Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / char / hw_random / n2-drv.c
1 /* n2-drv.c: Niagara-2 RNG driver.
2  *
3  * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include <linux/preempt.h>
13 #include <linux/hw_random.h>
14
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17
18 #include <asm/hypervisor.h>
19
20 #include "n2rng.h"
21
22 #define DRV_MODULE_NAME         "n2rng"
23 #define PFX DRV_MODULE_NAME     ": "
24 #define DRV_MODULE_VERSION      "0.2"
25 #define DRV_MODULE_RELDATE      "July 27, 2011"
26
27 static char version[] =
28         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
29
30 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31 MODULE_DESCRIPTION("Niagara2 RNG driver");
32 MODULE_LICENSE("GPL");
33 MODULE_VERSION(DRV_MODULE_VERSION);
34
35 /* The Niagara2 RNG provides a 64-bit read-only random number
36  * register, plus a control register.  Access to the RNG is
37  * virtualized through the hypervisor so that both guests and control
38  * nodes can access the device.
39  *
40  * The entropy source consists of raw entropy sources, each
41  * constructed from a voltage controlled oscillator whose phase is
42  * jittered by thermal noise sources.
43  *
44  * The oscillator in each of the three raw entropy sources run at
45  * different frequencies.  Normally, all three generator outputs are
46  * gathered, xored together, and fed into a CRC circuit, the output of
47  * which is the 64-bit read-only register.
48  *
49  * Some time is necessary for all the necessary entropy to build up
50  * such that a full 64-bits of entropy are available in the register.
51  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52  * an interlock which blocks register reads until sufficient entropy
53  * is available.
54  *
55  * A control register is provided for adjusting various aspects of RNG
56  * operation, and to enable diagnostic modes.  Each of the three raw
57  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
58  * provided are fields for controlling the minimum time in cycles
59  * between read accesses to the register (RNG_CTL_WAIT, this controls
60  * the interlock described in the previous paragraph).
61  *
62  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63  * all three entropy sources enabled, and the interlock time set
64  * appropriately.
65  *
66  * The CRC polynomial used by the chip is:
67  *
68  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
71  *
72  * The RNG_CTL_VCO value of each noise cell must be programmed
73  * separately.  This is why 4 control register values must be provided
74  * to the hypervisor.  During a write, the hypervisor writes them all,
75  * one at a time, to the actual RNG_CTL register.  The first three
76  * values are used to setup the desired RNG_CTL_VCO for each entropy
77  * source, for example:
78  *
79  *      control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80  *      control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81  *      control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
82  *
83  * And then the fourth value sets the final chip state and enables
84  * desired.
85  */
86
87 static int n2rng_hv_err_trans(unsigned long hv_err)
88 {
89         switch (hv_err) {
90         case HV_EOK:
91                 return 0;
92         case HV_EWOULDBLOCK:
93                 return -EAGAIN;
94         case HV_ENOACCESS:
95                 return -EPERM;
96         case HV_EIO:
97                 return -EIO;
98         case HV_EBUSY:
99                 return -EBUSY;
100         case HV_EBADALIGN:
101         case HV_ENORADDR:
102                 return -EFAULT;
103         default:
104                 return -EINVAL;
105         }
106 }
107
108 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109                                                    unsigned long unit)
110 {
111         unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112         int block = 0, busy = 0;
113
114         while (1) {
115                 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116                                                &ticks,
117                                                &watchdog_delta,
118                                                &watchdog_status);
119                 if (hv_err == HV_EOK)
120                         break;
121
122                 if (hv_err == HV_EBUSY) {
123                         if (++busy >= N2RNG_BUSY_LIMIT)
124                                 break;
125
126                         udelay(1);
127                 } else if (hv_err == HV_EWOULDBLOCK) {
128                         if (++block >= N2RNG_BLOCK_LIMIT)
129                                 break;
130
131                         __delay(ticks);
132                 } else
133                         break;
134         }
135
136         return hv_err;
137 }
138
139 /* In multi-socket situations, the hypervisor might need to
140  * queue up the RNG control register write if it's for a unit
141  * that is on a cpu socket other than the one we are executing on.
142  *
143  * We poll here waiting for a successful read of that control
144  * register to make sure the write has been actually performed.
145  */
146 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147 {
148         unsigned long ra = __pa(&np->scratch_control[0]);
149
150         return n2rng_generic_read_control_v2(ra, unit);
151 }
152
153 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154                                          unsigned long state,
155                                          unsigned long control_ra,
156                                          unsigned long watchdog_timeout,
157                                          unsigned long *ticks)
158 {
159         unsigned long hv_err;
160
161         if (np->hvapi_major == 1) {
162                 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163                                                 watchdog_timeout, ticks);
164         } else {
165                 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166                                                 watchdog_timeout, unit);
167                 if (hv_err == HV_EOK)
168                         hv_err = n2rng_control_settle_v2(np, unit);
169                 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170         }
171
172         return hv_err;
173 }
174
175 static int n2rng_generic_read_data(unsigned long data_ra)
176 {
177         unsigned long ticks, hv_err;
178         int block = 0, hcheck = 0;
179
180         while (1) {
181                 hv_err = sun4v_rng_data_read(data_ra, &ticks);
182                 if (hv_err == HV_EOK)
183                         return 0;
184
185                 if (hv_err == HV_EWOULDBLOCK) {
186                         if (++block >= N2RNG_BLOCK_LIMIT)
187                                 return -EWOULDBLOCK;
188                         __delay(ticks);
189                 } else if (hv_err == HV_ENOACCESS) {
190                         return -EPERM;
191                 } else if (hv_err == HV_EIO) {
192                         if (++hcheck >= N2RNG_HCHECK_LIMIT)
193                                 return -EIO;
194                         udelay(10000);
195                 } else
196                         return -ENODEV;
197         }
198 }
199
200 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201                                               unsigned long unit,
202                                               unsigned long data_ra,
203                                               unsigned long data_len,
204                                               unsigned long *ticks)
205 {
206         unsigned long hv_err;
207
208         if (np->hvapi_major == 1) {
209                 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210         } else {
211                 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212                                                      unit, ticks);
213                 if (!*ticks)
214                         *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215         }
216         return hv_err;
217 }
218
219 static int n2rng_generic_read_diag_data(struct n2rng *np,
220                                         unsigned long unit,
221                                         unsigned long data_ra,
222                                         unsigned long data_len)
223 {
224         unsigned long ticks, hv_err;
225         int block = 0;
226
227         while (1) {
228                 hv_err = n2rng_read_diag_data_one(np, unit,
229                                                   data_ra, data_len,
230                                                   &ticks);
231                 if (hv_err == HV_EOK)
232                         return 0;
233
234                 if (hv_err == HV_EWOULDBLOCK) {
235                         if (++block >= N2RNG_BLOCK_LIMIT)
236                                 return -EWOULDBLOCK;
237                         __delay(ticks);
238                 } else if (hv_err == HV_ENOACCESS) {
239                         return -EPERM;
240                 } else if (hv_err == HV_EIO) {
241                         return -EIO;
242                 } else
243                         return -ENODEV;
244         }
245 }
246
247
248 static int n2rng_generic_write_control(struct n2rng *np,
249                                        unsigned long control_ra,
250                                        unsigned long unit,
251                                        unsigned long state)
252 {
253         unsigned long hv_err, ticks;
254         int block = 0, busy = 0;
255
256         while (1) {
257                 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258                                              np->wd_timeo, &ticks);
259                 if (hv_err == HV_EOK)
260                         return 0;
261
262                 if (hv_err == HV_EWOULDBLOCK) {
263                         if (++block >= N2RNG_BLOCK_LIMIT)
264                                 return -EWOULDBLOCK;
265                         __delay(ticks);
266                 } else if (hv_err == HV_EBUSY) {
267                         if (++busy >= N2RNG_BUSY_LIMIT)
268                                 return -EBUSY;
269                         udelay(1);
270                 } else
271                         return -ENODEV;
272         }
273 }
274
275 /* Just try to see if we can successfully access the control register
276  * of the RNG on the domain on which we are currently executing.
277  */
278 static int n2rng_try_read_ctl(struct n2rng *np)
279 {
280         unsigned long hv_err;
281         unsigned long x;
282
283         if (np->hvapi_major == 1) {
284                 hv_err = sun4v_rng_get_diag_ctl();
285         } else {
286                 /* We purposefully give invalid arguments, HV_NOACCESS
287                  * is higher priority than the errors we'd get from
288                  * these other cases, and that's the error we are
289                  * truly interested in.
290                  */
291                 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292                 switch (hv_err) {
293                 case HV_EWOULDBLOCK:
294                 case HV_ENOACCESS:
295                         break;
296                 default:
297                         hv_err = HV_EOK;
298                         break;
299                 }
300         }
301
302         return n2rng_hv_err_trans(hv_err);
303 }
304
305 #define CONTROL_DEFAULT_BASE            \
306         ((2 << RNG_CTL_ASEL_SHIFT) |    \
307          (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |   \
308          RNG_CTL_LFSR)
309
310 #define CONTROL_DEFAULT_0               \
311         (CONTROL_DEFAULT_BASE |         \
312          (1 << RNG_CTL_VCO_SHIFT) |     \
313          RNG_CTL_ES1)
314 #define CONTROL_DEFAULT_1               \
315         (CONTROL_DEFAULT_BASE |         \
316          (2 << RNG_CTL_VCO_SHIFT) |     \
317          RNG_CTL_ES2)
318 #define CONTROL_DEFAULT_2               \
319         (CONTROL_DEFAULT_BASE |         \
320          (3 << RNG_CTL_VCO_SHIFT) |     \
321          RNG_CTL_ES3)
322 #define CONTROL_DEFAULT_3               \
323         (CONTROL_DEFAULT_BASE |         \
324          RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
325
326 static void n2rng_control_swstate_init(struct n2rng *np)
327 {
328         int i;
329
330         np->flags |= N2RNG_FLAG_CONTROL;
331
332         np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
333         np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
334         np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
335
336         for (i = 0; i < np->num_units; i++) {
337                 struct n2rng_unit *up = &np->units[i];
338
339                 up->control[0] = CONTROL_DEFAULT_0;
340                 up->control[1] = CONTROL_DEFAULT_1;
341                 up->control[2] = CONTROL_DEFAULT_2;
342                 up->control[3] = CONTROL_DEFAULT_3;
343         }
344
345         np->hv_state = HV_RNG_STATE_UNCONFIGURED;
346 }
347
348 static int n2rng_grab_diag_control(struct n2rng *np)
349 {
350         int i, busy_count, err = -ENODEV;
351
352         busy_count = 0;
353         for (i = 0; i < 100; i++) {
354                 err = n2rng_try_read_ctl(np);
355                 if (err != -EAGAIN)
356                         break;
357
358                 if (++busy_count > 100) {
359                         dev_err(&np->op->dev,
360                                 "Grab diag control timeout.\n");
361                         return -ENODEV;
362                 }
363
364                 udelay(1);
365         }
366
367         return err;
368 }
369
370 static int n2rng_init_control(struct n2rng *np)
371 {
372         int err = n2rng_grab_diag_control(np);
373
374         /* Not in the control domain, that's OK we are only a consumer
375          * of the RNG data, we don't setup and program it.
376          */
377         if (err == -EPERM)
378                 return 0;
379         if (err)
380                 return err;
381
382         n2rng_control_swstate_init(np);
383
384         return 0;
385 }
386
387 static int n2rng_data_read(struct hwrng *rng, u32 *data)
388 {
389         struct n2rng *np = (struct n2rng *) rng->priv;
390         unsigned long ra = __pa(&np->test_data);
391         int len;
392
393         if (!(np->flags & N2RNG_FLAG_READY)) {
394                 len = 0;
395         } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
396                 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
397                 *data = np->buffer;
398                 len = 4;
399         } else {
400                 int err = n2rng_generic_read_data(ra);
401                 if (!err) {
402                         np->buffer = np->test_data >> 32;
403                         *data = np->test_data & 0xffffffff;
404                         len = 4;
405                 } else {
406                         dev_err(&np->op->dev, "RNG error, restesting\n");
407                         np->flags &= ~N2RNG_FLAG_READY;
408                         if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
409                                 schedule_delayed_work(&np->work, 0);
410                         len = 0;
411                 }
412         }
413
414         return len;
415 }
416
417 /* On a guest node, just make sure we can read random data properly.
418  * If a control node reboots or reloads it's n2rng driver, this won't
419  * work during that time.  So we have to keep probing until the device
420  * becomes usable.
421  */
422 static int n2rng_guest_check(struct n2rng *np)
423 {
424         unsigned long ra = __pa(&np->test_data);
425
426         return n2rng_generic_read_data(ra);
427 }
428
429 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
430                                    u64 *pre_control, u64 pre_state,
431                                    u64 *buffer, unsigned long buf_len,
432                                    u64 *post_control, u64 post_state)
433 {
434         unsigned long post_ctl_ra = __pa(post_control);
435         unsigned long pre_ctl_ra = __pa(pre_control);
436         unsigned long buffer_ra = __pa(buffer);
437         int err;
438
439         err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
440         if (err)
441                 return err;
442
443         err = n2rng_generic_read_diag_data(np, unit,
444                                            buffer_ra, buf_len);
445
446         (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
447                                            post_state);
448
449         return err;
450 }
451
452 static u64 advance_polynomial(u64 poly, u64 val, int count)
453 {
454         int i;
455
456         for (i = 0; i < count; i++) {
457                 int highbit_set = ((s64)val < 0);
458
459                 val <<= 1;
460                 if (highbit_set)
461                         val ^= poly;
462         }
463
464         return val;
465 }
466
467 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
468 {
469         int i, count = 0;
470
471         /* Purposefully skip over the first word.  */
472         for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
473                 if (np->test_buffer[i] == val)
474                         count++;
475         }
476         return count;
477 }
478
479 static void n2rng_dump_test_buffer(struct n2rng *np)
480 {
481         int i;
482
483         for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
484                 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
485                         i, np->test_buffer[i]);
486 }
487
488 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
489 {
490         u64 val = SELFTEST_VAL;
491         int err, matches, limit;
492
493         matches = 0;
494         for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
495                 matches += n2rng_test_buffer_find(np, val);
496                 if (matches >= SELFTEST_MATCH_GOAL)
497                         break;
498                 val = advance_polynomial(SELFTEST_POLY, val, 1);
499         }
500
501         err = 0;
502         if (limit >= SELFTEST_LOOPS_MAX) {
503                 err = -ENODEV;
504                 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
505                 n2rng_dump_test_buffer(np);
506         } else
507                 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
508
509         return err;
510 }
511
512 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
513 {
514         int err;
515
516         np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
517         np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
518         np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
519         np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
520                                RNG_CTL_LFSR |
521                                ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
522
523
524         err = n2rng_entropy_diag_read(np, unit, np->test_control,
525                                       HV_RNG_STATE_HEALTHCHECK,
526                                       np->test_buffer,
527                                       sizeof(np->test_buffer),
528                                       &np->units[unit].control[0],
529                                       np->hv_state);
530         if (err)
531                 return err;
532
533         return n2rng_check_selftest_buffer(np, unit);
534 }
535
536 static int n2rng_control_check(struct n2rng *np)
537 {
538         int i;
539
540         for (i = 0; i < np->num_units; i++) {
541                 int err = n2rng_control_selftest(np, i);
542                 if (err)
543                         return err;
544         }
545         return 0;
546 }
547
548 /* The sanity checks passed, install the final configuration into the
549  * chip, it's ready to use.
550  */
551 static int n2rng_control_configure_units(struct n2rng *np)
552 {
553         int unit, err;
554
555         err = 0;
556         for (unit = 0; unit < np->num_units; unit++) {
557                 struct n2rng_unit *up = &np->units[unit];
558                 unsigned long ctl_ra = __pa(&up->control[0]);
559                 int esrc;
560                 u64 base;
561
562                 base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
563                         (2 << RNG_CTL_ASEL_SHIFT) |
564                         RNG_CTL_LFSR);
565
566                 /* XXX This isn't the best.  We should fetch a bunch
567                  * XXX of words using each entropy source combined XXX
568                  * with each VCO setting, and see which combinations
569                  * XXX give the best random data.
570                  */
571                 for (esrc = 0; esrc < 3; esrc++)
572                         up->control[esrc] = base |
573                                 (esrc << RNG_CTL_VCO_SHIFT) |
574                                 (RNG_CTL_ES1 << esrc);
575
576                 up->control[3] = base |
577                         (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
578
579                 err = n2rng_generic_write_control(np, ctl_ra, unit,
580                                                   HV_RNG_STATE_CONFIGURED);
581                 if (err)
582                         break;
583         }
584
585         return err;
586 }
587
588 static void n2rng_work(struct work_struct *work)
589 {
590         struct n2rng *np = container_of(work, struct n2rng, work.work);
591         int err = 0;
592
593         if (!(np->flags & N2RNG_FLAG_CONTROL)) {
594                 err = n2rng_guest_check(np);
595         } else {
596                 preempt_disable();
597                 err = n2rng_control_check(np);
598                 preempt_enable();
599
600                 if (!err)
601                         err = n2rng_control_configure_units(np);
602         }
603
604         if (!err) {
605                 np->flags |= N2RNG_FLAG_READY;
606                 dev_info(&np->op->dev, "RNG ready\n");
607         }
608
609         if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
610                 schedule_delayed_work(&np->work, HZ * 2);
611 }
612
613 static void n2rng_driver_version(void)
614 {
615         static int n2rng_version_printed;
616
617         if (n2rng_version_printed++ == 0)
618                 pr_info("%s", version);
619 }
620
621 static const struct of_device_id n2rng_match[];
622 static int n2rng_probe(struct platform_device *op)
623 {
624         const struct of_device_id *match;
625         int multi_capable;
626         int err = -ENOMEM;
627         struct n2rng *np;
628
629         match = of_match_device(n2rng_match, &op->dev);
630         if (!match)
631                 return -EINVAL;
632         multi_capable = (match->data != NULL);
633
634         n2rng_driver_version();
635         np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
636         if (!np)
637                 goto out;
638         np->op = op;
639
640         INIT_DELAYED_WORK(&np->work, n2rng_work);
641
642         if (multi_capable)
643                 np->flags |= N2RNG_FLAG_MULTI;
644
645         err = -ENODEV;
646         np->hvapi_major = 2;
647         if (sun4v_hvapi_register(HV_GRP_RNG,
648                                  np->hvapi_major,
649                                  &np->hvapi_minor)) {
650                 np->hvapi_major = 1;
651                 if (sun4v_hvapi_register(HV_GRP_RNG,
652                                          np->hvapi_major,
653                                          &np->hvapi_minor)) {
654                         dev_err(&op->dev, "Cannot register suitable "
655                                 "HVAPI version.\n");
656                         goto out;
657                 }
658         }
659
660         if (np->flags & N2RNG_FLAG_MULTI) {
661                 if (np->hvapi_major < 2) {
662                         dev_err(&op->dev, "multi-unit-capable RNG requires "
663                                 "HVAPI major version 2 or later, got %lu\n",
664                                 np->hvapi_major);
665                         goto out_hvapi_unregister;
666                 }
667                 np->num_units = of_getintprop_default(op->dev.of_node,
668                                                       "rng-#units", 0);
669                 if (!np->num_units) {
670                         dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
671                         goto out_hvapi_unregister;
672                 }
673         } else
674                 np->num_units = 1;
675
676         dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
677                  np->hvapi_major, np->hvapi_minor);
678
679         np->units = devm_kzalloc(&op->dev,
680                                  sizeof(struct n2rng_unit) * np->num_units,
681                                  GFP_KERNEL);
682         err = -ENOMEM;
683         if (!np->units)
684                 goto out_hvapi_unregister;
685
686         err = n2rng_init_control(np);
687         if (err)
688                 goto out_hvapi_unregister;
689
690         dev_info(&op->dev, "Found %s RNG, units: %d\n",
691                  ((np->flags & N2RNG_FLAG_MULTI) ?
692                   "multi-unit-capable" : "single-unit"),
693                  np->num_units);
694
695         np->hwrng.name = "n2rng";
696         np->hwrng.data_read = n2rng_data_read;
697         np->hwrng.priv = (unsigned long) np;
698
699         err = hwrng_register(&np->hwrng);
700         if (err)
701                 goto out_hvapi_unregister;
702
703         platform_set_drvdata(op, np);
704
705         schedule_delayed_work(&np->work, 0);
706
707         return 0;
708
709 out_hvapi_unregister:
710         sun4v_hvapi_unregister(HV_GRP_RNG);
711
712 out:
713         return err;
714 }
715
716 static int n2rng_remove(struct platform_device *op)
717 {
718         struct n2rng *np = platform_get_drvdata(op);
719
720         np->flags |= N2RNG_FLAG_SHUTDOWN;
721
722         cancel_delayed_work_sync(&np->work);
723
724         hwrng_unregister(&np->hwrng);
725
726         sun4v_hvapi_unregister(HV_GRP_RNG);
727
728         return 0;
729 }
730
731 static const struct of_device_id n2rng_match[] = {
732         {
733                 .name           = "random-number-generator",
734                 .compatible     = "SUNW,n2-rng",
735         },
736         {
737                 .name           = "random-number-generator",
738                 .compatible     = "SUNW,vf-rng",
739                 .data           = (void *) 1,
740         },
741         {
742                 .name           = "random-number-generator",
743                 .compatible     = "SUNW,kt-rng",
744                 .data           = (void *) 1,
745         },
746         {},
747 };
748 MODULE_DEVICE_TABLE(of, n2rng_match);
749
750 static struct platform_driver n2rng_driver = {
751         .driver = {
752                 .name = "n2rng",
753                 .of_match_table = n2rng_match,
754         },
755         .probe          = n2rng_probe,
756         .remove         = n2rng_remove,
757 };
758
759 module_platform_driver(n2rng_driver);