Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48         pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49                         task_pid_nr(current),
50                         current->comm,
51                         name,
52                         "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name)                                              \
56 static ssize_t name##_show(struct device *d,            \
57                                 struct device_attribute *attr, char *b) \
58 {                                                                       \
59         struct zram *zram = dev_to_zram(d);                             \
60                                                                         \
61         deprecated_attr_warn(__stringify(name));                        \
62         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
63                 (u64)atomic64_read(&zram->stats.name));                 \
64 }                                                                       \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69         return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74         return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 static ssize_t compact_store(struct device *dev,
78                 struct device_attribute *attr, const char *buf, size_t len)
79 {
80         unsigned long nr_migrated;
81         struct zram *zram = dev_to_zram(dev);
82         struct zram_meta *meta;
83
84         down_read(&zram->init_lock);
85         if (!init_done(zram)) {
86                 up_read(&zram->init_lock);
87                 return -EINVAL;
88         }
89
90         meta = zram->meta;
91         nr_migrated = zs_compact(meta->mem_pool);
92         atomic64_add(nr_migrated, &zram->stats.num_migrated);
93         up_read(&zram->init_lock);
94
95         return len;
96 }
97
98 static ssize_t disksize_show(struct device *dev,
99                 struct device_attribute *attr, char *buf)
100 {
101         struct zram *zram = dev_to_zram(dev);
102
103         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
104 }
105
106 static ssize_t initstate_show(struct device *dev,
107                 struct device_attribute *attr, char *buf)
108 {
109         u32 val;
110         struct zram *zram = dev_to_zram(dev);
111
112         down_read(&zram->init_lock);
113         val = init_done(zram);
114         up_read(&zram->init_lock);
115
116         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
117 }
118
119 static ssize_t orig_data_size_show(struct device *dev,
120                 struct device_attribute *attr, char *buf)
121 {
122         struct zram *zram = dev_to_zram(dev);
123
124         deprecated_attr_warn("orig_data_size");
125         return scnprintf(buf, PAGE_SIZE, "%llu\n",
126                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
127 }
128
129 static ssize_t mem_used_total_show(struct device *dev,
130                 struct device_attribute *attr, char *buf)
131 {
132         u64 val = 0;
133         struct zram *zram = dev_to_zram(dev);
134
135         deprecated_attr_warn("mem_used_total");
136         down_read(&zram->init_lock);
137         if (init_done(zram)) {
138                 struct zram_meta *meta = zram->meta;
139                 val = zs_get_total_pages(meta->mem_pool);
140         }
141         up_read(&zram->init_lock);
142
143         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
144 }
145
146 static ssize_t max_comp_streams_show(struct device *dev,
147                 struct device_attribute *attr, char *buf)
148 {
149         int val;
150         struct zram *zram = dev_to_zram(dev);
151
152         down_read(&zram->init_lock);
153         val = zram->max_comp_streams;
154         up_read(&zram->init_lock);
155
156         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
157 }
158
159 static ssize_t mem_limit_show(struct device *dev,
160                 struct device_attribute *attr, char *buf)
161 {
162         u64 val;
163         struct zram *zram = dev_to_zram(dev);
164
165         deprecated_attr_warn("mem_limit");
166         down_read(&zram->init_lock);
167         val = zram->limit_pages;
168         up_read(&zram->init_lock);
169
170         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
171 }
172
173 static ssize_t mem_limit_store(struct device *dev,
174                 struct device_attribute *attr, const char *buf, size_t len)
175 {
176         u64 limit;
177         char *tmp;
178         struct zram *zram = dev_to_zram(dev);
179
180         limit = memparse(buf, &tmp);
181         if (buf == tmp) /* no chars parsed, invalid input */
182                 return -EINVAL;
183
184         down_write(&zram->init_lock);
185         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
186         up_write(&zram->init_lock);
187
188         return len;
189 }
190
191 static ssize_t mem_used_max_show(struct device *dev,
192                 struct device_attribute *attr, char *buf)
193 {
194         u64 val = 0;
195         struct zram *zram = dev_to_zram(dev);
196
197         deprecated_attr_warn("mem_used_max");
198         down_read(&zram->init_lock);
199         if (init_done(zram))
200                 val = atomic_long_read(&zram->stats.max_used_pages);
201         up_read(&zram->init_lock);
202
203         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
204 }
205
206 static ssize_t mem_used_max_store(struct device *dev,
207                 struct device_attribute *attr, const char *buf, size_t len)
208 {
209         int err;
210         unsigned long val;
211         struct zram *zram = dev_to_zram(dev);
212
213         err = kstrtoul(buf, 10, &val);
214         if (err || val != 0)
215                 return -EINVAL;
216
217         down_read(&zram->init_lock);
218         if (init_done(zram)) {
219                 struct zram_meta *meta = zram->meta;
220                 atomic_long_set(&zram->stats.max_used_pages,
221                                 zs_get_total_pages(meta->mem_pool));
222         }
223         up_read(&zram->init_lock);
224
225         return len;
226 }
227
228 static ssize_t max_comp_streams_store(struct device *dev,
229                 struct device_attribute *attr, const char *buf, size_t len)
230 {
231         int num;
232         struct zram *zram = dev_to_zram(dev);
233         int ret;
234
235         ret = kstrtoint(buf, 0, &num);
236         if (ret < 0)
237                 return ret;
238         if (num < 1)
239                 return -EINVAL;
240
241         down_write(&zram->init_lock);
242         if (init_done(zram)) {
243                 if (!zcomp_set_max_streams(zram->comp, num)) {
244                         pr_info("Cannot change max compression streams\n");
245                         ret = -EINVAL;
246                         goto out;
247                 }
248         }
249
250         zram->max_comp_streams = num;
251         ret = len;
252 out:
253         up_write(&zram->init_lock);
254         return ret;
255 }
256
257 static ssize_t comp_algorithm_show(struct device *dev,
258                 struct device_attribute *attr, char *buf)
259 {
260         size_t sz;
261         struct zram *zram = dev_to_zram(dev);
262
263         down_read(&zram->init_lock);
264         sz = zcomp_available_show(zram->compressor, buf);
265         up_read(&zram->init_lock);
266
267         return sz;
268 }
269
270 static ssize_t comp_algorithm_store(struct device *dev,
271                 struct device_attribute *attr, const char *buf, size_t len)
272 {
273         struct zram *zram = dev_to_zram(dev);
274         down_write(&zram->init_lock);
275         if (init_done(zram)) {
276                 up_write(&zram->init_lock);
277                 pr_info("Can't change algorithm for initialized device\n");
278                 return -EBUSY;
279         }
280         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
281         up_write(&zram->init_lock);
282         return len;
283 }
284
285 /* flag operations needs meta->tb_lock */
286 static int zram_test_flag(struct zram_meta *meta, u32 index,
287                         enum zram_pageflags flag)
288 {
289         return meta->table[index].value & BIT(flag);
290 }
291
292 static void zram_set_flag(struct zram_meta *meta, u32 index,
293                         enum zram_pageflags flag)
294 {
295         meta->table[index].value |= BIT(flag);
296 }
297
298 static void zram_clear_flag(struct zram_meta *meta, u32 index,
299                         enum zram_pageflags flag)
300 {
301         meta->table[index].value &= ~BIT(flag);
302 }
303
304 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
305 {
306         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
307 }
308
309 static void zram_set_obj_size(struct zram_meta *meta,
310                                         u32 index, size_t size)
311 {
312         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
313
314         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
315 }
316
317 static inline int is_partial_io(struct bio_vec *bvec)
318 {
319         return bvec->bv_len != PAGE_SIZE;
320 }
321
322 /*
323  * Check if request is within bounds and aligned on zram logical blocks.
324  */
325 static inline int valid_io_request(struct zram *zram,
326                 sector_t start, unsigned int size)
327 {
328         u64 end, bound;
329
330         /* unaligned request */
331         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
332                 return 0;
333         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
334                 return 0;
335
336         end = start + (size >> SECTOR_SHIFT);
337         bound = zram->disksize >> SECTOR_SHIFT;
338         /* out of range range */
339         if (unlikely(start >= bound || end > bound || start > end))
340                 return 0;
341
342         /* I/O request is valid */
343         return 1;
344 }
345
346 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
347 {
348         size_t num_pages = disksize >> PAGE_SHIFT;
349         size_t index;
350
351         /* Free all pages that are still in this zram device */
352         for (index = 0; index < num_pages; index++) {
353                 unsigned long handle = meta->table[index].handle;
354
355                 if (!handle)
356                         continue;
357
358                 zs_free(meta->mem_pool, handle);
359         }
360
361         zs_destroy_pool(meta->mem_pool);
362         vfree(meta->table);
363         kfree(meta);
364 }
365
366 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
367 {
368         size_t num_pages;
369         char pool_name[8];
370         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
371
372         if (!meta)
373                 return NULL;
374
375         num_pages = disksize >> PAGE_SHIFT;
376         meta->table = vzalloc(num_pages * sizeof(*meta->table));
377         if (!meta->table) {
378                 pr_err("Error allocating zram address table\n");
379                 goto out_error;
380         }
381
382         snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
383         meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
384         if (!meta->mem_pool) {
385                 pr_err("Error creating memory pool\n");
386                 goto out_error;
387         }
388
389         return meta;
390
391 out_error:
392         vfree(meta->table);
393         kfree(meta);
394         return NULL;
395 }
396
397 static inline bool zram_meta_get(struct zram *zram)
398 {
399         if (atomic_inc_not_zero(&zram->refcount))
400                 return true;
401         return false;
402 }
403
404 static inline void zram_meta_put(struct zram *zram)
405 {
406         atomic_dec(&zram->refcount);
407 }
408
409 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
410 {
411         if (*offset + bvec->bv_len >= PAGE_SIZE)
412                 (*index)++;
413         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
414 }
415
416 static int page_zero_filled(void *ptr)
417 {
418         unsigned int pos;
419         unsigned long *page;
420
421         page = (unsigned long *)ptr;
422
423         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
424                 if (page[pos])
425                         return 0;
426         }
427
428         return 1;
429 }
430
431 static void handle_zero_page(struct bio_vec *bvec)
432 {
433         struct page *page = bvec->bv_page;
434         void *user_mem;
435
436         user_mem = kmap_atomic(page);
437         if (is_partial_io(bvec))
438                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
439         else
440                 clear_page(user_mem);
441         kunmap_atomic(user_mem);
442
443         flush_dcache_page(page);
444 }
445
446
447 /*
448  * To protect concurrent access to the same index entry,
449  * caller should hold this table index entry's bit_spinlock to
450  * indicate this index entry is accessing.
451  */
452 static void zram_free_page(struct zram *zram, size_t index)
453 {
454         struct zram_meta *meta = zram->meta;
455         unsigned long handle = meta->table[index].handle;
456
457         if (unlikely(!handle)) {
458                 /*
459                  * No memory is allocated for zero filled pages.
460                  * Simply clear zero page flag.
461                  */
462                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
463                         zram_clear_flag(meta, index, ZRAM_ZERO);
464                         atomic64_dec(&zram->stats.zero_pages);
465                 }
466                 return;
467         }
468
469         zs_free(meta->mem_pool, handle);
470
471         atomic64_sub(zram_get_obj_size(meta, index),
472                         &zram->stats.compr_data_size);
473         atomic64_dec(&zram->stats.pages_stored);
474
475         meta->table[index].handle = 0;
476         zram_set_obj_size(meta, index, 0);
477 }
478
479 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
480 {
481         int ret = 0;
482         unsigned char *cmem;
483         struct zram_meta *meta = zram->meta;
484         unsigned long handle;
485         size_t size;
486
487         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
488         handle = meta->table[index].handle;
489         size = zram_get_obj_size(meta, index);
490
491         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
492                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
493                 clear_page(mem);
494                 return 0;
495         }
496
497         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
498         if (size == PAGE_SIZE)
499                 copy_page(mem, cmem);
500         else
501                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
502         zs_unmap_object(meta->mem_pool, handle);
503         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
504
505         /* Should NEVER happen. Return bio error if it does. */
506         if (unlikely(ret)) {
507                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
508                 return ret;
509         }
510
511         return 0;
512 }
513
514 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
515                           u32 index, int offset)
516 {
517         int ret;
518         struct page *page;
519         unsigned char *user_mem, *uncmem = NULL;
520         struct zram_meta *meta = zram->meta;
521         page = bvec->bv_page;
522
523         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
524         if (unlikely(!meta->table[index].handle) ||
525                         zram_test_flag(meta, index, ZRAM_ZERO)) {
526                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
527                 handle_zero_page(bvec);
528                 return 0;
529         }
530         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
531
532         if (is_partial_io(bvec))
533                 /* Use  a temporary buffer to decompress the page */
534                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
535
536         user_mem = kmap_atomic(page);
537         if (!is_partial_io(bvec))
538                 uncmem = user_mem;
539
540         if (!uncmem) {
541                 pr_info("Unable to allocate temp memory\n");
542                 ret = -ENOMEM;
543                 goto out_cleanup;
544         }
545
546         ret = zram_decompress_page(zram, uncmem, index);
547         /* Should NEVER happen. Return bio error if it does. */
548         if (unlikely(ret))
549                 goto out_cleanup;
550
551         if (is_partial_io(bvec))
552                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
553                                 bvec->bv_len);
554
555         flush_dcache_page(page);
556         ret = 0;
557 out_cleanup:
558         kunmap_atomic(user_mem);
559         if (is_partial_io(bvec))
560                 kfree(uncmem);
561         return ret;
562 }
563
564 static inline void update_used_max(struct zram *zram,
565                                         const unsigned long pages)
566 {
567         unsigned long old_max, cur_max;
568
569         old_max = atomic_long_read(&zram->stats.max_used_pages);
570
571         do {
572                 cur_max = old_max;
573                 if (pages > cur_max)
574                         old_max = atomic_long_cmpxchg(
575                                 &zram->stats.max_used_pages, cur_max, pages);
576         } while (old_max != cur_max);
577 }
578
579 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
580                            int offset)
581 {
582         int ret = 0;
583         size_t clen;
584         unsigned long handle;
585         struct page *page;
586         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
587         struct zram_meta *meta = zram->meta;
588         struct zcomp_strm *zstrm;
589         bool locked = false;
590         unsigned long alloced_pages;
591
592         page = bvec->bv_page;
593         if (is_partial_io(bvec)) {
594                 /*
595                  * This is a partial IO. We need to read the full page
596                  * before to write the changes.
597                  */
598                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
599                 if (!uncmem) {
600                         ret = -ENOMEM;
601                         goto out;
602                 }
603                 ret = zram_decompress_page(zram, uncmem, index);
604                 if (ret)
605                         goto out;
606         }
607
608         zstrm = zcomp_strm_find(zram->comp);
609         locked = true;
610         user_mem = kmap_atomic(page);
611
612         if (is_partial_io(bvec)) {
613                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
614                        bvec->bv_len);
615                 kunmap_atomic(user_mem);
616                 user_mem = NULL;
617         } else {
618                 uncmem = user_mem;
619         }
620
621         if (page_zero_filled(uncmem)) {
622                 if (user_mem)
623                         kunmap_atomic(user_mem);
624                 /* Free memory associated with this sector now. */
625                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
626                 zram_free_page(zram, index);
627                 zram_set_flag(meta, index, ZRAM_ZERO);
628                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
629
630                 atomic64_inc(&zram->stats.zero_pages);
631                 ret = 0;
632                 goto out;
633         }
634
635         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
636         if (!is_partial_io(bvec)) {
637                 kunmap_atomic(user_mem);
638                 user_mem = NULL;
639                 uncmem = NULL;
640         }
641
642         if (unlikely(ret)) {
643                 pr_err("Compression failed! err=%d\n", ret);
644                 goto out;
645         }
646         src = zstrm->buffer;
647         if (unlikely(clen > max_zpage_size)) {
648                 clen = PAGE_SIZE;
649                 if (is_partial_io(bvec))
650                         src = uncmem;
651         }
652
653         handle = zs_malloc(meta->mem_pool, clen);
654         if (!handle) {
655                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
656                         index, clen);
657                 ret = -ENOMEM;
658                 goto out;
659         }
660
661         alloced_pages = zs_get_total_pages(meta->mem_pool);
662         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
663                 zs_free(meta->mem_pool, handle);
664                 ret = -ENOMEM;
665                 goto out;
666         }
667
668         update_used_max(zram, alloced_pages);
669
670         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
671
672         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
673                 src = kmap_atomic(page);
674                 copy_page(cmem, src);
675                 kunmap_atomic(src);
676         } else {
677                 memcpy(cmem, src, clen);
678         }
679
680         zcomp_strm_release(zram->comp, zstrm);
681         locked = false;
682         zs_unmap_object(meta->mem_pool, handle);
683
684         /*
685          * Free memory associated with this sector
686          * before overwriting unused sectors.
687          */
688         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
689         zram_free_page(zram, index);
690
691         meta->table[index].handle = handle;
692         zram_set_obj_size(meta, index, clen);
693         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
694
695         /* Update stats */
696         atomic64_add(clen, &zram->stats.compr_data_size);
697         atomic64_inc(&zram->stats.pages_stored);
698 out:
699         if (locked)
700                 zcomp_strm_release(zram->comp, zstrm);
701         if (is_partial_io(bvec))
702                 kfree(uncmem);
703         return ret;
704 }
705
706 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
707                         int offset, int rw)
708 {
709         unsigned long start_time = jiffies;
710         int ret;
711
712         generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
713                         &zram->disk->part0);
714
715         if (rw == READ) {
716                 atomic64_inc(&zram->stats.num_reads);
717                 ret = zram_bvec_read(zram, bvec, index, offset);
718         } else {
719                 atomic64_inc(&zram->stats.num_writes);
720                 ret = zram_bvec_write(zram, bvec, index, offset);
721         }
722
723         generic_end_io_acct(rw, &zram->disk->part0, start_time);
724
725         if (unlikely(ret)) {
726                 if (rw == READ)
727                         atomic64_inc(&zram->stats.failed_reads);
728                 else
729                         atomic64_inc(&zram->stats.failed_writes);
730         }
731
732         return ret;
733 }
734
735 /*
736  * zram_bio_discard - handler on discard request
737  * @index: physical block index in PAGE_SIZE units
738  * @offset: byte offset within physical block
739  */
740 static void zram_bio_discard(struct zram *zram, u32 index,
741                              int offset, struct bio *bio)
742 {
743         size_t n = bio->bi_iter.bi_size;
744         struct zram_meta *meta = zram->meta;
745
746         /*
747          * zram manages data in physical block size units. Because logical block
748          * size isn't identical with physical block size on some arch, we
749          * could get a discard request pointing to a specific offset within a
750          * certain physical block.  Although we can handle this request by
751          * reading that physiclal block and decompressing and partially zeroing
752          * and re-compressing and then re-storing it, this isn't reasonable
753          * because our intent with a discard request is to save memory.  So
754          * skipping this logical block is appropriate here.
755          */
756         if (offset) {
757                 if (n <= (PAGE_SIZE - offset))
758                         return;
759
760                 n -= (PAGE_SIZE - offset);
761                 index++;
762         }
763
764         while (n >= PAGE_SIZE) {
765                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
766                 zram_free_page(zram, index);
767                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
768                 atomic64_inc(&zram->stats.notify_free);
769                 index++;
770                 n -= PAGE_SIZE;
771         }
772 }
773
774 static void zram_reset_device(struct zram *zram)
775 {
776         struct zram_meta *meta;
777         struct zcomp *comp;
778         u64 disksize;
779
780         down_write(&zram->init_lock);
781
782         zram->limit_pages = 0;
783
784         if (!init_done(zram)) {
785                 up_write(&zram->init_lock);
786                 return;
787         }
788
789         meta = zram->meta;
790         comp = zram->comp;
791         disksize = zram->disksize;
792         /*
793          * Refcount will go down to 0 eventually and r/w handler
794          * cannot handle further I/O so it will bail out by
795          * check zram_meta_get.
796          */
797         zram_meta_put(zram);
798         /*
799          * We want to free zram_meta in process context to avoid
800          * deadlock between reclaim path and any other locks.
801          */
802         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
803
804         /* Reset stats */
805         memset(&zram->stats, 0, sizeof(zram->stats));
806         zram->disksize = 0;
807         zram->max_comp_streams = 1;
808
809         set_capacity(zram->disk, 0);
810         part_stat_set_all(&zram->disk->part0, 0);
811
812         up_write(&zram->init_lock);
813         /* I/O operation under all of CPU are done so let's free */
814         zram_meta_free(meta, disksize);
815         zcomp_destroy(comp);
816 }
817
818 static ssize_t disksize_store(struct device *dev,
819                 struct device_attribute *attr, const char *buf, size_t len)
820 {
821         u64 disksize;
822         struct zcomp *comp;
823         struct zram_meta *meta;
824         struct zram *zram = dev_to_zram(dev);
825         int err;
826
827         disksize = memparse(buf, NULL);
828         if (!disksize)
829                 return -EINVAL;
830
831         disksize = PAGE_ALIGN(disksize);
832         meta = zram_meta_alloc(zram->disk->first_minor, disksize);
833         if (!meta)
834                 return -ENOMEM;
835
836         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
837         if (IS_ERR(comp)) {
838                 pr_info("Cannot initialise %s compressing backend\n",
839                                 zram->compressor);
840                 err = PTR_ERR(comp);
841                 goto out_free_meta;
842         }
843
844         down_write(&zram->init_lock);
845         if (init_done(zram)) {
846                 pr_info("Cannot change disksize for initialized device\n");
847                 err = -EBUSY;
848                 goto out_destroy_comp;
849         }
850
851         init_waitqueue_head(&zram->io_done);
852         atomic_set(&zram->refcount, 1);
853         zram->meta = meta;
854         zram->comp = comp;
855         zram->disksize = disksize;
856         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
857         up_write(&zram->init_lock);
858
859         /*
860          * Revalidate disk out of the init_lock to avoid lockdep splat.
861          * It's okay because disk's capacity is protected by init_lock
862          * so that revalidate_disk always sees up-to-date capacity.
863          */
864         revalidate_disk(zram->disk);
865
866         return len;
867
868 out_destroy_comp:
869         up_write(&zram->init_lock);
870         zcomp_destroy(comp);
871 out_free_meta:
872         zram_meta_free(meta, disksize);
873         return err;
874 }
875
876 static ssize_t reset_store(struct device *dev,
877                 struct device_attribute *attr, const char *buf, size_t len)
878 {
879         int ret;
880         unsigned short do_reset;
881         struct zram *zram;
882         struct block_device *bdev;
883
884         zram = dev_to_zram(dev);
885         bdev = bdget_disk(zram->disk, 0);
886
887         if (!bdev)
888                 return -ENOMEM;
889
890         mutex_lock(&bdev->bd_mutex);
891         /* Do not reset an active device! */
892         if (bdev->bd_openers) {
893                 ret = -EBUSY;
894                 goto out;
895         }
896
897         ret = kstrtou16(buf, 10, &do_reset);
898         if (ret)
899                 goto out;
900
901         if (!do_reset) {
902                 ret = -EINVAL;
903                 goto out;
904         }
905
906         /* Make sure all pending I/O is finished */
907         fsync_bdev(bdev);
908         zram_reset_device(zram);
909
910         mutex_unlock(&bdev->bd_mutex);
911         revalidate_disk(zram->disk);
912         bdput(bdev);
913
914         return len;
915
916 out:
917         mutex_unlock(&bdev->bd_mutex);
918         bdput(bdev);
919         return ret;
920 }
921
922 static void __zram_make_request(struct zram *zram, struct bio *bio)
923 {
924         int offset, rw;
925         u32 index;
926         struct bio_vec bvec;
927         struct bvec_iter iter;
928
929         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
930         offset = (bio->bi_iter.bi_sector &
931                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
932
933         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
934                 zram_bio_discard(zram, index, offset, bio);
935                 bio_endio(bio, 0);
936                 return;
937         }
938
939         rw = bio_data_dir(bio);
940         bio_for_each_segment(bvec, bio, iter) {
941                 int max_transfer_size = PAGE_SIZE - offset;
942
943                 if (bvec.bv_len > max_transfer_size) {
944                         /*
945                          * zram_bvec_rw() can only make operation on a single
946                          * zram page. Split the bio vector.
947                          */
948                         struct bio_vec bv;
949
950                         bv.bv_page = bvec.bv_page;
951                         bv.bv_len = max_transfer_size;
952                         bv.bv_offset = bvec.bv_offset;
953
954                         if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
955                                 goto out;
956
957                         bv.bv_len = bvec.bv_len - max_transfer_size;
958                         bv.bv_offset += max_transfer_size;
959                         if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
960                                 goto out;
961                 } else
962                         if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
963                                 goto out;
964
965                 update_position(&index, &offset, &bvec);
966         }
967
968         set_bit(BIO_UPTODATE, &bio->bi_flags);
969         bio_endio(bio, 0);
970         return;
971
972 out:
973         bio_io_error(bio);
974 }
975
976 /*
977  * Handler function for all zram I/O requests.
978  */
979 static void zram_make_request(struct request_queue *queue, struct bio *bio)
980 {
981         struct zram *zram = queue->queuedata;
982
983         if (unlikely(!zram_meta_get(zram)))
984                 goto error;
985
986         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
987                                         bio->bi_iter.bi_size)) {
988                 atomic64_inc(&zram->stats.invalid_io);
989                 goto put_zram;
990         }
991
992         __zram_make_request(zram, bio);
993         zram_meta_put(zram);
994         return;
995 put_zram:
996         zram_meta_put(zram);
997 error:
998         bio_io_error(bio);
999 }
1000
1001 static void zram_slot_free_notify(struct block_device *bdev,
1002                                 unsigned long index)
1003 {
1004         struct zram *zram;
1005         struct zram_meta *meta;
1006
1007         zram = bdev->bd_disk->private_data;
1008         meta = zram->meta;
1009
1010         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
1011         zram_free_page(zram, index);
1012         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
1013         atomic64_inc(&zram->stats.notify_free);
1014 }
1015
1016 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1017                        struct page *page, int rw)
1018 {
1019         int offset, err = -EIO;
1020         u32 index;
1021         struct zram *zram;
1022         struct bio_vec bv;
1023
1024         zram = bdev->bd_disk->private_data;
1025         if (unlikely(!zram_meta_get(zram)))
1026                 goto out;
1027
1028         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1029                 atomic64_inc(&zram->stats.invalid_io);
1030                 err = -EINVAL;
1031                 goto put_zram;
1032         }
1033
1034         index = sector >> SECTORS_PER_PAGE_SHIFT;
1035         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
1036
1037         bv.bv_page = page;
1038         bv.bv_len = PAGE_SIZE;
1039         bv.bv_offset = 0;
1040
1041         err = zram_bvec_rw(zram, &bv, index, offset, rw);
1042 put_zram:
1043         zram_meta_put(zram);
1044 out:
1045         /*
1046          * If I/O fails, just return error(ie, non-zero) without
1047          * calling page_endio.
1048          * It causes resubmit the I/O with bio request by upper functions
1049          * of rw_page(e.g., swap_readpage, __swap_writepage) and
1050          * bio->bi_end_io does things to handle the error
1051          * (e.g., SetPageError, set_page_dirty and extra works).
1052          */
1053         if (err == 0)
1054                 page_endio(page, rw, 0);
1055         return err;
1056 }
1057
1058 static const struct block_device_operations zram_devops = {
1059         .swap_slot_free_notify = zram_slot_free_notify,
1060         .rw_page = zram_rw_page,
1061         .owner = THIS_MODULE
1062 };
1063
1064 static DEVICE_ATTR_WO(compact);
1065 static DEVICE_ATTR_RW(disksize);
1066 static DEVICE_ATTR_RO(initstate);
1067 static DEVICE_ATTR_WO(reset);
1068 static DEVICE_ATTR_RO(orig_data_size);
1069 static DEVICE_ATTR_RO(mem_used_total);
1070 static DEVICE_ATTR_RW(mem_limit);
1071 static DEVICE_ATTR_RW(mem_used_max);
1072 static DEVICE_ATTR_RW(max_comp_streams);
1073 static DEVICE_ATTR_RW(comp_algorithm);
1074
1075 static ssize_t io_stat_show(struct device *dev,
1076                 struct device_attribute *attr, char *buf)
1077 {
1078         struct zram *zram = dev_to_zram(dev);
1079         ssize_t ret;
1080
1081         down_read(&zram->init_lock);
1082         ret = scnprintf(buf, PAGE_SIZE,
1083                         "%8llu %8llu %8llu %8llu\n",
1084                         (u64)atomic64_read(&zram->stats.failed_reads),
1085                         (u64)atomic64_read(&zram->stats.failed_writes),
1086                         (u64)atomic64_read(&zram->stats.invalid_io),
1087                         (u64)atomic64_read(&zram->stats.notify_free));
1088         up_read(&zram->init_lock);
1089
1090         return ret;
1091 }
1092
1093 static ssize_t mm_stat_show(struct device *dev,
1094                 struct device_attribute *attr, char *buf)
1095 {
1096         struct zram *zram = dev_to_zram(dev);
1097         u64 orig_size, mem_used = 0;
1098         long max_used;
1099         ssize_t ret;
1100
1101         down_read(&zram->init_lock);
1102         if (init_done(zram))
1103                 mem_used = zs_get_total_pages(zram->meta->mem_pool);
1104
1105         orig_size = atomic64_read(&zram->stats.pages_stored);
1106         max_used = atomic_long_read(&zram->stats.max_used_pages);
1107
1108         ret = scnprintf(buf, PAGE_SIZE,
1109                         "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
1110                         orig_size << PAGE_SHIFT,
1111                         (u64)atomic64_read(&zram->stats.compr_data_size),
1112                         mem_used << PAGE_SHIFT,
1113                         zram->limit_pages << PAGE_SHIFT,
1114                         max_used << PAGE_SHIFT,
1115                         (u64)atomic64_read(&zram->stats.zero_pages),
1116                         (u64)atomic64_read(&zram->stats.num_migrated));
1117         up_read(&zram->init_lock);
1118
1119         return ret;
1120 }
1121
1122 static DEVICE_ATTR_RO(io_stat);
1123 static DEVICE_ATTR_RO(mm_stat);
1124 ZRAM_ATTR_RO(num_reads);
1125 ZRAM_ATTR_RO(num_writes);
1126 ZRAM_ATTR_RO(failed_reads);
1127 ZRAM_ATTR_RO(failed_writes);
1128 ZRAM_ATTR_RO(invalid_io);
1129 ZRAM_ATTR_RO(notify_free);
1130 ZRAM_ATTR_RO(zero_pages);
1131 ZRAM_ATTR_RO(compr_data_size);
1132
1133 static struct attribute *zram_disk_attrs[] = {
1134         &dev_attr_disksize.attr,
1135         &dev_attr_initstate.attr,
1136         &dev_attr_reset.attr,
1137         &dev_attr_num_reads.attr,
1138         &dev_attr_num_writes.attr,
1139         &dev_attr_failed_reads.attr,
1140         &dev_attr_failed_writes.attr,
1141         &dev_attr_compact.attr,
1142         &dev_attr_invalid_io.attr,
1143         &dev_attr_notify_free.attr,
1144         &dev_attr_zero_pages.attr,
1145         &dev_attr_orig_data_size.attr,
1146         &dev_attr_compr_data_size.attr,
1147         &dev_attr_mem_used_total.attr,
1148         &dev_attr_mem_limit.attr,
1149         &dev_attr_mem_used_max.attr,
1150         &dev_attr_max_comp_streams.attr,
1151         &dev_attr_comp_algorithm.attr,
1152         &dev_attr_io_stat.attr,
1153         &dev_attr_mm_stat.attr,
1154         NULL,
1155 };
1156
1157 static struct attribute_group zram_disk_attr_group = {
1158         .attrs = zram_disk_attrs,
1159 };
1160
1161 static int create_device(struct zram *zram, int device_id)
1162 {
1163         struct request_queue *queue;
1164         int ret = -ENOMEM;
1165
1166         init_rwsem(&zram->init_lock);
1167
1168         queue = blk_alloc_queue(GFP_KERNEL);
1169         if (!queue) {
1170                 pr_err("Error allocating disk queue for device %d\n",
1171                         device_id);
1172                 goto out;
1173         }
1174
1175         blk_queue_make_request(queue, zram_make_request);
1176
1177          /* gendisk structure */
1178         zram->disk = alloc_disk(1);
1179         if (!zram->disk) {
1180                 pr_warn("Error allocating disk structure for device %d\n",
1181                         device_id);
1182                 ret = -ENOMEM;
1183                 goto out_free_queue;
1184         }
1185
1186         zram->disk->major = zram_major;
1187         zram->disk->first_minor = device_id;
1188         zram->disk->fops = &zram_devops;
1189         zram->disk->queue = queue;
1190         zram->disk->queue->queuedata = zram;
1191         zram->disk->private_data = zram;
1192         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1193
1194         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1195         set_capacity(zram->disk, 0);
1196         /* zram devices sort of resembles non-rotational disks */
1197         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1198         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1199         /*
1200          * To ensure that we always get PAGE_SIZE aligned
1201          * and n*PAGE_SIZED sized I/O requests.
1202          */
1203         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1204         blk_queue_logical_block_size(zram->disk->queue,
1205                                         ZRAM_LOGICAL_BLOCK_SIZE);
1206         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1207         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1208         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1209         zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1210         /*
1211          * zram_bio_discard() will clear all logical blocks if logical block
1212          * size is identical with physical block size(PAGE_SIZE). But if it is
1213          * different, we will skip discarding some parts of logical blocks in
1214          * the part of the request range which isn't aligned to physical block
1215          * size.  So we can't ensure that all discarded logical blocks are
1216          * zeroed.
1217          */
1218         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1219                 zram->disk->queue->limits.discard_zeroes_data = 1;
1220         else
1221                 zram->disk->queue->limits.discard_zeroes_data = 0;
1222         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1223
1224         add_disk(zram->disk);
1225
1226         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1227                                 &zram_disk_attr_group);
1228         if (ret < 0) {
1229                 pr_warn("Error creating sysfs group");
1230                 goto out_free_disk;
1231         }
1232         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1233         zram->meta = NULL;
1234         zram->max_comp_streams = 1;
1235         return 0;
1236
1237 out_free_disk:
1238         del_gendisk(zram->disk);
1239         put_disk(zram->disk);
1240 out_free_queue:
1241         blk_cleanup_queue(queue);
1242 out:
1243         return ret;
1244 }
1245
1246 static void destroy_devices(unsigned int nr)
1247 {
1248         struct zram *zram;
1249         unsigned int i;
1250
1251         for (i = 0; i < nr; i++) {
1252                 zram = &zram_devices[i];
1253                 /*
1254                  * Remove sysfs first, so no one will perform a disksize
1255                  * store while we destroy the devices
1256                  */
1257                 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1258                                 &zram_disk_attr_group);
1259
1260                 zram_reset_device(zram);
1261
1262                 blk_cleanup_queue(zram->disk->queue);
1263                 del_gendisk(zram->disk);
1264                 put_disk(zram->disk);
1265         }
1266
1267         kfree(zram_devices);
1268         unregister_blkdev(zram_major, "zram");
1269         pr_info("Destroyed %u device(s)\n", nr);
1270 }
1271
1272 static int __init zram_init(void)
1273 {
1274         int ret, dev_id;
1275
1276         if (num_devices > max_num_devices) {
1277                 pr_warn("Invalid value for num_devices: %u\n",
1278                                 num_devices);
1279                 return -EINVAL;
1280         }
1281
1282         zram_major = register_blkdev(0, "zram");
1283         if (zram_major <= 0) {
1284                 pr_warn("Unable to get major number\n");
1285                 return -EBUSY;
1286         }
1287
1288         /* Allocate the device array and initialize each one */
1289         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1290         if (!zram_devices) {
1291                 unregister_blkdev(zram_major, "zram");
1292                 return -ENOMEM;
1293         }
1294
1295         for (dev_id = 0; dev_id < num_devices; dev_id++) {
1296                 ret = create_device(&zram_devices[dev_id], dev_id);
1297                 if (ret)
1298                         goto out_error;
1299         }
1300
1301         pr_info("Created %u device(s)\n", num_devices);
1302         return 0;
1303
1304 out_error:
1305         destroy_devices(dev_id);
1306         return ret;
1307 }
1308
1309 static void __exit zram_exit(void)
1310 {
1311         destroy_devices(num_devices);
1312 }
1313
1314 module_init(zram_init);
1315 module_exit(zram_exit);
1316
1317 module_param(num_devices, uint, 0);
1318 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1319
1320 MODULE_LICENSE("Dual BSD/GPL");
1321 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1322 MODULE_DESCRIPTION("Compressed RAM Block Device");