Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / char / ipmi / ipmi_kcs_sm.c
1 /*
2  * ipmi_kcs_sm.c
3  *
4  * State machine for handling IPMI KCS interfaces.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 /*
35  * This state machine is taken from the state machine in the IPMI spec,
36  * pretty much verbatim.  If you have questions about the states, see
37  * that document.
38  */
39
40 #include <linux/kernel.h> /* For printk. */
41 #include <linux/module.h>
42 #include <linux/moduleparam.h>
43 #include <linux/string.h>
44 #include <linux/jiffies.h>
45 #include <linux/ipmi_msgdefs.h>         /* for completion codes */
46 #include "ipmi_si_sm.h"
47
48 /* kcs_debug is a bit-field
49  *      KCS_DEBUG_ENABLE -      turned on for now
50  *      KCS_DEBUG_MSG    -      commands and their responses
51  *      KCS_DEBUG_STATES -      state machine
52  */
53 #define KCS_DEBUG_STATES        4
54 #define KCS_DEBUG_MSG           2
55 #define KCS_DEBUG_ENABLE        1
56
57 static int kcs_debug;
58 module_param(kcs_debug, int, 0644);
59 MODULE_PARM_DESC(kcs_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
60
61 /* The states the KCS driver may be in. */
62 enum kcs_states {
63         /* The KCS interface is currently doing nothing. */
64         KCS_IDLE,
65
66         /*
67          * We are starting an operation.  The data is in the output
68          * buffer, but nothing has been done to the interface yet.  This
69          * was added to the state machine in the spec to wait for the
70          * initial IBF.
71          */
72         KCS_START_OP,
73
74         /* We have written a write cmd to the interface. */
75         KCS_WAIT_WRITE_START,
76
77         /* We are writing bytes to the interface. */
78         KCS_WAIT_WRITE,
79
80         /*
81          * We have written the write end cmd to the interface, and
82          * still need to write the last byte.
83          */
84         KCS_WAIT_WRITE_END,
85
86         /* We are waiting to read data from the interface. */
87         KCS_WAIT_READ,
88
89         /*
90          * State to transition to the error handler, this was added to
91          * the state machine in the spec to be sure IBF was there.
92          */
93         KCS_ERROR0,
94
95         /*
96          * First stage error handler, wait for the interface to
97          * respond.
98          */
99         KCS_ERROR1,
100
101         /*
102          * The abort cmd has been written, wait for the interface to
103          * respond.
104          */
105         KCS_ERROR2,
106
107         /*
108          * We wrote some data to the interface, wait for it to switch
109          * to read mode.
110          */
111         KCS_ERROR3,
112
113         /* The hardware failed to follow the state machine. */
114         KCS_HOSED
115 };
116
117 #define MAX_KCS_READ_SIZE IPMI_MAX_MSG_LENGTH
118 #define MAX_KCS_WRITE_SIZE IPMI_MAX_MSG_LENGTH
119
120 /* Timeouts in microseconds. */
121 #define IBF_RETRY_TIMEOUT (5*USEC_PER_SEC)
122 #define OBF_RETRY_TIMEOUT (5*USEC_PER_SEC)
123 #define MAX_ERROR_RETRIES 10
124 #define ERROR0_OBF_WAIT_JIFFIES (2*HZ)
125
126 struct si_sm_data {
127         enum kcs_states  state;
128         struct si_sm_io *io;
129         unsigned char    write_data[MAX_KCS_WRITE_SIZE];
130         int              write_pos;
131         int              write_count;
132         int              orig_write_count;
133         unsigned char    read_data[MAX_KCS_READ_SIZE];
134         int              read_pos;
135         int              truncated;
136
137         unsigned int  error_retries;
138         long          ibf_timeout;
139         long          obf_timeout;
140         unsigned long  error0_timeout;
141 };
142
143 static unsigned int init_kcs_data(struct si_sm_data *kcs,
144                                   struct si_sm_io *io)
145 {
146         kcs->state = KCS_IDLE;
147         kcs->io = io;
148         kcs->write_pos = 0;
149         kcs->write_count = 0;
150         kcs->orig_write_count = 0;
151         kcs->read_pos = 0;
152         kcs->error_retries = 0;
153         kcs->truncated = 0;
154         kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
155         kcs->obf_timeout = OBF_RETRY_TIMEOUT;
156
157         /* Reserve 2 I/O bytes. */
158         return 2;
159 }
160
161 static inline unsigned char read_status(struct si_sm_data *kcs)
162 {
163         return kcs->io->inputb(kcs->io, 1);
164 }
165
166 static inline unsigned char read_data(struct si_sm_data *kcs)
167 {
168         return kcs->io->inputb(kcs->io, 0);
169 }
170
171 static inline void write_cmd(struct si_sm_data *kcs, unsigned char data)
172 {
173         kcs->io->outputb(kcs->io, 1, data);
174 }
175
176 static inline void write_data(struct si_sm_data *kcs, unsigned char data)
177 {
178         kcs->io->outputb(kcs->io, 0, data);
179 }
180
181 /* Control codes. */
182 #define KCS_GET_STATUS_ABORT    0x60
183 #define KCS_WRITE_START         0x61
184 #define KCS_WRITE_END           0x62
185 #define KCS_READ_BYTE           0x68
186
187 /* Status bits. */
188 #define GET_STATUS_STATE(status) (((status) >> 6) & 0x03)
189 #define KCS_IDLE_STATE  0
190 #define KCS_READ_STATE  1
191 #define KCS_WRITE_STATE 2
192 #define KCS_ERROR_STATE 3
193 #define GET_STATUS_ATN(status) ((status) & 0x04)
194 #define GET_STATUS_IBF(status) ((status) & 0x02)
195 #define GET_STATUS_OBF(status) ((status) & 0x01)
196
197
198 static inline void write_next_byte(struct si_sm_data *kcs)
199 {
200         write_data(kcs, kcs->write_data[kcs->write_pos]);
201         (kcs->write_pos)++;
202         (kcs->write_count)--;
203 }
204
205 static inline void start_error_recovery(struct si_sm_data *kcs, char *reason)
206 {
207         (kcs->error_retries)++;
208         if (kcs->error_retries > MAX_ERROR_RETRIES) {
209                 if (kcs_debug & KCS_DEBUG_ENABLE)
210                         printk(KERN_DEBUG "ipmi_kcs_sm: kcs hosed: %s\n",
211                                reason);
212                 kcs->state = KCS_HOSED;
213         } else {
214                 kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES;
215                 kcs->state = KCS_ERROR0;
216         }
217 }
218
219 static inline void read_next_byte(struct si_sm_data *kcs)
220 {
221         if (kcs->read_pos >= MAX_KCS_READ_SIZE) {
222                 /* Throw the data away and mark it truncated. */
223                 read_data(kcs);
224                 kcs->truncated = 1;
225         } else {
226                 kcs->read_data[kcs->read_pos] = read_data(kcs);
227                 (kcs->read_pos)++;
228         }
229         write_data(kcs, KCS_READ_BYTE);
230 }
231
232 static inline int check_ibf(struct si_sm_data *kcs, unsigned char status,
233                             long time)
234 {
235         if (GET_STATUS_IBF(status)) {
236                 kcs->ibf_timeout -= time;
237                 if (kcs->ibf_timeout < 0) {
238                         start_error_recovery(kcs, "IBF not ready in time");
239                         kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
240                         return 1;
241                 }
242                 return 0;
243         }
244         kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
245         return 1;
246 }
247
248 static inline int check_obf(struct si_sm_data *kcs, unsigned char status,
249                             long time)
250 {
251         if (!GET_STATUS_OBF(status)) {
252                 kcs->obf_timeout -= time;
253                 if (kcs->obf_timeout < 0) {
254                         kcs->obf_timeout = OBF_RETRY_TIMEOUT;
255                         start_error_recovery(kcs, "OBF not ready in time");
256                         return 1;
257                 }
258                 return 0;
259         }
260         kcs->obf_timeout = OBF_RETRY_TIMEOUT;
261         return 1;
262 }
263
264 static void clear_obf(struct si_sm_data *kcs, unsigned char status)
265 {
266         if (GET_STATUS_OBF(status))
267                 read_data(kcs);
268 }
269
270 static void restart_kcs_transaction(struct si_sm_data *kcs)
271 {
272         kcs->write_count = kcs->orig_write_count;
273         kcs->write_pos = 0;
274         kcs->read_pos = 0;
275         kcs->state = KCS_WAIT_WRITE_START;
276         kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
277         kcs->obf_timeout = OBF_RETRY_TIMEOUT;
278         write_cmd(kcs, KCS_WRITE_START);
279 }
280
281 static int start_kcs_transaction(struct si_sm_data *kcs, unsigned char *data,
282                                  unsigned int size)
283 {
284         unsigned int i;
285
286         if (size < 2)
287                 return IPMI_REQ_LEN_INVALID_ERR;
288         if (size > MAX_KCS_WRITE_SIZE)
289                 return IPMI_REQ_LEN_EXCEEDED_ERR;
290
291         if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED))
292                 return IPMI_NOT_IN_MY_STATE_ERR;
293
294         if (kcs_debug & KCS_DEBUG_MSG) {
295                 printk(KERN_DEBUG "start_kcs_transaction -");
296                 for (i = 0; i < size; i++)
297                         printk(" %02x", (unsigned char) (data [i]));
298                 printk("\n");
299         }
300         kcs->error_retries = 0;
301         memcpy(kcs->write_data, data, size);
302         kcs->write_count = size;
303         kcs->orig_write_count = size;
304         kcs->write_pos = 0;
305         kcs->read_pos = 0;
306         kcs->state = KCS_START_OP;
307         kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
308         kcs->obf_timeout = OBF_RETRY_TIMEOUT;
309         return 0;
310 }
311
312 static int get_kcs_result(struct si_sm_data *kcs, unsigned char *data,
313                           unsigned int length)
314 {
315         if (length < kcs->read_pos) {
316                 kcs->read_pos = length;
317                 kcs->truncated = 1;
318         }
319
320         memcpy(data, kcs->read_data, kcs->read_pos);
321
322         if ((length >= 3) && (kcs->read_pos < 3)) {
323                 /* Guarantee that we return at least 3 bytes, with an
324                    error in the third byte if it is too short. */
325                 data[2] = IPMI_ERR_UNSPECIFIED;
326                 kcs->read_pos = 3;
327         }
328         if (kcs->truncated) {
329                 /*
330                  * Report a truncated error.  We might overwrite
331                  * another error, but that's too bad, the user needs
332                  * to know it was truncated.
333                  */
334                 data[2] = IPMI_ERR_MSG_TRUNCATED;
335                 kcs->truncated = 0;
336         }
337
338         return kcs->read_pos;
339 }
340
341 /*
342  * This implements the state machine defined in the IPMI manual, see
343  * that for details on how this works.  Divide that flowchart into
344  * sections delimited by "Wait for IBF" and this will become clear.
345  */
346 static enum si_sm_result kcs_event(struct si_sm_data *kcs, long time)
347 {
348         unsigned char status;
349         unsigned char state;
350
351         status = read_status(kcs);
352
353         if (kcs_debug & KCS_DEBUG_STATES)
354                 printk(KERN_DEBUG "KCS: State = %d, %x\n", kcs->state, status);
355
356         /* All states wait for ibf, so just do it here. */
357         if (!check_ibf(kcs, status, time))
358                 return SI_SM_CALL_WITH_DELAY;
359
360         /* Just about everything looks at the KCS state, so grab that, too. */
361         state = GET_STATUS_STATE(status);
362
363         switch (kcs->state) {
364         case KCS_IDLE:
365                 /* If there's and interrupt source, turn it off. */
366                 clear_obf(kcs, status);
367
368                 if (GET_STATUS_ATN(status))
369                         return SI_SM_ATTN;
370                 else
371                         return SI_SM_IDLE;
372
373         case KCS_START_OP:
374                 if (state != KCS_IDLE_STATE) {
375                         start_error_recovery(kcs,
376                                              "State machine not idle at start");
377                         break;
378                 }
379
380                 clear_obf(kcs, status);
381                 write_cmd(kcs, KCS_WRITE_START);
382                 kcs->state = KCS_WAIT_WRITE_START;
383                 break;
384
385         case KCS_WAIT_WRITE_START:
386                 if (state != KCS_WRITE_STATE) {
387                         start_error_recovery(
388                                 kcs,
389                                 "Not in write state at write start");
390                         break;
391                 }
392                 read_data(kcs);
393                 if (kcs->write_count == 1) {
394                         write_cmd(kcs, KCS_WRITE_END);
395                         kcs->state = KCS_WAIT_WRITE_END;
396                 } else {
397                         write_next_byte(kcs);
398                         kcs->state = KCS_WAIT_WRITE;
399                 }
400                 break;
401
402         case KCS_WAIT_WRITE:
403                 if (state != KCS_WRITE_STATE) {
404                         start_error_recovery(kcs,
405                                              "Not in write state for write");
406                         break;
407                 }
408                 clear_obf(kcs, status);
409                 if (kcs->write_count == 1) {
410                         write_cmd(kcs, KCS_WRITE_END);
411                         kcs->state = KCS_WAIT_WRITE_END;
412                 } else {
413                         write_next_byte(kcs);
414                 }
415                 break;
416
417         case KCS_WAIT_WRITE_END:
418                 if (state != KCS_WRITE_STATE) {
419                         start_error_recovery(kcs,
420                                              "Not in write state"
421                                              " for write end");
422                         break;
423                 }
424                 clear_obf(kcs, status);
425                 write_next_byte(kcs);
426                 kcs->state = KCS_WAIT_READ;
427                 break;
428
429         case KCS_WAIT_READ:
430                 if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) {
431                         start_error_recovery(
432                                 kcs,
433                                 "Not in read or idle in read state");
434                         break;
435                 }
436
437                 if (state == KCS_READ_STATE) {
438                         if (!check_obf(kcs, status, time))
439                                 return SI_SM_CALL_WITH_DELAY;
440                         read_next_byte(kcs);
441                 } else {
442                         /*
443                          * We don't implement this exactly like the state
444                          * machine in the spec.  Some broken hardware
445                          * does not write the final dummy byte to the
446                          * read register.  Thus obf will never go high
447                          * here.  We just go straight to idle, and we
448                          * handle clearing out obf in idle state if it
449                          * happens to come in.
450                          */
451                         clear_obf(kcs, status);
452                         kcs->orig_write_count = 0;
453                         kcs->state = KCS_IDLE;
454                         return SI_SM_TRANSACTION_COMPLETE;
455                 }
456                 break;
457
458         case KCS_ERROR0:
459                 clear_obf(kcs, status);
460                 status = read_status(kcs);
461                 if (GET_STATUS_OBF(status))
462                         /* controller isn't responding */
463                         if (time_before(jiffies, kcs->error0_timeout))
464                                 return SI_SM_CALL_WITH_TICK_DELAY;
465                 write_cmd(kcs, KCS_GET_STATUS_ABORT);
466                 kcs->state = KCS_ERROR1;
467                 break;
468
469         case KCS_ERROR1:
470                 clear_obf(kcs, status);
471                 write_data(kcs, 0);
472                 kcs->state = KCS_ERROR2;
473                 break;
474
475         case KCS_ERROR2:
476                 if (state != KCS_READ_STATE) {
477                         start_error_recovery(kcs,
478                                              "Not in read state for error2");
479                         break;
480                 }
481                 if (!check_obf(kcs, status, time))
482                         return SI_SM_CALL_WITH_DELAY;
483
484                 clear_obf(kcs, status);
485                 write_data(kcs, KCS_READ_BYTE);
486                 kcs->state = KCS_ERROR3;
487                 break;
488
489         case KCS_ERROR3:
490                 if (state != KCS_IDLE_STATE) {
491                         start_error_recovery(kcs,
492                                              "Not in idle state for error3");
493                         break;
494                 }
495
496                 if (!check_obf(kcs, status, time))
497                         return SI_SM_CALL_WITH_DELAY;
498
499                 clear_obf(kcs, status);
500                 if (kcs->orig_write_count) {
501                         restart_kcs_transaction(kcs);
502                 } else {
503                         kcs->state = KCS_IDLE;
504                         return SI_SM_TRANSACTION_COMPLETE;
505                 }
506                 break;
507
508         case KCS_HOSED:
509                 break;
510         }
511
512         if (kcs->state == KCS_HOSED) {
513                 init_kcs_data(kcs, kcs->io);
514                 return SI_SM_HOSED;
515         }
516
517         return SI_SM_CALL_WITHOUT_DELAY;
518 }
519
520 static int kcs_size(void)
521 {
522         return sizeof(struct si_sm_data);
523 }
524
525 static int kcs_detect(struct si_sm_data *kcs)
526 {
527         /*
528          * It's impossible for the KCS status register to be all 1's,
529          * (assuming a properly functioning, self-initialized BMC)
530          * but that's what you get from reading a bogus address, so we
531          * test that first.
532          */
533         if (read_status(kcs) == 0xff)
534                 return 1;
535
536         return 0;
537 }
538
539 static void kcs_cleanup(struct si_sm_data *kcs)
540 {
541 }
542
543 struct si_sm_handlers kcs_smi_handlers = {
544         .init_data         = init_kcs_data,
545         .start_transaction = start_kcs_transaction,
546         .get_result        = get_kcs_result,
547         .event             = kcs_event,
548         .detect            = kcs_detect,
549         .cleanup           = kcs_cleanup,
550         .size              = kcs_size,
551 };