1936 {
1937         unsigned char saddr = 0, lun = 0;
1938         int           rv;
1939
1940         if (!user)
1941                 return -EINVAL;
1942         rv = check_addr(user->intf, addr, &saddr, &lun);
1943         if (rv)
1944                 return rv;
1945         return i_ipmi_request(user,
1946                               user->intf,
1947                               addr,
1948                               msgid,
1949                               msg,
1950                               user_msg_data,
1951                               NULL, NULL,
1952                               priority,
1953                               saddr,
1954                               lun,
1955                               retries,
1956                               retry_time_ms);
1957 }
1958 EXPORT_SYMBOL(ipmi_request_settime);
1959
1960 int ipmi_request_supply_msgs(ipmi_user_t          user,
1961                              struct ipmi_addr     *addr,
1962                              long                 msgid,
1963                              struct kernel_ipmi_msg *msg,
1964                              void                 *user_msg_data,
1965                              void                 *supplied_smi,
1966                              struct ipmi_recv_msg *supplied_recv,
1967                              int                  priority)
1968 {
1969         unsigned char saddr = 0, lun = 0;
1970         int           rv;
1971
1972         if (!user)
1973                 return -EINVAL;
1974         rv = check_addr(user->intf, addr, &saddr, &lun);
1975         if (rv)
1976                 return rv;
1977         return i_ipmi_request(user,
1978                               user->intf,
1979                               addr,
1980                               msgid,
1981                               msg,
1982                               user_msg_data,
1983                               supplied_smi,
1984                               supplied_recv,
1985                               priority,
1986                               saddr,
1987                               lun,
1988                               -1, 0);
1989 }
1990 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1991
1992 #ifdef CONFIG_PROC_FS
1993 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1994 {
1995         ipmi_smi_t intf = m->private;
1996         int        i;
1997
1998         seq_printf(m, "%x", intf->channels[0].address);
1999         for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2000                 seq_printf(m, " %x", intf->channels[i].address);
2001         seq_putc(m, '\n');
2002
2003         return 0;
2004 }
2005
2006 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2007 {
2008         return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2009 }
2010
2011 static const struct file_operations smi_ipmb_proc_ops = {
2012         .open           = smi_ipmb_proc_open,
2013         .read           = seq_read,
2014         .llseek         = seq_lseek,
2015         .release        = single_release,
2016 };
2017
2018 static int smi_version_proc_show(struct seq_file *m, void *v)
2019 {
2020         ipmi_smi_t intf = m->private;
2021
2022         seq_printf(m, "%u.%u\n",
2023                    ipmi_version_major(&intf->bmc->id),
2024                    ipmi_version_minor(&intf->bmc->id));
2025
2026         return 0;
2027 }
2028
2029 static int smi_version_proc_open(struct inode *inode, struct file *file)
2030 {
2031         return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2032 }
2033
2034 static const struct file_operations smi_version_proc_ops = {
2035         .open           = smi_version_proc_open,
2036         .read           = seq_read,
2037         .llseek         = seq_lseek,
2038         .release        = single_release,
2039 };
2040
2041 static int smi_stats_proc_show(struct seq_file *m, void *v)
2042 {
2043         ipmi_smi_t intf = m->private;
2044
2045         seq_printf(m, "sent_invalid_commands:       %u\n",
2046                        ipmi_get_stat(intf, sent_invalid_commands));
2047         seq_printf(m, "sent_local_commands:         %u\n",
2048                        ipmi_get_stat(intf, sent_local_commands));
2049         seq_printf(m, "handled_local_responses:     %u\n",
2050                        ipmi_get_stat(intf, handled_local_responses));
2051         seq_printf(m, "unhandled_local_responses:   %u\n",
2052                        ipmi_get_stat(intf, unhandled_local_responses));
2053         seq_printf(m, "sent_ipmb_commands:          %u\n",
2054                        ipmi_get_stat(intf, sent_ipmb_commands));
2055         seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2056                        ipmi_get_stat(intf, sent_ipmb_command_errs));
2057         seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2058                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
2059         seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2060                        ipmi_get_stat(intf, timed_out_ipmb_commands));
2061         seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2062                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2063         seq_printf(m, "sent_ipmb_responses:         %u\n",
2064                        ipmi_get_stat(intf, sent_ipmb_responses));
2065         seq_printf(m, "handled_ipmb_responses:      %u\n",
2066                        ipmi_get_stat(intf, handled_ipmb_responses));
2067         seq_printf(m, "invalid_ipmb_responses:      %u\n",
2068                        ipmi_get_stat(intf, invalid_ipmb_responses));
2069         seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2070                        ipmi_get_stat(intf, unhandled_ipmb_responses));
2071         seq_printf(m, "sent_lan_commands:           %u\n",
2072                        ipmi_get_stat(intf, sent_lan_commands));
2073         seq_printf(m, "sent_lan_command_errs:       %u\n",
2074                        ipmi_get_stat(intf, sent_lan_command_errs));
2075         seq_printf(m, "retransmitted_lan_commands:  %u\n",
2076                        ipmi_get_stat(intf, retransmitted_lan_commands));
2077         seq_printf(m, "timed_out_lan_commands:      %u\n",
2078                        ipmi_get_stat(intf, timed_out_lan_commands));
2079         seq_printf(m, "sent_lan_responses:          %u\n",
2080                        ipmi_get_stat(intf, sent_lan_responses));
2081         seq_printf(m, "handled_lan_responses:       %u\n",
2082                        ipmi_get_stat(intf, handled_lan_responses));
2083         seq_printf(m, "invalid_lan_responses:       %u\n",
2084                        ipmi_get_stat(intf, invalid_lan_responses));
2085         seq_printf(m, "unhandled_lan_responses:     %u\n",
2086                        ipmi_get_stat(intf, unhandled_lan_responses));
2087         seq_printf(m, "handled_commands:            %u\n",
2088                        ipmi_get_stat(intf, handled_commands));
2089         seq_printf(m, "invalid_commands:            %u\n",
2090                        ipmi_get_stat(intf, invalid_commands));
2091         seq_printf(m, "unhandled_commands:          %u\n",
2092                        ipmi_get_stat(intf, unhandled_commands));
2093         seq_printf(m, "invalid_events:              %u\n",
2094                        ipmi_get_stat(intf, invalid_events));
2095         seq_printf(m, "events:                      %u\n",
2096                        ipmi_get_stat(intf, events));
2097         seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2098                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2099         seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2100                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2101         return 0;
2102 }
2103
2104 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2105 {
2106         return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2107 }
2108
2109 static const struct file_operations smi_stats_proc_ops = {
2110         .open           = smi_stats_proc_open,
2111         .read           = seq_read,
2112         .llseek         = seq_lseek,
2113         .release        = single_release,
2114 };
2115 #endif /* CONFIG_PROC_FS */
2116
2117 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2118                             const struct file_operations *proc_ops,
2119                             void *data)
2120 {
2121         int                    rv = 0;
2122 #ifdef CONFIG_PROC_FS
2123         struct proc_dir_entry  *file;
2124         struct ipmi_proc_entry *entry;
2125
2126         /* Create a list element. */
2127         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2128         if (!entry)
2129                 return -ENOMEM;
2130         entry->name = kstrdup(name, GFP_KERNEL);
2131         if (!entry->name) {
2132                 kfree(entry);
2133                 return -ENOMEM;
2134         }
2135
2136         file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2137         if (!file) {
2138                 kfree(entry->name);
2139                 kfree(entry);
2140                 rv = -ENOMEM;
2141         } else {
2142                 mutex_lock(&smi->proc_entry_lock);
2143                 /* Stick it on the list. */
2144                 entry->next = smi->proc_entries;
2145                 smi->proc_entries = entry;
2146                 mutex_unlock(&smi->proc_entry_lock);
2147         }
2148 #endif /* CONFIG_PROC_FS */
2149
2150         return rv;
2151 }
2152 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2153
2154 static int add_proc_entries(ipmi_smi_t smi, int num)
2155 {
2156         int rv = 0;
2157
2158 #ifdef CONFIG_PROC_FS
2159         sprintf(smi->proc_dir_name, "%d", num);
2160         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2161         if (!smi->proc_dir)
2162                 rv = -ENOMEM;
2163
2164         if (rv == 0)
2165                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2166                                              &smi_stats_proc_ops,
2167                                              smi);
2168
2169         if (rv == 0)
2170                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2171                                              &smi_ipmb_proc_ops,
2172                                              smi);
2173
2174         if (rv == 0)
2175                 rv = ipmi_smi_add_proc_entry(smi, "version",
2176                                              &smi_version_proc_ops,
2177                                              smi);
2178 #endif /* CONFIG_PROC_FS */
2179
2180         return rv;
2181 }
2182
2183 static void remove_proc_entries(ipmi_smi_t smi)
2184 {
2185 #ifdef CONFIG_PROC_FS
2186         struct ipmi_proc_entry *entry;
2187
2188         mutex_lock(&smi->proc_entry_lock);
2189         while (smi->proc_entries) {
2190                 entry = smi->proc_entries;
2191                 smi->proc_entries = entry->next;
2192
2193                 remove_proc_entry(entry->name, smi->proc_dir);
2194                 kfree(entry->name);
2195                 kfree(entry);
2196         }
2197         mutex_unlock(&smi->proc_entry_lock);
2198         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2199 #endif /* CONFIG_PROC_FS */
2200 }
2201
2202 static int __find_bmc_guid(struct device *dev, void *data)
2203 {
2204         unsigned char *id = data;
2205         struct bmc_device *bmc = to_bmc_device(dev);
2206         return memcmp(bmc->guid, id, 16) == 0;
2207 }
2208
2209 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2210                                              unsigned char *guid)
2211 {
2212         struct device *dev;
2213
2214         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2215         if (dev)
2216                 return to_bmc_device(dev);
2217         else
2218                 return NULL;
2219 }
2220
2221 struct prod_dev_id {
2222         unsigned int  product_id;
2223         unsigned char device_id;
2224 };
2225
2226 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2227 {
2228         struct prod_dev_id *id = data;
2229         struct bmc_device *bmc = to_bmc_device(dev);
2230
2231         return (bmc->id.product_id == id->product_id
2232                 && bmc->id.device_id == id->device_id);
2233 }
2234
2235 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2236         struct device_driver *drv,
2237         unsigned int product_id, unsigned char device_id)
2238 {
2239         struct prod_dev_id id = {
2240                 .product_id = product_id,
2241                 .device_id = device_id,
2242         };
2243         struct device *dev;
2244
2245         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2246         if (dev)
2247                 return to_bmc_device(dev);
2248         else
2249                 return NULL;
2250 }
2251
2252 static ssize_t device_id_show(struct device *dev,
2253                               struct device_attribute *attr,
2254                               char *buf)
2255 {
2256         struct bmc_device *bmc = to_bmc_device(dev);
2257
2258         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2259 }
2260 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2261
2262 static ssize_t provides_device_sdrs_show(struct device *dev,
2263                                          struct device_attribute *attr,
2264                                          char *buf)
2265 {
2266         struct bmc_device *bmc = to_bmc_device(dev);
2267
2268         return snprintf(buf, 10, "%u\n",
2269                         (bmc->id.device_revision & 0x80) >> 7);
2270 }
2271 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2272                    NULL);
2273
2274 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2275                              char *buf)
2276 {
2277         struct bmc_device *bmc = to_bmc_device(dev);
2278
2279         return snprintf(buf, 20, "%u\n",
2280                         bmc->id.device_revision & 0x0F);
2281 }
2282 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2283
2284 static ssize_t firmware_revision_show(struct device *dev,
2285                                       struct device_attribute *attr,
2286                                       char *buf)
2287 {
2288         struct bmc_device *bmc = to_bmc_device(dev);
2289
2290         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2291                         bmc->id.firmware_revision_2);
2292 }
2293 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2294
2295 static ssize_t ipmi_version_show(struct device *dev,
2296                                  struct device_attribute *attr,
2297                                  char *buf)
2298 {
2299         struct bmc_device *bmc = to_bmc_device(dev);
2300
2301         return snprintf(buf, 20, "%u.%u\n",
2302                         ipmi_version_major(&bmc->id),
2303                         ipmi_version_minor(&bmc->id));
2304 }
2305 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2306
2307 static ssize_t add_dev_support_show(struct device *dev,
2308                                     struct device_attribute *attr,
2309                                     char *buf)
2310 {
2311         struct bmc_device *bmc = to_bmc_device(dev);
2312
2313         return snprintf(buf, 10, "0x%02x\n",
2314                         bmc->id.additional_device_support);
2315 }
2316 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2317                    NULL);
2318
2319 static ssize_t manufacturer_id_show(struct device *dev,
2320                                     struct device_attribute *attr,
2321                                     char *buf)
2322 {
2323         struct bmc_device *bmc = to_bmc_device(dev);
2324
2325         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2326 }
2327 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2328
2329 static ssize_t product_id_show(struct device *dev,
2330                                struct device_attribute *attr,
2331                                char *buf)
2332 {
2333         struct bmc_device *bmc = to_bmc_device(dev);
2334
2335         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2336 }
2337 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2338
2339 static ssize_t aux_firmware_rev_show(struct device *dev,
2340                                      struct device_attribute *attr,
2341                                      char *buf)
2342 {
2343         struct bmc_device *bmc = to_bmc_device(dev);
2344
2345         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2346                         bmc->id.aux_firmware_revision[3],
2347                         bmc->id.aux_firmware_revision[2],
2348                         bmc->id.aux_firmware_revision[1],
2349                         bmc->id.aux_firmware_revision[0]);
2350 }
2351 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2352
2353 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2354                          char *buf)
2355 {
2356         struct bmc_device *bmc = to_bmc_device(dev);
2357
2358         return snprintf(buf, 100, "%Lx%Lx\n",
2359                         (long long) bmc->guid[0],
2360                         (long long) bmc->guid[8]);
2361 }
2362 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2363
2364 static struct attribute *bmc_dev_attrs[] = {
2365         &dev_attr_device_id.attr,
2366         &dev_attr_provides_device_sdrs.attr,
2367         &dev_attr_revision.attr,
2368         &dev_attr_firmware_revision.attr,
2369         &dev_attr_ipmi_version.attr,
2370         &dev_attr_additional_device_support.attr,
2371         &dev_attr_manufacturer_id.attr,
2372         &dev_attr_product_id.attr,
2373         &dev_attr_aux_firmware_revision.attr,
2374         &dev_attr_guid.attr,
2375         NULL
2376 };
2377
2378 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2379                                        struct attribute *attr, int idx)
2380 {
2381         struct device *dev = kobj_to_dev(kobj);
2382         struct bmc_device *bmc = to_bmc_device(dev);
2383         umode_t mode = attr->mode;
2384
2385         if (attr == &dev_attr_aux_firmware_revision.attr)
2386                 return bmc->id.aux_firmware_revision_set ? mode : 0;
2387         if (attr == &dev_attr_guid.attr)
2388                 return bmc->guid_set ? mode : 0;
2389         return mode;
2390 }
2391
2392 static struct attribute_group bmc_dev_attr_group = {
2393         .attrs          = bmc_dev_attrs,
2394         .is_visible     = bmc_dev_attr_is_visible,
2395 };
2396
2397 static const struct attribute_group *bmc_dev_attr_groups[] = {
2398         &bmc_dev_attr_group,
2399         NULL
2400 };
2401
2402 static struct device_type bmc_device_type = {
2403         .groups         = bmc_dev_attr_groups,
2404 };
2405
2406 static void
2407 release_bmc_device(struct device *dev)
2408 {
2409         kfree(to_bmc_device(dev));
2410 }
2411
2412 static void
2413 cleanup_bmc_device(struct kref *ref)
2414 {
2415         struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2416
2417         platform_device_unregister(&bmc->pdev);
2418 }
2419
2420 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2421 {
2422         struct bmc_device *bmc = intf->bmc;
2423
2424         sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2425         if (intf->my_dev_name) {
2426                 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2427                 kfree(intf->my_dev_name);
2428                 intf->my_dev_name = NULL;
2429         }
2430
2431         mutex_lock(&ipmidriver_mutex);
2432         kref_put(&bmc->usecount, cleanup_bmc_device);
2433         intf->bmc = NULL;
2434         mutex_unlock(&ipmidriver_mutex);
2435 }
2436
2437 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2438 {
2439         int               rv;
2440         struct bmc_device *bmc = intf->bmc;
2441         struct bmc_device *old_bmc;
2442
2443         mutex_lock(&ipmidriver_mutex);
2444
2445         /*
2446          * Try to find if there is an bmc_device struct
2447          * representing the interfaced BMC already
2448          */
2449         if (bmc->guid_set)
2450                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2451         else
2452                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2453                                                     bmc->id.product_id,
2454                                                     bmc->id.device_id);
2455
2456         /*
2457          * If there is already an bmc_device, free the new one,
2458          * otherwise register the new BMC device
2459          */
2460         if (old_bmc) {
2461                 kfree(bmc);
2462                 intf->bmc = old_bmc;
2463                 bmc = old_bmc;
2464
2465                 kref_get(&bmc->usecount);
2466                 mutex_unlock(&ipmidriver_mutex);
2467
2468                 printk(KERN_INFO
2469                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2470                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2471                        bmc->id.manufacturer_id,
2472                        bmc->id.product_id,
2473                        bmc->id.device_id);
2474         } else {
2475                 unsigned char orig_dev_id = bmc->id.device_id;
2476                 int warn_printed = 0;
2477
2478                 snprintf(bmc->name, sizeof(bmc->name),
2479                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2480                 bmc->pdev.name = bmc->name;
2481
2482                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2483                                                  bmc->id.product_id,
2484                                                  bmc->id.device_id)) {
2485                         if (!warn_printed) {
2486                                 printk(KERN_WARNING PFX
2487                                        "This machine has two different BMCs"
2488                                        " with the same product id and device"
2489                                        " id.  This is an error in the"
2490                                        " firmware, but incrementing the"
2491                                        " device id to work around the problem."
2492                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2493                                        bmc->id.product_id, bmc->id.device_id);
2494                                 warn_printed = 1;
2495                         }
2496                         bmc->id.device_id++; /* Wraps at 255 */
2497                         if (bmc->id.device_id == orig_dev_id) {
2498                                 printk(KERN_ERR PFX
2499                                        "Out of device ids!\n");
2500                                 break;
2501                         }
2502                 }
2503
2504                 bmc->pdev.dev.driver = &ipmidriver.driver;
2505                 bmc->pdev.id = bmc->id.device_id;
2506                 bmc->pdev.dev.release = release_bmc_device;
2507                 bmc->pdev.dev.type = &bmc_device_type;
2508                 kref_init(&bmc->usecount);
2509
2510                 rv = platform_device_register(&bmc->pdev);
2511                 mutex_unlock(&ipmidriver_mutex);
2512                 if (rv) {
2513                         put_device(&bmc->pdev.dev);
2514                         printk(KERN_ERR
2515                                "ipmi_msghandler:"
2516                                " Unable to register bmc device: %d\n",
2517                                rv);
2518                         /*
2519                          * Don't go to out_err, you can only do that if
2520                          * the device is registered already.
2521                          */
2522                         return rv;
2523                 }
2524
2525                 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2526                          "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2527                          bmc->id.manufacturer_id,
2528                          bmc->id.product_id,
2529                          bmc->id.device_id);
2530         }
2531
2532         /*
2533          * create symlink from system interface device to bmc device
2534          * and back.
2535          */
2536         rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2537         if (rv) {
2538                 printk(KERN_ERR
2539                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2540                        rv);
2541                 goto out_err;
2542         }
2543
2544         intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2545         if (!intf->my_dev_name) {
2546                 rv = -ENOMEM;
2547                 printk(KERN_ERR
2548                        "ipmi_msghandler: allocate link from BMC: %d\n",
2549                        rv);
2550                 goto out_err;
2551         }
2552
2553         rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2554                                intf->my_dev_name);
2555         if (rv) {
2556                 kfree(intf->my_dev_name);
2557                 intf->my_dev_name = NULL;
2558                 printk(KERN_ERR
2559                        "ipmi_msghandler:"
2560                        " Unable to create symlink to bmc: %d\n",
2561                        rv);
2562                 goto out_err;
2563         }
2564
2565         return 0;
2566
2567 out_err:
2568         ipmi_bmc_unregister(intf);
2569         return rv;
2570 }
2571
2572 static int
2573 send_guid_cmd(ipmi_smi_t intf, int chan)
2574 {
2575         struct kernel_ipmi_msg            msg;
2576         struct ipmi_system_interface_addr si;
2577
2578         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2579         si.channel = IPMI_BMC_CHANNEL;
2580         si.lun = 0;
2581
2582         msg.netfn = IPMI_NETFN_APP_REQUEST;
2583         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2584         msg.data = NULL;
2585         msg.data_len = 0;
2586         return i_ipmi_request(NULL,
2587                               intf,
2588                               (struct ipmi_addr *) &si,
2589                               0,
2590                               &msg,
2591                               intf,
2592                               NULL,
2593                               NULL,
2594                               0,
2595                               intf->channels[0].address,
2596                               intf->channels[0].lun,
2597                               -1, 0);
2598 }
2599
2600 static void
2601 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2602 {
2603         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2604             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2605             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2606                 /* Not for me */
2607                 return;
2608
2609         if (msg->msg.data[0] != 0) {
2610                 /* Error from getting the GUID, the BMC doesn't have one. */
2611                 intf->bmc->guid_set = 0;
2612                 goto out;
2613         }
2614
2615         if (msg->msg.data_len < 17) {
2616                 intf->bmc->guid_set = 0;
2617                 printk(KERN_WARNING PFX
2618                        "guid_handler: The GUID response from the BMC was too"
2619                        " short, it was %d but should have been 17.  Assuming"
2620                        " GUID is not available.\n",
2621                        msg->msg.data_len);
2622                 goto out;
2623         }
2624
2625         memcpy(intf->bmc->guid, msg->msg.data, 16);
2626         intf->bmc->guid_set = 1;
2627  out:
2628         wake_up(&intf->waitq);
2629 }
2630
2631 static void
2632 get_guid(ipmi_smi_t intf)
2633 {
2634         int rv;
2635
2636         intf->bmc->guid_set = 0x2;
2637         intf->null_user_handler = guid_handler;
2638         rv = send_guid_cmd(intf, 0);
2639         if (rv)
2640                 /* Send failed, no GUID available. */
2641                 intf->bmc->guid_set = 0;
2642         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2643         intf->null_user_handler = NULL;
2644 }
2645
2646 static int
2647 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2648 {
2649         struct kernel_ipmi_msg            msg;
2650         unsigned char                     data[1];
2651         struct ipmi_system_interface_addr si;
2652
2653         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2654         si.channel = IPMI_BMC_CHANNEL;
2655         si.lun = 0;
2656
2657         msg.netfn = IPMI_NETFN_APP_REQUEST;
2658         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2659         msg.data = data;
2660         msg.data_len = 1;
2661         data[0] = chan;
2662         return i_ipmi_request(NULL,
2663                               intf,
2664                               (struct ipmi_addr *) &si,
2665                               0,
2666                               &msg,
2667                               intf,
2668                               NULL,
2669                               NULL,
2670                               0,
2671                               intf->channels[0].address,
2672                               intf->channels[0].lun,
2673                               -1, 0);
2674 }
2675
2676 static void
2677 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2678 {
2679         int rv = 0;
2680         int chan;
2681
2682         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2683             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2684             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2685                 /* It's the one we want */
2686                 if (msg->msg.data[0] != 0) {
2687                         /* Got an error from the channel, just go on. */
2688
2689                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2690                                 /*
2691                                  * If the MC does not support this
2692                                  * command, that is legal.  We just
2693                                  * assume it has one IPMB at channel
2694                                  * zero.
2695                                  */
2696                                 intf->channels[0].medium
2697                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2698                                 intf->channels[0].protocol
2699                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2700
2701                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2702                                 wake_up(&intf->waitq);
2703                                 goto out;
2704                         }
2705                         goto next_channel;
2706                 }
2707                 if (msg->msg.data_len < 4) {
2708                         /* Message not big enough, just go on. */
2709                         goto next_channel;
2710                 }
2711                 chan = intf->curr_channel;
2712                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2713                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2714
2715  next_channel:
2716                 intf->curr_channel++;
2717                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2718                         wake_up(&intf->waitq);
2719                 else
2720                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2721
2722                 if (rv) {
2723                         /* Got an error somehow, just give up. */
2724                         printk(KERN_WARNING PFX
2725                                "Error sending channel information for channel"
2726                                " %d: %d\n", intf->curr_channel, rv);
2727
2728                         intf->curr_channel = IPMI_MAX_CHANNELS;
2729                         wake_up(&intf->waitq);
2730                 }
2731         }
2732  out:
2733         return;
2734 }
2735
2736 static void ipmi_poll(ipmi_smi_t intf)
2737 {
2738         if (intf->handlers->poll)
2739                 intf->handlers->poll(intf->send_info);
2740         /* In case something came in */
2741         handle_new_recv_msgs(intf);
2742 }
2743
2744 void ipmi_poll_interface(ipmi_user_t user)
2745 {
2746         ipmi_poll(user->intf);
2747 }
2748 EXPORT_SYMBOL(ipmi_poll_interface);
2749
2750 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2751                       void                     *send_info,
2752                       struct ipmi_device_id    *device_id,
2753                       struct device            *si_dev,
2754                       unsigned char            slave_addr)
2755 {
2756         int              i, j;
2757         int              rv;
2758         ipmi_smi_t       intf;
2759         ipmi_smi_t       tintf;
2760         struct list_head *link;
2761
2762         /*
2763          * Make sure the driver is actually initialized, this handles
2764          * problems with initialization order.
2765          */
2766         if (!initialized) {
2767                 rv = ipmi_init_msghandler();
2768                 if (rv)
2769                         return rv;
2770                 /*
2771                  * The init code doesn't return an error if it was turned
2772                  * off, but it won't initialize.  Check that.
2773                  */
2774                 if (!initialized)
2775                         return -ENODEV;
2776         }
2777
2778         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2779         if (!intf)
2780                 return -ENOMEM;
2781
2782         intf->ipmi_version_major = ipmi_version_major(device_id);
2783         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2784
2785         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2786         if (!intf->bmc) {
2787                 kfree(intf);
2788                 return -ENOMEM;
2789         }
2790         intf->intf_num = -1; /* Mark it invalid for now. */
2791         kref_init(&intf->refcount);
2792         intf->bmc->id = *device_id;
2793         intf->si_dev = si_dev;
2794         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2795                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2796                 intf->channels[j].lun = 2;
2797         }
2798         if (slave_addr != 0)
2799                 intf->channels[0].address = slave_addr;
2800         INIT_LIST_HEAD(&intf->users);
2801         intf->handlers = handlers;
2802         intf->send_info = send_info;
2803         spin_lock_init(&intf->seq_lock);
2804         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2805                 intf->seq_table[j].inuse = 0;
2806                 intf->seq_table[j].seqid = 0;
2807         }
2808         intf->curr_seq = 0;
2809 #ifdef CONFIG_PROC_FS
2810         mutex_init(&intf->proc_entry_lock);
2811 #endif
2812         spin_lock_init(&intf->waiting_rcv_msgs_lock);
2813         INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2814         tasklet_init(&intf->recv_tasklet,
2815                      smi_recv_tasklet,
2816                      (unsigned long) intf);
2817         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2818         spin_lock_init(&intf->xmit_msgs_lock);
2819         INIT_LIST_HEAD(&intf->xmit_msgs);
2820         INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2821         spin_lock_init(&intf->events_lock);
2822         atomic_set(&intf->event_waiters, 0);
2823         intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2824         INIT_LIST_HEAD(&intf->waiting_events);
2825         intf->waiting_events_count = 0;
2826         mutex_init(&intf->cmd_rcvrs_mutex);
2827         spin_lock_init(&intf->maintenance_mode_lock);
2828         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2829         init_waitqueue_head(&intf->waitq);
2830         for (i = 0; i < IPMI_NUM_STATS; i++)
2831                 atomic_set(&intf->stats[i], 0);
2832
2833         intf->proc_dir = NULL;
2834
2835         mutex_lock(&smi_watchers_mutex);
2836         mutex_lock(&ipmi_interfaces_mutex);
2837         /* Look for a hole in the numbers. */
2838         i = 0;
2839         link = &ipmi_interfaces;
2840         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2841                 if (tintf->intf_num != i) {
2842                         link = &tintf->link;
2843                         break;
2844                 }
2845                 i++;
2846         }
2847         /* Add the new interface in numeric order. */
2848         if (i == 0)
2849                 list_add_rcu(&intf->link, &ipmi_interfaces);
2850         else
2851                 list_add_tail_rcu(&intf->link, link);
2852
2853         rv = handlers->start_processing(send_info, intf);
2854         if (rv)
2855                 goto out;
2856
2857         get_guid(intf);
2858
2859         if ((intf->ipmi_version_major > 1)
2860                         || ((intf->ipmi_version_major == 1)
2861                             && (intf->ipmi_version_minor >= 5))) {
2862                 /*
2863                  * Start scanning the channels to see what is
2864                  * available.
2865                  */
2866                 intf->null_user_handler = channel_handler;
2867                 intf->curr_channel = 0;
2868                 rv = send_channel_info_cmd(intf, 0);
2869                 if (rv) {
2870                         printk(KERN_WARNING PFX
2871                                "Error sending channel information for channel"
2872                                " 0, %d\n", rv);
2873                         goto out;
2874                 }
2875
2876                 /* Wait for the channel info to be read. */
2877                 wait_event(intf->waitq,
2878                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2879                 intf->null_user_handler = NULL;
2880         } else {
2881                 /* Assume a single IPMB channel at zero. */
2882                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2883                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2884                 intf->curr_channel = IPMI_MAX_CHANNELS;
2885         }
2886
2887         if (rv == 0)
2888                 rv = add_proc_entries(intf, i);
2889
2890         rv = ipmi_bmc_register(intf, i);
2891
2892  out:
2893         if (rv) {
2894                 if (intf->proc_dir)
2895                         remove_proc_entries(intf);
2896                 intf->handlers = NULL;
2897                 list_del_rcu(&intf->link);
2898                 mutex_unlock(&ipmi_interfaces_mutex);
2899                 mutex_unlock(&smi_watchers_mutex);
2900                 synchronize_rcu();
2901                 kref_put(&intf->refcount, intf_free);
2902         } else {
2903                 /*
2904                  * Keep memory order straight for RCU readers.  Make
2905                  * sure everything else is committed to memory before
2906                  * setting intf_num to mark the interface valid.
2907                  */
2908                 smp_wmb();
2909                 intf->intf_num = i;
2910                 mutex_unlock(&ipmi_interfaces_mutex);
2911                 /* After this point the interface is legal to use. */
2912                 call_smi_watchers(i, intf->si_dev);
2913                 mutex_unlock(&smi_watchers_mutex);
2914         }
2915
2916         return rv;
2917 }
2918 EXPORT_SYMBOL(ipmi_register_smi);
2919
2920 static void deliver_smi_err_response(ipmi_smi_t intf,
2921                                      struct ipmi_smi_msg *msg,
2922                                      unsigned char err)
2923 {
2924         msg->rsp[0] = msg->data[0] | 4;
2925         msg->rsp[1] = msg->data[1];
2926         msg->rsp[2] = err;
2927         msg->rsp_size = 3;
2928         /* It's an error, so it will never requeue, no need to check return. */
2929         handle_one_recv_msg(intf, msg);
2930 }
2931
2932 static void cleanup_smi_msgs(ipmi_smi_t intf)
2933 {
2934         int              i;
2935         struct seq_table *ent;
2936         struct ipmi_smi_msg *msg;
2937         struct list_head *entry;
2938         struct list_head tmplist;
2939
2940         /* Clear out our transmit queues and hold the messages. */
2941         INIT_LIST_HEAD(&tmplist);
2942         list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2943         list_splice_tail(&intf->xmit_msgs, &tmplist);
2944
2945         /* Current message first, to preserve order */
2946         while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2947                 /* Wait for the message to clear out. */
2948                 schedule_timeout(1);
2949         }
2950
2951         /* No need for locks, the interface is down. */
2952
2953         /*
2954          * Return errors for all pending messages in queue and in the
2955          * tables waiting for remote responses.
2956          */
2957         while (!list_empty(&tmplist)) {
2958                 entry = tmplist.next;
2959                 list_del(entry);
2960                 msg = list_entry(entry, struct ipmi_smi_msg, link);
2961                 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2962         }
2963
2964         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2965                 ent = &(intf->seq_table[i]);
2966                 if (!ent->inuse)
2967                         continue;
2968                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2969         }
2970 }
2971
2972 int ipmi_unregister_smi(ipmi_smi_t intf)
2973 {
2974         struct ipmi_smi_watcher *w;
2975         int intf_num = intf->intf_num;
2976         ipmi_user_t user;
2977
2978         ipmi_bmc_unregister(intf);
2979
2980         mutex_lock(&smi_watchers_mutex);
2981         mutex_lock(&ipmi_interfaces_mutex);
2982         intf->intf_num = -1;
2983         intf->in_shutdown = true;
2984         list_del_rcu(&intf->link);
2985         mutex_unlock(&ipmi_interfaces_mutex);
2986         synchronize_rcu();
2987
2988         cleanup_smi_msgs(intf);
2989
2990         /* Clean up the effects of users on the lower-level software. */
2991         mutex_lock(&ipmi_interfaces_mutex);
2992         rcu_read_lock();
2993         list_for_each_entry_rcu(user, &intf->users, link) {
2994                 module_put(intf->handlers->owner);
2995                 if (intf->handlers->dec_usecount)
2996                         intf->handlers->dec_usecount(intf->send_info);
2997         }
2998         rcu_read_unlock();
2999         intf->handlers = NULL;
3000         mutex_unlock(&ipmi_interfaces_mutex);
3001
3002         remove_proc_entries(intf);
3003
3004         /*
3005          * Call all the watcher interfaces to tell them that
3006          * an interface is gone.
3007          */
3008         list_for_each_entry(w, &smi_watchers, link)
3009                 w->smi_gone(intf_num);
3010         mutex_unlock(&smi_watchers_mutex);
3011
3012         kref_put(&intf->refcount, intf_free);
3013         return 0;
3014 }
3015 EXPORT_SYMBOL(ipmi_unregister_smi);
3016
3017 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3018                                    struct ipmi_smi_msg *msg)
3019 {
3020         struct ipmi_ipmb_addr ipmb_addr;
3021         struct ipmi_recv_msg  *recv_msg;
3022
3023         /*
3024          * This is 11, not 10, because the response must contain a
3025          * completion code.
3026          */
3027         if (msg->rsp_size < 11) {
3028                 /* Message not big enough, just ignore it. */
3029                 ipmi_inc_stat(intf, invalid_ipmb_responses);
3030                 return 0;
3031         }
3032
3033         if (msg->rsp[2] != 0) {
3034                 /* An error getting the response, just ignore it. */
3035                 return 0;
3036         }
3037
3038         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3039         ipmb_addr.slave_addr = msg->rsp[6];
3040         ipmb_addr.channel = msg->rsp[3] & 0x0f;
3041         ipmb_addr.lun = msg->rsp[7] & 3;
3042
3043         /*
3044          * It's a response from a remote entity.  Look up the sequence
3045          * number and handle the response.
3046          */
3047         if (intf_find_seq(intf,
3048                           msg->rsp[7] >> 2,
3049                           msg->rsp[3] & 0x0f,
3050                           msg->rsp[8],
3051                           (msg->rsp[4] >> 2) & (~1),
3052                           (struct ipmi_addr *) &(ipmb_addr),
3053                           &recv_msg)) {
3054                 /*
3055                  * We were unable to find the sequence number,
3056                  * so just nuke the message.
3057                  */
3058                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3059                 return 0;
3060         }
3061
3062         memcpy(recv_msg->msg_data,
3063                &(msg->rsp[9]),
3064                msg->rsp_size - 9);
3065         /*
3066          * The other fields matched, so no need to set them, except
3067          * for netfn, which needs to be the response that was
3068          * returned, not the request value.
3069          */
3070         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3071         recv_msg->msg.data = recv_msg->msg_data;
3072         recv_msg->msg.data_len = msg->rsp_size - 10;
3073         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3074         ipmi_inc_stat(intf, handled_ipmb_responses);
3075         deliver_response(recv_msg);
3076
3077         return 0;
3078 }
3079
3080 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3081                                    struct ipmi_smi_msg *msg)
3082 {
3083         struct cmd_rcvr          *rcvr;
3084         int                      rv = 0;
3085         unsigned char            netfn;
3086         unsigned char            cmd;
3087         unsigned char            chan;
3088         ipmi_user_t              user = NULL;
3089         struct ipmi_ipmb_addr    *ipmb_addr;
3090         struct ipmi_recv_msg     *recv_msg;
3091
3092         if (msg->rsp_size < 10) {
3093                 /* Message not big enough, just ignore it. */
3094                 ipmi_inc_stat(intf, invalid_commands);
3095                 return 0;
3096         }
3097
3098         if (msg->rsp[2] != 0) {
3099                 /* An error getting the response, just ignore it. */
3100                 return 0;
3101         }
3102
3103         netfn = msg->rsp[4] >> 2;
3104         cmd = msg->rsp[8];
3105         chan = msg->rsp[3] & 0xf;
3106
3107         rcu_read_lock();
3108         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3109         if (rcvr) {
3110                 user = rcvr->user;
3111                 kref_get(&user->refcount);
3112         } else
3113                 user = NULL;
3114         rcu_read_unlock();
3115
3116         if (user == NULL) {
3117                 /* We didn't find a user, deliver an error response. */
3118                 ipmi_inc_stat(intf, unhandled_commands);
3119
3120                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3121                 msg->data[1] = IPMI_SEND_MSG_CMD;
3122                 msg->data[2] = msg->rsp[3];
3123                 msg->data[3] = msg->rsp[6];
3124                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3125                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3126                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3127                 /* rqseq/lun */
3128                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3129                 msg->data[8] = msg->rsp[8]; /* cmd */
3130                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3131                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3132                 msg->data_size = 11;
3133
3134 #ifdef DEBUG_MSGING
3135         {
3136                 int m;
3137                 printk("Invalid command:");
3138                 for (m = 0; m < msg->data_size; m++)
3139                         printk(" %2.2x", msg->data[m]);
3140                 printk("\n");
3141         }
3142 #endif
3143                 rcu_read_lock();
3144                 if (!intf->in_shutdown) {
3145                         smi_send(intf, intf->handlers, msg, 0);
3146                         /*
3147                          * We used the message, so return the value
3148                          * that causes it to not be freed or
3149                          * queued.
3150                          */
3151                         rv = -1;
3152                 }
3153                 rcu_read_unlock();
3154         } else {
3155                 /* Deliver the message to the user. */
3156                 ipmi_inc_stat(intf, handled_commands);
3157
3158                 recv_msg = ipmi_alloc_recv_msg();
3159                 if (!recv_msg) {
3160                         /*
3161                          * We couldn't allocate memory for the
3162                          * message, so requeue it for handling
3163                          * later.
3164                          */
3165                         rv = 1;
3166                         kref_put(&user->refcount, free_user);
3167                 } else {
3168                         /* Extract the source address from the data. */
3169                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3170                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3171                         ipmb_addr->slave_addr = msg->rsp[6];
3172                         ipmb_addr->lun = msg->rsp[7] & 3;
3173                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3174
3175                         /*
3176                          * Extract the rest of the message information
3177                          * from the IPMB header.
3178                          */
3179                         recv_msg->user = user;
3180                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3181                         recv_msg->msgid = msg->rsp[7] >> 2;
3182                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3183                         recv_msg->msg.cmd = msg->rsp[8];
3184                         recv_msg->msg.data = recv_msg->msg_data;
3185
3186                         /*
3187                          * We chop off 10, not 9 bytes because the checksum
3188                          * at the end also needs to be removed.
3189                          */
3190                         recv_msg->msg.data_len = msg->rsp_size - 10;
3191                         memcpy(recv_msg->msg_data,
3192                                &(msg->rsp[9]),
3193                                msg->rsp_size - 10);
3194                         deliver_response(recv_msg);
3195                 }
3196         }
3197
3198         return rv;
3199 }
3200
3201 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3202                                   struct ipmi_smi_msg *msg)
3203 {
3204         struct ipmi_lan_addr  lan_addr;
3205         struct ipmi_recv_msg  *recv_msg;
3206
3207
3208         /*
3209          * This is 13, not 12, because the response must contain a
3210          * completion code.
3211          */
3212         if (msg->rsp_size < 13) {
3213                 /* Message not big enough, just ignore it. */
3214                 ipmi_inc_stat(intf, invalid_lan_responses);
3215                 return 0;
3216         }
3217
3218         if (msg->rsp[2] != 0) {
3219                 /* An error getting the response, just ignore it. */
3220                 return 0;
3221         }
3222
3223         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3224         lan_addr.session_handle = msg->rsp[4];
3225         lan_addr.remote_SWID = msg->rsp[8];
3226         lan_addr.local_SWID = msg->rsp[5];
3227         lan_addr.channel = msg->rsp[3] & 0x0f;
3228         lan_addr.privilege = msg->rsp[3] >> 4;
3229         lan_addr.lun = msg->rsp[9] & 3;
3230
3231         /*
3232          * It's a response from a remote entity.  Look up the sequence
3233          * number and handle the response.
3234          */
3235         if (intf_find_seq(intf,
3236                           msg->rsp[9] >> 2,
3237                           msg->rsp[3] & 0x0f,
3238                           msg->rsp[10],
3239                           (msg->rsp[6] >> 2) & (~1),
3240                           (struct ipmi_addr *) &(lan_addr),
3241                           &recv_msg)) {
3242                 /*
3243                  * We were unable to find the sequence number,
3244                  * so just nuke the message.
3245                  */
3246                 ipmi_inc_stat(intf, unhandled_lan_responses);
3247                 return 0;
3248         }
3249
3250         memcpy(recv_msg->msg_data,
3251                &(msg->rsp[11]),
3252                msg->rsp_size - 11);
3253         /*
3254          * The other fields matched, so no need to set them, except
3255          * for netfn, which needs to be the response that was
3256          * returned, not the request value.
3257          */
3258         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3259         recv_msg->msg.data = recv_msg->msg_data;
3260         recv_msg->msg.data_len = msg->rsp_size - 12;
3261         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3262         ipmi_inc_stat(intf, handled_lan_responses);
3263         deliver_response(recv_msg);
3264
3265         return 0;
3266 }
3267
3268 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3269                                   struct ipmi_smi_msg *msg)
3270 {
3271         struct cmd_rcvr          *rcvr;
3272         int                      rv = 0;
3273         unsigned char            netfn;
3274         unsigned char            cmd;
3275         unsigned char            chan;
3276         ipmi_user_t              user = NULL;
3277         struct ipmi_lan_addr     *lan_addr;
3278         struct ipmi_recv_msg     *recv_msg;
3279
3280         if (msg->rsp_size < 12) {
3281                 /* Message not big enough, just ignore it. */
3282                 ipmi_inc_stat(intf, invalid_commands);
3283                 return 0;
3284         }
3285
3286         if (msg->rsp[2] != 0) {
3287                 /* An error getting the response, just ignore it. */
3288                 return 0;
3289         }
3290
3291         netfn = msg->rsp[6] >> 2;
3292         cmd = msg->rsp[10];
3293         chan = msg->rsp[3] & 0xf;
3294
3295         rcu_read_lock();
3296         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3297         if (rcvr) {
3298                 user = rcvr->user;
3299                 kref_get(&user->refcount);
3300         } else
3301                 user = NULL;
3302         rcu_read_unlock();
3303
3304         if (user == NULL) {
3305                 /* We didn't find a user, just give up. */
3306                 ipmi_inc_stat(intf, unhandled_commands);
3307
3308                 /*
3309                  * Don't do anything with these messages, just allow
3310                  * them to be freed.
3311                  */
3312                 rv = 0;
3313         } else {
3314                 /* Deliver the message to the user. */
3315                 ipmi_inc_stat(intf, handled_commands);
3316
3317                 recv_msg = ipmi_alloc_recv_msg();
3318                 if (!recv_msg) {
3319                         /*
3320                          * We couldn't allocate memory for the
3321                          * message, so requeue it for handling later.
3322                          */
3323                         rv = 1;
3324                         kref_put(&user->refcount, free_user);
3325                 } else {
3326                         /* Extract the source address from the data. */
3327                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3328                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3329                         lan_addr->session_handle = msg->rsp[4];
3330                         lan_addr->remote_SWID = msg->rsp[8];
3331                         lan_addr->local_SWID = msg->rsp[5];
3332                         lan_addr->lun = msg->rsp[9] & 3;
3333                         lan_addr->channel = msg->rsp[3] & 0xf;
3334                         lan_addr->privilege = msg->rsp[3] >> 4;
3335
3336                         /*
3337                          * Extract the rest of the message information
3338                          * from the IPMB header.
3339                          */
3340                         recv_msg->user = user;
3341                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3342                         recv_msg->msgid = msg->rsp[9] >> 2;
3343                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3344                         recv_msg->msg.cmd = msg->rsp[10];
3345                         recv_msg->msg.data = recv_msg->msg_data;
3346
3347                         /*
3348                          * We chop off 12, not 11 bytes because the checksum
3349                          * at the end also needs to be removed.
3350                          */
3351                         recv_msg->msg.data_len = msg->rsp_size - 12;
3352                         memcpy(recv_msg->msg_data,
3353                                &(msg->rsp[11]),
3354                                msg->rsp_size - 12);
3355                         deliver_response(recv_msg);
3356                 }
3357         }
3358
3359         return rv;
3360 }
3361
3362 /*
3363  * This routine will handle "Get Message" command responses with
3364  * channels that use an OEM Medium. The message format belongs to
3365  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3366  * Chapter 22, sections 22.6 and 22.24 for more details.
3367  */
3368 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3369                                   struct ipmi_smi_msg *msg)
3370 {
3371         struct cmd_rcvr       *rcvr;
3372         int                   rv = 0;
3373         unsigned char         netfn;
3374         unsigned char         cmd;
3375         unsigned char         chan;
3376         ipmi_user_t           user = NULL;
3377         struct ipmi_system_interface_addr *smi_addr;
3378         struct ipmi_recv_msg  *recv_msg;
3379
3380         /*
3381          * We expect the OEM SW to perform error checking
3382          * so we just do some basic sanity checks
3383          */
3384         if (msg->rsp_size < 4) {
3385                 /* Message not big enough, just ignore it. */
3386                 ipmi_inc_stat(intf, invalid_commands);
3387                 return 0;
3388         }
3389
3390         if (msg->rsp[2] != 0) {
3391                 /* An error getting the response, just ignore it. */
3392                 return 0;
3393         }
3394
3395         /*
3396          * This is an OEM Message so the OEM needs to know how
3397          * handle the message. We do no interpretation.
3398          */
3399         netfn = msg->rsp[0] >> 2;
3400         cmd = msg->rsp[1];
3401         chan = msg->rsp[3] & 0xf;
3402
3403         rcu_read_lock();
3404         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3405         if (rcvr) {
3406                 user = rcvr->user;
3407                 kref_get(&user->refcount);
3408         } else
3409                 user = NULL;
3410         rcu_read_unlock();
3411
3412         if (user == NULL) {
3413                 /* We didn't find a user, just give up. */
3414                 ipmi_inc_stat(intf, unhandled_commands);
3415
3416                 /*
3417                  * Don't do anything with these messages, just allow
3418                  * them to be freed.
3419                  */
3420
3421                 rv = 0;
3422         } else {
3423                 /* Deliver the message to the user. */
3424                 ipmi_inc_stat(intf, handled_commands);
3425
3426                 recv_msg = ipmi_alloc_recv_msg();
3427                 if (!recv_msg) {
3428                         /*
3429                          * We couldn't allocate memory for the
3430                          * message, so requeue it for handling
3431                          * later.
3432                          */
3433                         rv = 1;
3434                         kref_put(&user->refcount, free_user);
3435                 } else {
3436                         /*
3437                          * OEM Messages are expected to be delivered via
3438                          * the system interface to SMS software.  We might
3439                          * need to visit this again depending on OEM
3440                          * requirements
3441                          */
3442                         smi_addr = ((struct ipmi_system_interface_addr *)
3443                                     &(recv_msg->addr));
3444                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3445                         smi_addr->channel = IPMI_BMC_CHANNEL;
3446                         smi_addr->lun = msg->rsp[0] & 3;
3447
3448                         recv_msg->user = user;
3449                         recv_msg->user_msg_data = NULL;
3450                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3451                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3452                         recv_msg->msg.cmd = msg->rsp[1];
3453                         recv_msg->msg.data = recv_msg->msg_data;
3454
3455                         /*
3456                          * The message starts at byte 4 which follows the
3457                          * the Channel Byte in the "GET MESSAGE" command
3458                          */
3459                         recv_msg->msg.data_len = msg->rsp_size - 4;
3460                         memcpy(recv_msg->msg_data,
3461                                &(msg->rsp[4]),
3462                                msg->rsp_size - 4);
3463                         deliver_response(recv_msg);
3464                 }
3465         }
3466
3467         return rv;
3468 }
3469
3470 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3471                                      struct ipmi_smi_msg  *msg)
3472 {
3473         struct ipmi_system_interface_addr *smi_addr;
3474
3475         recv_msg->msgid = 0;
3476         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3477         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3478         smi_addr->channel = IPMI_BMC_CHANNEL;
3479         smi_addr->lun = msg->rsp[0] & 3;
3480         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3481         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3482         recv_msg->msg.cmd = msg->rsp[1];
3483         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3484         recv_msg->msg.data = recv_msg->msg_data;
3485         recv_msg->msg.data_len = msg->rsp_size - 3;
3486 }
3487
3488 static int handle_read_event_rsp(ipmi_smi_t          intf,
3489                                  struct ipmi_smi_msg *msg)
3490 {
3491         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3492         struct list_head     msgs;
3493         ipmi_user_t          user;
3494         int                  rv = 0;
3495         int                  deliver_count = 0;
3496         unsigned long        flags;
3497
3498         if (msg->rsp_size < 19) {
3499                 /* Message is too small to be an IPMB event. */
3500                 ipmi_inc_stat(intf, invalid_events);
3501                 return 0;
3502         }
3503
3504         if (msg->rsp[2] != 0) {
3505                 /* An error getting the event, just ignore it. */
3506                 return 0;
3507         }
3508
3509         INIT_LIST_HEAD(&msgs);
3510
3511         spin_lock_irqsave(&intf->events_lock, flags);
3512
3513         ipmi_inc_stat(intf, events);
3514
3515         /*
3516          * Allocate and fill in one message for every user that is
3517          * getting events.
3518          */
3519         rcu_read_lock();
3520         list_for_each_entry_rcu(user, &intf->users, link) {
3521                 if (!user->gets_events)
3522                         continue;
3523
3524                 recv_msg = ipmi_alloc_recv_msg();
3525                 if (!recv_msg) {
3526                         rcu_read_unlock();
3527                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3528                                                  link) {
3529                                 list_del(&recv_msg->link);
3530                                 ipmi_free_recv_msg(recv_msg);
3531                         }
3532                         /*
3533                          * We couldn't allocate memory for the
3534                          * message, so requeue it for handling
3535                          * later.
3536                          */
3537                         rv = 1;
3538                         goto out;
3539                 }
3540
3541                 deliver_count++;
3542
3543                 copy_event_into_recv_msg(recv_msg, msg);
3544                 recv_msg->user = user;
3545                 kref_get(&user->refcount);
3546                 list_add_tail(&(recv_msg->link), &msgs);
3547         }
3548         rcu_read_unlock();
3549
3550         if (deliver_count) {
3551                 /* Now deliver all the messages. */
3552                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3553                         list_del(&recv_msg->link);
3554                         deliver_response(recv_msg);
3555                 }
3556         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3557                 /*
3558                  * No one to receive the message, put it in queue if there's
3559                  * not already too many things in the queue.
3560                  */
3561                 recv_msg = ipmi_alloc_recv_msg();
3562                 if (!recv_msg) {
3563                         /*
3564                          * We couldn't allocate memory for the
3565                          * message, so requeue it for handling
3566                          * later.
3567                          */
3568                         rv = 1;
3569                         goto out;
3570                 }
3571
3572                 copy_event_into_recv_msg(recv_msg, msg);
3573                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3574                 intf->waiting_events_count++;
3575         } else if (!intf->event_msg_printed) {
3576                 /*
3577                  * There's too many things in the queue, discard this
3578                  * message.
3579                  */
3580                 printk(KERN_WARNING PFX "Event queue full, discarding"
3581                        " incoming events\n");
3582                 intf->event_msg_printed = 1;
3583         }
3584
3585  out:
3586         spin_unlock_irqrestore(&(intf->events_lock), flags);
3587
3588         return rv;
3589 }
3590
3591 static int handle_bmc_rsp(ipmi_smi_t          intf,
3592                           struct ipmi_smi_msg *msg)
3593 {
3594         struct ipmi_recv_msg *recv_msg;
3595         struct ipmi_user     *user;
3596
3597         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3598         if (recv_msg == NULL) {
3599                 printk(KERN_WARNING
3600                        "IPMI message received with no owner. This\n"
3601                        "could be because of a malformed message, or\n"
3602                        "because of a hardware error.  Contact your\n"
3603                        "hardware vender for assistance\n");
3604                 return 0;
3605         }
3606
3607         user = recv_msg->user;
3608         /* Make sure the user still exists. */
3609         if (user && !user->valid) {
3610                 /* The user for the message went away, so give up. */
3611                 ipmi_inc_stat(intf, unhandled_local_responses);
3612                 ipmi_free_recv_msg(recv_msg);
3613         } else {
3614                 struct ipmi_system_interface_addr *smi_addr;
3615
3616                 ipmi_inc_stat(intf, handled_local_responses);
3617                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3618                 recv_msg->msgid = msg->msgid;
3619                 smi_addr = ((struct ipmi_system_interface_addr *)
3620                             &(recv_msg->addr));
3621                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3622                 smi_addr->channel = IPMI_BMC_CHANNEL;
3623                 smi_addr->lun = msg->rsp[0] & 3;
3624                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3625                 recv_msg->msg.cmd = msg->rsp[1];
3626                 memcpy(recv_msg->msg_data,
3627                        &(msg->rsp[2]),
3628                        msg->rsp_size - 2);
3629                 recv_msg->msg.data = recv_msg->msg_data;
3630                 recv_msg->msg.data_len = msg->rsp_size - 2;
3631                 deliver_response(recv_msg);
3632         }
3633
3634         return 0;
3635 }
3636
3637 /*
3638  * Handle a received message.  Return 1 if the message should be requeued,
3639  * 0 if the message should be freed, or -1 if the message should not
3640  * be freed or requeued.
3641  */
3642 static int handle_one_recv_msg(ipmi_smi_t          intf,
3643                                struct ipmi_smi_msg *msg)
3644 {
3645         int requeue;
3646         int chan;
3647
3648 #ifdef DEBUG_MSGING
3649         int m;
3650         printk("Recv:");
3651         for (m = 0; m < msg->rsp_size; m++)
3652                 printk(" %2.2x", msg->rsp[m]);
3653         printk("\n");
3654 #endif
3655         if (msg->rsp_size < 2) {
3656                 /* Message is too small to be correct. */
3657                 printk(KERN_WARNING PFX "BMC returned to small a message"
3658                        " for netfn %x cmd %x, got %d bytes\n",
3659                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3660
3661                 /* Generate an error response for the message. */
3662                 msg->rsp[0] = msg->data[0] | (1 << 2);
3663                 msg->rsp[1] = msg->data[1];
3664                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3665                 msg->rsp_size = 3;
3666         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3667                    || (msg->rsp[1] != msg->data[1])) {
3668                 /*
3669                  * The NetFN and Command in the response is not even
3670                  * marginally correct.
3671                  */
3672                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3673                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3674                        (msg->data[0] >> 2) | 1, msg->data[1],
3675                        msg->rsp[0] >> 2, msg->rsp[1]);
3676
3677                 /* Generate an error response for the message. */
3678                 msg->rsp[0] = msg->data[0] | (1 << 2);
3679                 msg->rsp[1] = msg->data[1];
3680                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3681                 msg->rsp_size = 3;
3682         }
3683
3684         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3685             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3686             && (msg->user_data != NULL)) {
3687                 /*
3688                  * It's a response to a response we sent.  For this we
3689                  * deliver a send message response to the user.
3690                  */
3691                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3692
3693                 requeue = 0;
3694                 if (msg->rsp_size < 2)
3695                         /* Message is too small to be correct. */
3696                         goto out;
3697
3698                 chan = msg->data[2] & 0x0f;
3699                 if (chan >= IPMI_MAX_CHANNELS)
3700                         /* Invalid channel number */
3701                         goto out;
3702
3703                 if (!recv_msg)
3704                         goto out;
3705
3706                 /* Make sure the user still exists. */
3707                 if (!recv_msg->user || !recv_msg->user->valid)
3708                         goto out;
3709
3710                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3711                 recv_msg->msg.data = recv_msg->msg_data;
3712                 recv_msg->msg.data_len = 1;
3713                 recv_msg->msg_data[0] = msg->rsp[2];
3714                 deliver_response(recv_msg);
3715         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3716                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3717                 /* It's from the receive queue. */
3718                 chan = msg->rsp[3] & 0xf;
3719                 if (chan >= IPMI_MAX_CHANNELS) {
3720                         /* Invalid channel number */
3721                         requeue = 0;
3722                         goto out;
3723                 }
3724
3725                 /*
3726                  * We need to make sure the channels have been initialized.
3727                  * The channel_handler routine will set the "curr_channel"
3728                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3729                  * channels for this interface have been initialized.
3730                  */
3731                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3732                         requeue = 0; /* Throw the message away */
3733                         goto out;
3734                 }
3735
3736                 switch (intf->channels[chan].medium) {
3737                 case IPMI_CHANNEL_MEDIUM_IPMB:
3738                         if (msg->rsp[4] & 0x04) {
3739                                 /*
3740                                  * It's a response, so find the
3741                                  * requesting message and send it up.
3742                                  */
3743                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3744                         } else {
3745                                 /*
3746                                  * It's a command to the SMS from some other
3747                                  * entity.  Handle that.
3748                                  */
3749                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3750                         }
3751                         break;
3752
3753                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3754                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3755                         if (msg->rsp[6] & 0x04) {
3756                                 /*
3757                                  * It's a response, so find the
3758                                  * requesting message and send it up.
3759                                  */
3760                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3761                         } else {
3762                                 /*
3763                                  * It's a command to the SMS from some other
3764                                  * entity.  Handle that.
3765                                  */
3766                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3767                         }
3768                         break;
3769
3770                 default:
3771                         /* Check for OEM Channels.  Clients had better
3772                            register for these commands. */
3773                         if ((intf->channels[chan].medium
3774                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3775                             && (intf->channels[chan].medium
3776                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3777                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3778                         } else {
3779                                 /*
3780                                  * We don't handle the channel type, so just
3781                                  * free the message.
3782                                  */
3783                                 requeue = 0;
3784                         }
3785                 }
3786
3787         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3788                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3789                 /* It's an asynchronous event. */
3790                 requeue = handle_read_event_rsp(intf, msg);
3791         } else {
3792                 /* It's a response from the local BMC. */
3793                 requeue = handle_bmc_rsp(intf, msg);
3794         }
3795
3796  out:
3797         return requeue;
3798 }
3799
3800 /*
3801  * If there are messages in the queue or pretimeouts, handle them.
3802  */
3803 static void handle_new_recv_msgs(ipmi_smi_t intf)
3804 {
3805         struct ipmi_smi_msg  *smi_msg;
3806         unsigned long        flags = 0;
3807         int                  rv;
3808         int                  run_to_completion = intf->run_to_completion;
3809
3810         /* See if any waiting messages need to be processed. */
3811         if (!run_to_completion)
3812                 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3813         while (!list_empty(&intf->waiting_rcv_msgs)) {
3814                 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3815                                      struct ipmi_smi_msg, link);
3816                 if (!run_to_completion)
3817                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3818                                                flags);
3819                 rv = handle_one_recv_msg(intf, smi_msg);
3820                 if (!run_to_completion)
3821                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3822                 if (rv > 0) {
3823                         /*
3824                          * To preserve message order, quit if we
3825                          * can't handle a message.
3826                          */
3827                         break;
3828                 } else {
3829                         list_del(&smi_msg->link);
3830                         if (rv == 0)
3831                                 /* Message handled */
3832                                 ipmi_free_smi_msg(smi_msg);
3833                         /* If rv < 0, fatal error, del but don't free. */
3834                 }
3835         }
3836         if (!run_to_completion)
3837                 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3838
3839         /*
3840          * If the pretimout count is non-zero, decrement one from it and
3841          * deliver pretimeouts to all the users.
3842          */
3843         if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3844                 ipmi_user_t user;
3845
3846                 rcu_read_lock();
3847                 list_for_each_entry_rcu(user, &intf->users, link) {
3848                         if (user->handler->ipmi_watchdog_pretimeout)
3849                                 user->handler->ipmi_watchdog_pretimeout(
3850                                         user->handler_data);
3851                 }
3852                 rcu_read_unlock();
3853         }
3854 }
3855
3856 static void smi_recv_tasklet(unsigned long val)
3857 {
3858         unsigned long flags = 0; /* keep us warning-free. */
3859         ipmi_smi_t intf = (ipmi_smi_t) val;
3860         int run_to_completion = intf->run_to_completion;
3861         struct ipmi_smi_msg *newmsg = NULL;
3862
3863         /*
3864          * Start the next message if available.
3865          *
3866          * Do this here, not in the actual receiver, because we may deadlock
3867          * because the lower layer is allowed to hold locks while calling
3868          * message delivery.
3869          */
3870         if (!run_to_completion)
3871                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3872         if (intf->curr_msg == NULL && !intf->in_shutdown) {
3873                 struct list_head *entry = NULL;
3874
3875                 /* Pick the high priority queue first. */
3876                 if (!list_empty(&intf->hp_xmit_msgs))
3877                         entry = intf->hp_xmit_msgs.next;
3878                 else if (!list_empty(&intf->xmit_msgs))
3879                         entry = intf->xmit_msgs.next;
3880
3881                 if (entry) {
3882                         list_del(entry);
3883                         newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3884                         intf->curr_msg = newmsg;
3885                 }
3886         }
3887         if (!run_to_completion)
3888                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3889         if (newmsg)
3890                 intf->handlers->sender(intf->send_info, newmsg);
3891
3892         handle_new_recv_msgs(intf);
3893 }
3894
3895 /* Handle a new message from the lower layer. */
3896 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3897                            struct ipmi_smi_msg *msg)
3898 {
3899         unsigned long flags = 0; /* keep us warning-free. */
3900         int run_to_completion = intf->run_to_completion;
3901
3902         if ((msg->data_size >= 2)
3903             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3904             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3905             && (msg->user_data == NULL)) {
3906
3907                 if (intf->in_shutdown)
3908                         goto free_msg;
3909
3910                 /*
3911                  * This is the local response to a command send, start
3912                  * the timer for these.  The user_data will not be
3913                  * NULL if this is a response send, and we will let
3914                  * response sends just go through.
3915                  */
3916
3917                 /*
3918                  * Check for errors, if we get certain errors (ones
3919                  * that mean basically we can try again later), we
3920                  * ignore them and start the timer.  Otherwise we
3921                  * report the error immediately.
3922                  */
3923                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3924                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3925                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3926                     && (msg->rsp[2] != IPMI_BUS_ERR)
3927                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3928                         int chan = msg->rsp[3] & 0xf;
3929
3930                         /* Got an error sending the message, handle it. */
3931                         if (chan >= IPMI_MAX_CHANNELS)
3932                                 ; /* This shouldn't happen */
3933                         else if ((intf->channels[chan].medium
3934                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3935                                  || (intf->channels[chan].medium
3936                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3937                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3938                         else
3939                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3940                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3941                 } else
3942                         /* The message was sent, start the timer. */
3943                         intf_start_seq_timer(intf, msg->msgid);
3944
3945 free_msg:
3946                 ipmi_free_smi_msg(msg);
3947         } else {
3948                 /*
3949                  * To preserve message order, we keep a queue and deliver from
3950                  * a tasklet.
3951                  */
3952                 if (!run_to_completion)
3953                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3954                 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3955                 if (!run_to_completion)
3956                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3957                                                flags);
3958         }
3959
3960         if (!run_to_completion)
3961                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3962         if (msg == intf->curr_msg)
3963                 intf->curr_msg = NULL;
3964         if (!run_to_completion)
3965                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3966
3967         if (run_to_completion)
3968                 smi_recv_tasklet((unsigned long) intf);
3969         else
3970                 tasklet_schedule(&intf->recv_tasklet);
3971 }
3972 EXPORT_SYMBOL(ipmi_smi_msg_received);
3973
3974 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3975 {
3976         if (intf->in_shutdown)
3977                 return;
3978
3979         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3980         tasklet_schedule(&intf->recv_tasklet);
3981 }
3982 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3983
3984 static struct ipmi_smi_msg *
3985 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3986                   unsigned char seq, long seqid)
3987 {
3988         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3989         if (!smi_msg)
3990                 /*
3991                  * If we can't allocate the message, then just return, we
3992                  * get 4 retries, so this should be ok.
3993                  */
3994                 return NULL;
3995
3996         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3997         smi_msg->data_size = recv_msg->msg.data_len;
3998         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3999
4000 #ifdef DEBUG_MSGING
4001         {
4002                 int m;
4003                 printk("Resend: ");
4004                 for (m = 0; m < smi_msg->data_size; m++)
4005                         printk(" %2.2x", smi_msg->data[m]);
4006                 printk("\n");
4007         }
4008 #endif
4009         return smi_msg;
4010 }
4011
4012 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4013                               struct list_head *timeouts, long timeout_period,
4014                               int slot, unsigned long *flags,
4015                               unsigned int *waiting_msgs)
4016 {
4017         struct ipmi_recv_msg     *msg;
4018         struct ipmi_smi_handlers *handlers;
4019
4020         if (intf->in_shutdown)
4021                 return;
4022
4023         if (!ent->inuse)
4024                 return;
4025
4026         ent->timeout -= timeout_period;
4027         if (ent->timeout > 0) {
4028                 (*waiting_msgs)++;
4029                 return;
4030         }
4031
4032         if (ent->retries_left == 0) {
4033                 /* The message has used all its retries. */
4034                 ent->inuse = 0;
4035                 msg = ent->recv_msg;
4036                 list_add_tail(&msg->link, timeouts);
4037                 if (ent->broadcast)
4038                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4039                 else if (is_lan_addr(&ent->recv_msg->addr))
4040                         ipmi_inc_stat(intf, timed_out_lan_commands);
4041                 else
4042                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
4043         } else {
4044                 struct ipmi_smi_msg *smi_msg;
4045                 /* More retries, send again. */
4046
4047                 (*waiting_msgs)++;
4048
4049                 /*
4050                  * Start with the max timer, set to normal timer after
4051                  * the message is sent.
4052                  */
4053                 ent->timeout = MAX_MSG_TIMEOUT;
4054                 ent->retries_left--;
4055                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4056                                             ent->seqid);
4057                 if (!smi_msg) {
4058                         if (is_lan_addr(&ent->recv_msg->addr))
4059                                 ipmi_inc_stat(intf,
4060                                               dropped_rexmit_lan_commands);
4061                         else
4062                                 ipmi_inc_stat(intf,
4063                                               dropped_rexmit_ipmb_commands);
4064                         return;
4065                 }
4066
4067                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4068
4069                 /*
4070                  * Send the new message.  We send with a zero
4071                  * priority.  It timed out, I doubt time is that
4072                  * critical now, and high priority messages are really
4073                  * only for messages to the local MC, which don't get
4074                  * resent.
4075                  */
4076                 handlers = intf->handlers;
4077                 if (handlers) {
4078                         if (is_lan_addr(&ent->recv_msg->addr))
4079                                 ipmi_inc_stat(intf,
4080                                               retransmitted_lan_commands);
4081                         else
4082                                 ipmi_inc_stat(intf,
4083                                               retransmitted_ipmb_commands);
4084
4085                         smi_send(intf, intf->handlers, smi_msg, 0);
4086                 } else
4087                         ipmi_free_smi_msg(smi_msg);
4088
4089                 spin_lock_irqsave(&intf->seq_lock, *flags);
4090         }
4091 }
4092
4093 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4094 {
4095         struct list_head     timeouts;
4096         struct ipmi_recv_msg *msg, *msg2;
4097         unsigned long        flags;
4098         int                  i;
4099         unsigned int         waiting_msgs = 0;
4100
4101         /*
4102          * Go through the seq table and find any messages that
4103          * have timed out, putting them in the timeouts
4104          * list.
4105          */
4106         INIT_LIST_HEAD(&timeouts);
4107         spin_lock_irqsave(&intf->seq_lock, flags);
4108         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4109                 check_msg_timeout(intf, &(intf->seq_table[i]),
4110                                   &timeouts, timeout_period, i,
4111                                   &flags, &waiting_msgs);
4112         spin_unlock_irqrestore(&intf->seq_lock, flags);
4113
4114         list_for_each_entry_safe(msg, msg2, &timeouts, link)
4115                 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4116
4117         /*
4118          * Maintenance mode handling.  Check the timeout
4119          * optimistically before we claim the lock.  It may
4120          * mean a timeout gets missed occasionally, but that
4121          * only means the timeout gets extended by one period
4122          * in that case.  No big deal, and it avoids the lock
4123          * most of the time.
4124          */
4125         if (intf->auto_maintenance_timeout > 0) {
4126                 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4127                 if (intf->auto_maintenance_timeout > 0) {
4128                         intf->auto_maintenance_timeout
4129                                 -= timeout_period;
4130                         if (!intf->maintenance_mode
4131                             && (intf->auto_maintenance_timeout <= 0)) {
4132                                 intf->maintenance_mode_enable = false;
4133                                 maintenance_mode_update(intf);
4134                         }
4135                 }
4136                 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4137                                        flags);
4138         }
4139
4140         tasklet_schedule(&intf->recv_tasklet);
4141
4142         return waiting_msgs;
4143 }
4144
4145 static void ipmi_request_event(ipmi_smi_t intf)
4146 {
4147         /* No event requests when in maintenance mode. */
4148         if (intf->maintenance_mode_enable)
4149                 return;
4150
4151         if (!intf->in_shutdown)
4152                 intf->handlers->request_events(intf->send_info);
4153 }
4154
4155 static struct timer_list ipmi_timer;
4156
4157 static atomic_t stop_operation;
4158
4159 static void ipmi_timeout(unsigned long data)
4160 {
4161         ipmi_smi_t intf;
4162         int nt = 0;
4163
4164         if (atomic_read(&stop_operation))
4165                 return;
4166
4167         rcu_read_lock();
4168         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4169                 int lnt = 0;
4170
4171                 if (atomic_read(&intf->event_waiters)) {
4172                         intf->ticks_to_req_ev--;
4173                         if (intf->ticks_to_req_ev == 0) {
4174                                 ipmi_request_event(intf);
4175                                 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4176                         }
4177                         lnt++;
4178                 }
4179
4180                 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4181
4182                 lnt = !!lnt;
4183                 if (lnt != intf->last_needs_timer &&
4184                                         intf->handlers->set_need_watch)
4185                         intf->handlers->set_need_watch(intf->send_info, lnt);
4186                 intf->last_needs_timer = lnt;
4187
4188                 nt += lnt;
4189         }
4190         rcu_read_unlock();
4191
4192         if (nt)
4193                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4194 }
4195
4196 static void need_waiter(ipmi_smi_t intf)
4197 {
4198         /* Racy, but worst case we start the timer twice. */
4199         if (!timer_pending(&ipmi_timer))
4200                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4201 }
4202
4203 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4204 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4205
4206 static void free_smi_msg(struct ipmi_smi_msg *msg)
4207 {
4208         atomic_dec(&smi_msg_inuse_count);
4209         kfree(msg);
4210 }
4211
4212 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4213 {
4214         struct ipmi_smi_msg *rv;
4215         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4216         if (rv) {
4217                 rv->done = free_smi_msg;
4218                 rv->user_data = NULL;
4219                 atomic_inc(&smi_msg_inuse_count);
4220         }
4221         return rv;
4222 }
4223 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4224
4225 static void free_recv_msg(struct ipmi_recv_msg *msg)
4226 {
4227         atomic_dec(&recv_msg_inuse_count);
4228         kfree(msg);
4229 }
4230
4231 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4232 {
4233         struct ipmi_recv_msg *rv;
4234
4235         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4236         if (rv) {
4237                 rv->user = NULL;
4238                 rv->done = free_recv_msg;
4239                 atomic_inc(&recv_msg_inuse_count);
4240         }
4241         return rv;
4242 }
4243
4244 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4245 {
4246         if (msg->user)
4247                 kref_put(&msg->user->refcount, free_user);
4248         msg->done(msg);
4249 }
4250 EXPORT_SYMBOL(ipmi_free_recv_msg);
4251
4252 #ifdef CONFIG_IPMI_PANIC_EVENT
4253
4254 static atomic_t panic_done_count = ATOMIC_INIT(0);
4255
4256 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4257 {
4258         atomic_dec(&panic_done_count);
4259 }
4260
4261 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4262 {
4263         atomic_dec(&panic_done_count);
4264 }
4265
4266 /*
4267  * Inside a panic, send a message and wait for a response.
4268  */
4269 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4270                                         struct ipmi_addr     *addr,
4271                                         struct kernel_ipmi_msg *msg)
4272 {
4273         struct ipmi_smi_msg  smi_msg;
4274         struct ipmi_recv_msg recv_msg;
4275         int rv;
4276
4277         smi_msg.done = dummy_smi_done_handler;
4278         recv_msg.done = dummy_recv_done_handler;
4279         atomic_add(2, &panic_done_count);
4280         rv = i_ipmi_request(NULL,
4281                             intf,
4282                             addr,
4283                             0,
4284                             msg,
4285                             intf,
4286                             &smi_msg,
4287                             &recv_msg,
4288                             0,
4289                             intf->channels[0].address,
4290                             intf->channels[0].lun,
4291                             0, 1); /* Don't retry, and don't wait. */
4292         if (rv)
4293                 atomic_sub(2, &panic_done_count);
4294         while (atomic_read(&panic_done_count) != 0)
4295                 ipmi_poll(intf);
4296 }
4297
4298 #ifdef CONFIG_IPMI_PANIC_STRING
4299 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4300 {
4301         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4302             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4303             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4304             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4305                 /* A get event receiver command, save it. */
4306                 intf->event_receiver = msg->msg.data[1];
4307                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4308         }
4309 }
4310
4311 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4312 {
4313         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4314             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4315             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4316             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4317                 /*
4318                  * A get device id command, save if we are an event
4319                  * receiver or generator.
4320                  */
4321                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4322                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4323         }
4324 }
4325 #endif
4326
4327 static void send_panic_events(char *str)
4328 {
4329         struct kernel_ipmi_msg            msg;
4330         ipmi_smi_t                        intf;
4331         unsigned char                     data[16];
4332         struct ipmi_system_interface_addr *si;
4333         struct ipmi_addr                  addr;
4334
4335         si = (struct ipmi_system_interface_addr *) &addr;
4336         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4337         si->channel = IPMI_BMC_CHANNEL;
4338         si->lun = 0;
4339
4340         /* Fill in an event telling that we have failed. */
4341         msg.netfn = 0x04; /* Sensor or Event. */
4342         msg.cmd = 2; /* Platform event command. */
4343         msg.data = data;
4344         msg.data_len = 8;
4345         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4346         data[1] = 0x03; /* This is for IPMI 1.0. */
4347         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4348         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4349         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4350
4351         /*
4352          * Put a few breadcrumbs in.  Hopefully later we can add more things
4353          * to make the panic events more useful.
4354          */
4355         if (str) {
4356                 data[3] = str[0];
4357                 data[6] = str[1];
4358                 data[7] = str[2];
4359         }
4360
4361         /* For every registered interface, send the event. */
4362         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4363                 if (!intf->handlers)
4364                         /* Interface is not ready. */
4365                         continue;
4366
4367                 intf->run_to_completion = 1;
4368                 /* Send the event announcing the panic. */
4369                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4370                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4371         }
4372
4373 #ifdef CONFIG_IPMI_PANIC_STRING
4374         /*
4375          * On every interface, dump a bunch of OEM event holding the
4376          * string.
4377          */
4378         if (!str)
4379                 return;
4380
4381         /* For every registered interface, send the event. */
4382         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4383                 char                  *p = str;
4384                 struct ipmi_ipmb_addr *ipmb;
4385                 int                   j;
4386
4387                 if (intf->intf_num == -1)
4388                         /* Interface was not ready yet. */
4389                         continue;
4390
4391                 /*
4392                  * intf_num is used as an marker to tell if the
4393                  * interface is valid.  Thus we need a read barrier to
4394                  * make sure data fetched before checking intf_num
4395                  * won't be used.
4396                  */
4397                 smp_rmb();
4398
4399                 /*
4400                  * First job here is to figure out where to send the
4401                  * OEM events.  There's no way in IPMI to send OEM
4402                  * events using an event send command, so we have to
4403                  * find the SEL to put them in and stick them in
4404                  * there.
4405                  */
4406
4407                 /* Get capabilities from the get device id. */
4408                 intf->local_sel_device = 0;
4409                 intf->local_event_generator = 0;
4410                 intf->event_receiver = 0;
4411
4412                 /* Request the device info from the local MC. */
4413                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4414                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4415                 msg.data = NULL;
4416                 msg.data_len = 0;
4417                 intf->null_user_handler = device_id_fetcher;
4418                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4419
4420                 if (intf->local_event_generator) {
4421                         /* Request the event receiver from the local MC. */
4422                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4423                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4424                         msg.data = NULL;
4425                         msg.data_len = 0;
4426                         intf->null_user_handler = event_receiver_fetcher;
4427                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4428                 }
4429                 intf->null_user_handler = NULL;
4430
4431                 /*
4432                  * Validate the event receiver.  The low bit must not
4433                  * be 1 (it must be a valid IPMB address), it cannot
4434                  * be zero, and it must not be my address.
4435                  */
4436                 if (((intf->event_receiver & 1) == 0)
4437                     && (intf->event_receiver != 0)
4438                     && (intf->event_receiver != intf->channels[0].address)) {
4439                         /*
4440                          * The event receiver is valid, send an IPMB
4441                          * message.
4442                          */
4443                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4444                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4445                         ipmb->channel = 0; /* FIXME - is this right? */
4446                         ipmb->lun = intf->event_receiver_lun;
4447                         ipmb->slave_addr = intf->event_receiver;
4448                 } else if (intf->local_sel_device) {
4449                         /*
4450                          * The event receiver was not valid (or was
4451                          * me), but I am an SEL device, just dump it
4452                          * in my SEL.
4453                          */
4454                         si = (struct ipmi_system_interface_addr *) &addr;
4455                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4456                         si->channel = IPMI_BMC_CHANNEL;
4457                         si->lun = 0;
4458                 } else
4459                         continue; /* No where to send the event. */
4460
4461                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4462                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4463                 msg.data = data;
4464                 msg.data_len = 16;
4465
4466                 j = 0;
4467                 while (*p) {
4468                         int size = strlen(p);
4469
4470                         if (size > 11)
4471                                 size = 11;
4472                         data[0] = 0;
4473                         data[1] = 0;
4474                         data[2] = 0xf0; /* OEM event without timestamp. */
4475                         data[3] = intf->channels[0].address;
4476                         data[4] = j++; /* sequence # */
4477                         /*
4478                          * Always give 11 bytes, so strncpy will fill
4479                          * it with zeroes for me.
4480                          */
4481                         strncpy(data+5, p, 11);
4482                         p += size;
4483
4484                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4485                 }
4486         }
4487 #endif /* CONFIG_IPMI_PANIC_STRING */
4488 }
4489 #endif /* CONFIG_IPMI_PANIC_EVENT */
4490
4491 static int has_panicked;
4492
4493 static int panic_event(struct notifier_block *this,
4494                        unsigned long         event,
4495                        void                  *ptr)
4496 {
4497         ipmi_smi_t intf;
4498
4499         if (has_panicked)
4500                 return NOTIFY_DONE;
4501         has_panicked = 1;
4502
4503         /* For every registered interface, set it to run to completion. */
4504         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4505                 if (!intf->handlers)
4506                         /* Interface is not ready. */
4507                         continue;
4508
4509                 intf->run_to_completion = 1;
4510                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4511         }
4512
4513 #ifdef CONFIG_IPMI_PANIC_EVENT
4514         send_panic_events(ptr);
4515 #endif
4516
4517         return NOTIFY_DONE;
4518 }
4519
4520 static struct notifier_block panic_block = {
4521         .notifier_call  = panic_event,
4522         .next           = NULL,
4523         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4524 };
4525
4526 static int ipmi_init_msghandler(void)
4527 {
4528         int rv;
4529
4530         if (initialized)
4531                 return 0;
4532
4533         rv = driver_register(&ipmidriver.driver);
4534         if (rv) {
4535                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4536                 return rv;
4537         }
4538
4539         printk(KERN_INFO "ipmi message handler version "
4540                IPMI_DRIVER_VERSION "\n");
4541
4542 #ifdef CONFIG_PROC_FS
4543         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4544         if (!proc_ipmi_root) {
4545             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4546             driver_unregister(&ipmidriver.driver);
4547             return -ENOMEM;
4548         }
4549
4550 #endif /* CONFIG_PROC_FS */
4551
4552         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4553         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4554
4555         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4556
4557         initialized = 1;
4558
4559         return 0;
4560 }
4561
4562 static int __init ipmi_init_msghandler_mod(void)
4563 {
4564         ipmi_init_msghandler();
4565         return 0;
4566 }
4567
4568 static void __exit cleanup_ipmi(void)
4569 {
4570         int count;
4571
4572         if (!initialized)
4573                 return;
4574
4575         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4576
4577         /*
4578          * This can't be called if any interfaces exist, so no worry
4579          * about shutting down the interfaces.
4580          */
4581
4582         /*
4583          * Tell the timer to stop, then wait for it to stop.  This
4584          * avoids problems with race conditions removing the timer
4585          * here.
4586          */
4587         atomic_inc(&stop_operation);
4588         del_timer_sync(&ipmi_timer);
4589
4590 #ifdef CONFIG_PROC_FS
4591         proc_remove(proc_ipmi_root);
4592 #endif /* CONFIG_PROC_FS */
4593
4594         driver_unregister(&ipmidriver.driver);
4595
4596         initialized = 0;
4597
4598         /* Check for buffer leaks. */
4599         count = atomic_read(&smi_msg_inuse_count);
4600         if (count != 0)
4601                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4602                        count);
4603         count = atomic_read(&recv_msg_inuse_count);
4604         if (count != 0)
4605                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4606                        count);
4607 }
4608 module_exit(cleanup_ipmi);
4609
4610 module_init(ipmi_init_msghandler_mod);
4611 MODULE_LICENSE("GPL");
4612 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4613 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4614                    " interface.");
4615 MODULE_VERSION(IPMI_DRIVER_VERSION);