Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48         pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49                         task_pid_nr(current),
50                         current->comm,
51                         name,
52                         "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name)                                              \
56 static ssize_t name##_show(struct device *d,                            \
57                                 struct device_attribute *attr, char *b) \
58 {                                                                       \
59         struct zram *zram = dev_to_zram(d);                             \
60                                                                         \
61         deprecated_attr_warn(__stringify(name));                        \
62         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
63                 (u64)atomic64_read(&zram->stats.name));                 \
64 }                                                                       \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69         return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74         return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79                         enum zram_pageflags flag)
80 {
81         return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85                         enum zram_pageflags flag)
86 {
87         meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91                         enum zram_pageflags flag)
92 {
93         meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102                                         u32 index, size_t size)
103 {
104         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline bool is_partial_io(struct bio_vec *bvec)
110 {
111         return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline bool valid_io_request(struct zram *zram,
118                 sector_t start, unsigned int size)
119 {
120         u64 end, bound;
121
122         /* unaligned request */
123         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124                 return false;
125         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126                 return false;
127
128         end = start + (size >> SECTOR_SHIFT);
129         bound = zram->disksize >> SECTOR_SHIFT;
130         /* out of range range */
131         if (unlikely(start >= bound || end > bound || start > end))
132                 return false;
133
134         /* I/O request is valid */
135         return true;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140         if (*offset + bvec->bv_len >= PAGE_SIZE)
141                 (*index)++;
142         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146                                         const unsigned long pages)
147 {
148         unsigned long old_max, cur_max;
149
150         old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152         do {
153                 cur_max = old_max;
154                 if (pages > cur_max)
155                         old_max = atomic_long_cmpxchg(
156                                 &zram->stats.max_used_pages, cur_max, pages);
157         } while (old_max != cur_max);
158 }
159
160 static bool page_zero_filled(void *ptr)
161 {
162         unsigned int pos;
163         unsigned long *page;
164
165         page = (unsigned long *)ptr;
166
167         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168                 if (page[pos])
169                         return false;
170         }
171
172         return true;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177         struct page *page = bvec->bv_page;
178         void *user_mem;
179
180         user_mem = kmap_atomic(page);
181         if (is_partial_io(bvec))
182                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183         else
184                 clear_page(user_mem);
185         kunmap_atomic(user_mem);
186
187         flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191                 struct device_attribute *attr, char *buf)
192 {
193         u32 val;
194         struct zram *zram = dev_to_zram(dev);
195
196         down_read(&zram->init_lock);
197         val = init_done(zram);
198         up_read(&zram->init_lock);
199
200         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204                 struct device_attribute *attr, char *buf)
205 {
206         struct zram *zram = dev_to_zram(dev);
207
208         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212                 struct device_attribute *attr, char *buf)
213 {
214         struct zram *zram = dev_to_zram(dev);
215
216         deprecated_attr_warn("orig_data_size");
217         return scnprintf(buf, PAGE_SIZE, "%llu\n",
218                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         u64 val = 0;
225         struct zram *zram = dev_to_zram(dev);
226
227         deprecated_attr_warn("mem_used_total");
228         down_read(&zram->init_lock);
229         if (init_done(zram)) {
230                 struct zram_meta *meta = zram->meta;
231                 val = zs_get_total_pages(meta->mem_pool);
232         }
233         up_read(&zram->init_lock);
234
235         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239                 struct device_attribute *attr, char *buf)
240 {
241         u64 val;
242         struct zram *zram = dev_to_zram(dev);
243
244         deprecated_attr_warn("mem_limit");
245         down_read(&zram->init_lock);
246         val = zram->limit_pages;
247         up_read(&zram->init_lock);
248
249         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253                 struct device_attribute *attr, const char *buf, size_t len)
254 {
255         u64 limit;
256         char *tmp;
257         struct zram *zram = dev_to_zram(dev);
258
259         limit = memparse(buf, &tmp);
260         if (buf == tmp) /* no chars parsed, invalid input */
261                 return -EINVAL;
262
263         down_write(&zram->init_lock);
264         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265         up_write(&zram->init_lock);
266
267         return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271                 struct device_attribute *attr, char *buf)
272 {
273         u64 val = 0;
274         struct zram *zram = dev_to_zram(dev);
275
276         deprecated_attr_warn("mem_used_max");
277         down_read(&zram->init_lock);
278         if (init_done(zram))
279                 val = atomic_long_read(&zram->stats.max_used_pages);
280         up_read(&zram->init_lock);
281
282         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286                 struct device_attribute *attr, const char *buf, size_t len)
287 {
288         int err;
289         unsigned long val;
290         struct zram *zram = dev_to_zram(dev);
291
292         err = kstrtoul(buf, 10, &val);
293         if (err || val != 0)
294                 return -EINVAL;
295
296         down_read(&zram->init_lock);
297         if (init_done(zram)) {
298                 struct zram_meta *meta = zram->meta;
299                 atomic_long_set(&zram->stats.max_used_pages,
300                                 zs_get_total_pages(meta->mem_pool));
301         }
302         up_read(&zram->init_lock);
303
304         return len;
305 }
306
307 static ssize_t max_comp_streams_show(struct device *dev,
308                 struct device_attribute *attr, char *buf)
309 {
310         int val;
311         struct zram *zram = dev_to_zram(dev);
312
313         down_read(&zram->init_lock);
314         val = zram->max_comp_streams;
315         up_read(&zram->init_lock);
316
317         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318 }
319
320 static ssize_t max_comp_streams_store(struct device *dev,
321                 struct device_attribute *attr, const char *buf, size_t len)
322 {
323         int num;
324         struct zram *zram = dev_to_zram(dev);
325         int ret;
326
327         ret = kstrtoint(buf, 0, &num);
328         if (ret < 0)
329                 return ret;
330         if (num < 1)
331                 return -EINVAL;
332
333         down_write(&zram->init_lock);
334         if (init_done(zram)) {
335                 if (!zcomp_set_max_streams(zram->comp, num)) {
336                         pr_info("Cannot change max compression streams\n");
337                         ret = -EINVAL;
338                         goto out;
339                 }
340         }
341
342         zram->max_comp_streams = num;
343         ret = len;
344 out:
345         up_write(&zram->init_lock);
346         return ret;
347 }
348
349 static ssize_t comp_algorithm_show(struct device *dev,
350                 struct device_attribute *attr, char *buf)
351 {
352         size_t sz;
353         struct zram *zram = dev_to_zram(dev);
354
355         down_read(&zram->init_lock);
356         sz = zcomp_available_show(zram->compressor, buf);
357         up_read(&zram->init_lock);
358
359         return sz;
360 }
361
362 static ssize_t comp_algorithm_store(struct device *dev,
363                 struct device_attribute *attr, const char *buf, size_t len)
364 {
365         struct zram *zram = dev_to_zram(dev);
366         size_t sz;
367
368         if (!zcomp_available_algorithm(buf))
369                 return -EINVAL;
370
371         down_write(&zram->init_lock);
372         if (init_done(zram)) {
373                 up_write(&zram->init_lock);
374                 pr_info("Can't change algorithm for initialized device\n");
375                 return -EBUSY;
376         }
377         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
378
379         /* ignore trailing newline */
380         sz = strlen(zram->compressor);
381         if (sz > 0 && zram->compressor[sz - 1] == '\n')
382                 zram->compressor[sz - 1] = 0x00;
383
384         up_write(&zram->init_lock);
385         return len;
386 }
387
388 static ssize_t compact_store(struct device *dev,
389                 struct device_attribute *attr, const char *buf, size_t len)
390 {
391         struct zram *zram = dev_to_zram(dev);
392         struct zram_meta *meta;
393
394         down_read(&zram->init_lock);
395         if (!init_done(zram)) {
396                 up_read(&zram->init_lock);
397                 return -EINVAL;
398         }
399
400         meta = zram->meta;
401         zs_compact(meta->mem_pool);
402         up_read(&zram->init_lock);
403
404         return len;
405 }
406
407 static ssize_t io_stat_show(struct device *dev,
408                 struct device_attribute *attr, char *buf)
409 {
410         struct zram *zram = dev_to_zram(dev);
411         ssize_t ret;
412
413         down_read(&zram->init_lock);
414         ret = scnprintf(buf, PAGE_SIZE,
415                         "%8llu %8llu %8llu %8llu\n",
416                         (u64)atomic64_read(&zram->stats.failed_reads),
417                         (u64)atomic64_read(&zram->stats.failed_writes),
418                         (u64)atomic64_read(&zram->stats.invalid_io),
419                         (u64)atomic64_read(&zram->stats.notify_free));
420         up_read(&zram->init_lock);
421
422         return ret;
423 }
424
425 static ssize_t mm_stat_show(struct device *dev,
426                 struct device_attribute *attr, char *buf)
427 {
428         struct zram *zram = dev_to_zram(dev);
429         struct zs_pool_stats pool_stats;
430         u64 orig_size, mem_used = 0;
431         long max_used;
432         ssize_t ret;
433
434         memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
435
436         down_read(&zram->init_lock);
437         if (init_done(zram)) {
438                 mem_used = zs_get_total_pages(zram->meta->mem_pool);
439                 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
440         }
441
442         orig_size = atomic64_read(&zram->stats.pages_stored);
443         max_used = atomic_long_read(&zram->stats.max_used_pages);
444
445         ret = scnprintf(buf, PAGE_SIZE,
446                         "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
447                         orig_size << PAGE_SHIFT,
448                         (u64)atomic64_read(&zram->stats.compr_data_size),
449                         mem_used << PAGE_SHIFT,
450                         zram->limit_pages << PAGE_SHIFT,
451                         max_used << PAGE_SHIFT,
452                         (u64)atomic64_read(&zram->stats.zero_pages),
453                         pool_stats.pages_compacted);
454         up_read(&zram->init_lock);
455
456         return ret;
457 }
458
459 static DEVICE_ATTR_RO(io_stat);
460 static DEVICE_ATTR_RO(mm_stat);
461 ZRAM_ATTR_RO(num_reads);
462 ZRAM_ATTR_RO(num_writes);
463 ZRAM_ATTR_RO(failed_reads);
464 ZRAM_ATTR_RO(failed_writes);
465 ZRAM_ATTR_RO(invalid_io);
466 ZRAM_ATTR_RO(notify_free);
467 ZRAM_ATTR_RO(zero_pages);
468 ZRAM_ATTR_RO(compr_data_size);
469
470 static inline bool zram_meta_get(struct zram *zram)
471 {
472         if (atomic_inc_not_zero(&zram->refcount))
473                 return true;
474         return false;
475 }
476
477 static inline void zram_meta_put(struct zram *zram)
478 {
479         atomic_dec(&zram->refcount);
480 }
481
482 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
483 {
484         size_t num_pages = disksize >> PAGE_SHIFT;
485         size_t index;
486
487         /* Free all pages that are still in this zram device */
488         for (index = 0; index < num_pages; index++) {
489                 unsigned long handle = meta->table[index].handle;
490
491                 if (!handle)
492                         continue;
493
494                 zs_free(meta->mem_pool, handle);
495         }
496
497         zs_destroy_pool(meta->mem_pool);
498         vfree(meta->table);
499         kfree(meta);
500 }
501
502 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
503 {
504         size_t num_pages;
505         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
506
507         if (!meta)
508                 return NULL;
509
510         num_pages = disksize >> PAGE_SHIFT;
511         meta->table = vzalloc(num_pages * sizeof(*meta->table));
512         if (!meta->table) {
513                 pr_err("Error allocating zram address table\n");
514                 goto out_error;
515         }
516
517         meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
518         if (!meta->mem_pool) {
519                 pr_err("Error creating memory pool\n");
520                 goto out_error;
521         }
522
523         zram_meta_init_table_locks(meta, disksize);
524
525         return meta;
526
527 out_error:
528         vfree(meta->table);
529         kfree(meta);
530         return NULL;
531 }
532
533 /*
534  * To protect concurrent access to the same index entry,
535  * caller should hold this table index entry's bit_spinlock to
536  * indicate this index entry is accessing.
537  */
538 static void zram_free_page(struct zram *zram, size_t index)
539 {
540         struct zram_meta *meta = zram->meta;
541         unsigned long handle = meta->table[index].handle;
542
543         if (unlikely(!handle)) {
544                 /*
545                  * No memory is allocated for zero filled pages.
546                  * Simply clear zero page flag.
547                  */
548                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
549                         zram_clear_flag(meta, index, ZRAM_ZERO);
550                         atomic64_dec(&zram->stats.zero_pages);
551                 }
552                 return;
553         }
554
555         zs_free(meta->mem_pool, handle);
556
557         atomic64_sub(zram_get_obj_size(meta, index),
558                         &zram->stats.compr_data_size);
559         atomic64_dec(&zram->stats.pages_stored);
560
561         meta->table[index].handle = 0;
562         zram_set_obj_size(meta, index, 0);
563 }
564
565 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
566 {
567         int ret = 0;
568         unsigned char *cmem;
569         struct zram_meta *meta = zram->meta;
570         unsigned long handle;
571         size_t size;
572
573         zram_lock_table(&meta->table[index]);
574         handle = meta->table[index].handle;
575         size = zram_get_obj_size(meta, index);
576
577         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
578                 zram_unlock_table(&meta->table[index]);
579                 clear_page(mem);
580                 return 0;
581         }
582
583         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
584         if (size == PAGE_SIZE)
585                 copy_page(mem, cmem);
586         else
587                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
588         zs_unmap_object(meta->mem_pool, handle);
589         zram_unlock_table(&meta->table[index]);
590
591         /* Should NEVER happen. Return bio error if it does. */
592         if (unlikely(ret)) {
593                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
594                 return ret;
595         }
596
597         return 0;
598 }
599
600 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
601                           u32 index, int offset)
602 {
603         int ret;
604         struct page *page;
605         unsigned char *user_mem, *uncmem = NULL;
606         struct zram_meta *meta = zram->meta;
607         page = bvec->bv_page;
608
609         zram_lock_table(&meta->table[index]);
610         if (unlikely(!meta->table[index].handle) ||
611                         zram_test_flag(meta, index, ZRAM_ZERO)) {
612                 zram_unlock_table(&meta->table[index]);
613                 handle_zero_page(bvec);
614                 return 0;
615         }
616         zram_unlock_table(&meta->table[index]);
617
618         if (is_partial_io(bvec))
619                 /* Use  a temporary buffer to decompress the page */
620                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
621
622         user_mem = kmap_atomic(page);
623         if (!is_partial_io(bvec))
624                 uncmem = user_mem;
625
626         if (!uncmem) {
627                 pr_err("Unable to allocate temp memory\n");
628                 ret = -ENOMEM;
629                 goto out_cleanup;
630         }
631
632         ret = zram_decompress_page(zram, uncmem, index);
633         /* Should NEVER happen. Return bio error if it does. */
634         if (unlikely(ret))
635                 goto out_cleanup;
636
637         if (is_partial_io(bvec))
638                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
639                                 bvec->bv_len);
640
641         flush_dcache_page(page);
642         ret = 0;
643 out_cleanup:
644         kunmap_atomic(user_mem);
645         if (is_partial_io(bvec))
646                 kfree(uncmem);
647         return ret;
648 }
649
650 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
651                            int offset)
652 {
653         int ret = 0;
654         size_t clen;
655         unsigned long handle;
656         struct page *page;
657         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
658         struct zram_meta *meta = zram->meta;
659         struct zcomp_strm *zstrm = NULL;
660         unsigned long alloced_pages;
661
662         page = bvec->bv_page;
663         if (is_partial_io(bvec)) {
664                 /*
665                  * This is a partial IO. We need to read the full page
666                  * before to write the changes.
667                  */
668                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
669                 if (!uncmem) {
670                         ret = -ENOMEM;
671                         goto out;
672                 }
673                 ret = zram_decompress_page(zram, uncmem, index);
674                 if (ret)
675                         goto out;
676         }
677
678         zstrm = zcomp_strm_find(zram->comp);
679         user_mem = kmap_atomic(page);
680
681         if (is_partial_io(bvec)) {
682                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
683                        bvec->bv_len);
684                 kunmap_atomic(user_mem);
685                 user_mem = NULL;
686         } else {
687                 uncmem = user_mem;
688         }
689
690         if (page_zero_filled(uncmem)) {
691                 if (user_mem)
692                         kunmap_atomic(user_mem);
693                 /* Free memory associated with this sector now. */
694                 zram_lock_table(&meta->table[index]);
695                 zram_free_page(zram, index);
696                 zram_set_flag(meta, index, ZRAM_ZERO);
697                 zram_unlock_table(&meta->table[index]);
698
699                 atomic64_inc(&zram->stats.zero_pages);
700                 ret = 0;
701                 goto out;
702         }
703
704         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
705         if (!is_partial_io(bvec)) {
706                 kunmap_atomic(user_mem);
707                 user_mem = NULL;
708                 uncmem = NULL;
709         }
710
711         if (unlikely(ret)) {
712                 pr_err("Compression failed! err=%d\n", ret);
713                 goto out;
714         }
715         src = zstrm->buffer;
716         if (unlikely(clen > max_zpage_size)) {
717                 clen = PAGE_SIZE;
718                 if (is_partial_io(bvec))
719                         src = uncmem;
720         }
721
722         handle = zs_malloc(meta->mem_pool, clen);
723         if (!handle) {
724                 pr_err("Error allocating memory for compressed page: %u, size=%zu\n",
725                         index, clen);
726                 ret = -ENOMEM;
727                 goto out;
728         }
729
730         alloced_pages = zs_get_total_pages(meta->mem_pool);
731         update_used_max(zram, alloced_pages);
732
733         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
734                 zs_free(meta->mem_pool, handle);
735                 ret = -ENOMEM;
736                 goto out;
737         }
738
739         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
740
741         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
742                 src = kmap_atomic(page);
743                 copy_page(cmem, src);
744                 kunmap_atomic(src);
745         } else {
746                 memcpy(cmem, src, clen);
747         }
748
749         zcomp_strm_release(zram->comp, zstrm);
750         zstrm = NULL;
751         zs_unmap_object(meta->mem_pool, handle);
752
753         /*
754          * Free memory associated with this sector
755          * before overwriting unused sectors.
756          */
757         zram_lock_table(&meta->table[index]);
758         zram_free_page(zram, index);
759
760         meta->table[index].handle = handle;
761         zram_set_obj_size(meta, index, clen);
762         zram_unlock_table(&meta->table[index]);
763
764         /* Update stats */
765         atomic64_add(clen, &zram->stats.compr_data_size);
766         atomic64_inc(&zram->stats.pages_stored);
767 out:
768         if (zstrm)
769                 zcomp_strm_release(zram->comp, zstrm);
770         if (is_partial_io(bvec))
771                 kfree(uncmem);
772         return ret;
773 }
774
775 /*
776  * zram_bio_discard - handler on discard request
777  * @index: physical block index in PAGE_SIZE units
778  * @offset: byte offset within physical block
779  */
780 static void zram_bio_discard(struct zram *zram, u32 index,
781                              int offset, struct bio *bio)
782 {
783         size_t n = bio->bi_iter.bi_size;
784         struct zram_meta *meta = zram->meta;
785
786         /*
787          * zram manages data in physical block size units. Because logical block
788          * size isn't identical with physical block size on some arch, we
789          * could get a discard request pointing to a specific offset within a
790          * certain physical block.  Although we can handle this request by
791          * reading that physiclal block and decompressing and partially zeroing
792          * and re-compressing and then re-storing it, this isn't reasonable
793          * because our intent with a discard request is to save memory.  So
794          * skipping this logical block is appropriate here.
795          */
796         if (offset) {
797                 if (n <= (PAGE_SIZE - offset))
798                         return;
799
800                 n -= (PAGE_SIZE - offset);
801                 index++;
802         }
803
804         while (n >= PAGE_SIZE) {
805                 zram_lock_table(&meta->table[index]);
806                 zram_free_page(zram, index);
807                 zram_unlock_table(&meta->table[index]);
808                 atomic64_inc(&zram->stats.notify_free);
809                 index++;
810                 n -= PAGE_SIZE;
811         }
812 }
813
814 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
815                         int offset, int rw)
816 {
817         unsigned long start_time = jiffies;
818         int ret;
819
820         generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
821                         &zram->disk->part0);
822
823         if (rw == READ) {
824                 atomic64_inc(&zram->stats.num_reads);
825                 ret = zram_bvec_read(zram, bvec, index, offset);
826         } else {
827                 atomic64_inc(&zram->stats.num_writes);
828                 ret = zram_bvec_write(zram, bvec, index, offset);
829         }
830
831         generic_end_io_acct(rw, &zram->disk->part0, start_time);
832
833         if (unlikely(ret)) {
834                 if (rw == READ)
835                         atomic64_inc(&zram->stats.failed_reads);
836                 else
837                         atomic64_inc(&zram->stats.failed_writes);
838         }
839
840         return ret;
841 }
842
843 static void __zram_make_request(struct zram *zram, struct bio *bio)
844 {
845         int offset, rw;
846         u32 index;
847         struct bio_vec bvec;
848         struct bvec_iter iter;
849
850         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
851         offset = (bio->bi_iter.bi_sector &
852                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
853
854         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
855                 zram_bio_discard(zram, index, offset, bio);
856                 bio_endio(bio);
857                 return;
858         }
859
860         rw = bio_data_dir(bio);
861         bio_for_each_segment(bvec, bio, iter) {
862                 int max_transfer_size = PAGE_SIZE - offset;
863
864                 if (bvec.bv_len > max_transfer_size) {
865                         /*
866                          * zram_bvec_rw() can only make operation on a single
867                          * zram page. Split the bio vector.
868                          */
869                         struct bio_vec bv;
870
871                         bv.bv_page = bvec.bv_page;
872                         bv.bv_len = max_transfer_size;
873                         bv.bv_offset = bvec.bv_offset;
874
875                         if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
876                                 goto out;
877
878                         bv.bv_len = bvec.bv_len - max_transfer_size;
879                         bv.bv_offset += max_transfer_size;
880                         if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
881                                 goto out;
882                 } else
883                         if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
884                                 goto out;
885
886                 update_position(&index, &offset, &bvec);
887         }
888
889         bio_endio(bio);
890         return;
891
892 out:
893         bio_io_error(bio);
894 }
895
896 /*
897  * Handler function for all zram I/O requests.
898  */
899 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
900 {
901         struct zram *zram = queue->queuedata;
902
903         if (unlikely(!zram_meta_get(zram)))
904                 goto error;
905
906         blk_queue_split(queue, &bio, queue->bio_split);
907
908         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
909                                         bio->bi_iter.bi_size)) {
910                 atomic64_inc(&zram->stats.invalid_io);
911                 goto put_zram;
912         }
913
914         __zram_make_request(zram, bio);
915         zram_meta_put(zram);
916         return BLK_QC_T_NONE;
917 put_zram:
918         zram_meta_put(zram);
919 error:
920         bio_io_error(bio);
921         return BLK_QC_T_NONE;
922 }
923
924 static void zram_slot_free_notify(struct block_device *bdev,
925                                 unsigned long index)
926 {
927         struct zram *zram;
928         struct zram_meta *meta;
929
930         zram = bdev->bd_disk->private_data;
931         meta = zram->meta;
932
933         zram_lock_table(&meta->table[index]);
934         zram_free_page(zram, index);
935         zram_unlock_table(&meta->table[index]);
936         atomic64_inc(&zram->stats.notify_free);
937 }
938
939 static int zram_rw_page(struct block_device *bdev, sector_t sector,
940                        struct page *page, int rw)
941 {
942         int offset, err = -EIO;
943         u32 index;
944         struct zram *zram;
945         struct bio_vec bv;
946
947         zram = bdev->bd_disk->private_data;
948         if (unlikely(!zram_meta_get(zram)))
949                 goto out;
950
951         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
952                 atomic64_inc(&zram->stats.invalid_io);
953                 err = -EINVAL;
954                 goto put_zram;
955         }
956
957         index = sector >> SECTORS_PER_PAGE_SHIFT;
958         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
959
960         bv.bv_page = page;
961         bv.bv_len = PAGE_SIZE;
962         bv.bv_offset = 0;
963
964         err = zram_bvec_rw(zram, &bv, index, offset, rw);
965 put_zram:
966         zram_meta_put(zram);
967 out:
968         /*
969          * If I/O fails, just return error(ie, non-zero) without
970          * calling page_endio.
971          * It causes resubmit the I/O with bio request by upper functions
972          * of rw_page(e.g., swap_readpage, __swap_writepage) and
973          * bio->bi_end_io does things to handle the error
974          * (e.g., SetPageError, set_page_dirty and extra works).
975          */
976         if (err == 0)
977                 page_endio(page, rw, 0);
978         return err;
979 }
980
981 static void zram_reset_device(struct zram *zram)
982 {
983         struct zram_meta *meta;
984         struct zcomp *comp;
985         u64 disksize;
986
987         down_write(&zram->init_lock);
988
989         zram->limit_pages = 0;
990
991         if (!init_done(zram)) {
992                 up_write(&zram->init_lock);
993                 return;
994         }
995
996         meta = zram->meta;
997         comp = zram->comp;
998         disksize = zram->disksize;
999         /*
1000          * Refcount will go down to 0 eventually and r/w handler
1001          * cannot handle further I/O so it will bail out by
1002          * check zram_meta_get.
1003          */
1004         zram_meta_put(zram);
1005         /*
1006          * We want to free zram_meta in process context to avoid
1007          * deadlock between reclaim path and any other locks.
1008          */
1009         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1010
1011         /* Reset stats */
1012         memset(&zram->stats, 0, sizeof(zram->stats));
1013         zram->disksize = 0;
1014         zram->max_comp_streams = 1;
1015
1016         set_capacity(zram->disk, 0);
1017         part_stat_set_all(&zram->disk->part0, 0);
1018
1019         up_write(&zram->init_lock);
1020         /* I/O operation under all of CPU are done so let's free */
1021         zram_meta_free(meta, disksize);
1022         zcomp_destroy(comp);
1023 }
1024
1025 static ssize_t disksize_store(struct device *dev,
1026                 struct device_attribute *attr, const char *buf, size_t len)
1027 {
1028         u64 disksize;
1029         struct zcomp *comp;
1030         struct zram_meta *meta;
1031         struct zram *zram = dev_to_zram(dev);
1032         int err;
1033
1034         disksize = memparse(buf, NULL);
1035         if (!disksize)
1036                 return -EINVAL;
1037
1038         disksize = PAGE_ALIGN(disksize);
1039         meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1040         if (!meta)
1041                 return -ENOMEM;
1042
1043         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1044         if (IS_ERR(comp)) {
1045                 pr_err("Cannot initialise %s compressing backend\n",
1046                                 zram->compressor);
1047                 err = PTR_ERR(comp);
1048                 goto out_free_meta;
1049         }
1050
1051         down_write(&zram->init_lock);
1052         if (init_done(zram)) {
1053                 pr_info("Cannot change disksize for initialized device\n");
1054                 err = -EBUSY;
1055                 goto out_destroy_comp;
1056         }
1057
1058         init_waitqueue_head(&zram->io_done);
1059         atomic_set(&zram->refcount, 1);
1060         zram->meta = meta;
1061         zram->comp = comp;
1062         zram->disksize = disksize;
1063         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1064         up_write(&zram->init_lock);
1065
1066         /*
1067          * Revalidate disk out of the init_lock to avoid lockdep splat.
1068          * It's okay because disk's capacity is protected by init_lock
1069          * so that revalidate_disk always sees up-to-date capacity.
1070          */
1071         revalidate_disk(zram->disk);
1072
1073         return len;
1074
1075 out_destroy_comp:
1076         up_write(&zram->init_lock);
1077         zcomp_destroy(comp);
1078 out_free_meta:
1079         zram_meta_free(meta, disksize);
1080         return err;
1081 }
1082
1083 static ssize_t reset_store(struct device *dev,
1084                 struct device_attribute *attr, const char *buf, size_t len)
1085 {
1086         int ret;
1087         unsigned short do_reset;
1088         struct zram *zram;
1089         struct block_device *bdev;
1090
1091         ret = kstrtou16(buf, 10, &do_reset);
1092         if (ret)
1093                 return ret;
1094
1095         if (!do_reset)
1096                 return -EINVAL;
1097
1098         zram = dev_to_zram(dev);
1099         bdev = bdget_disk(zram->disk, 0);
1100         if (!bdev)
1101                 return -ENOMEM;
1102
1103         mutex_lock(&bdev->bd_mutex);
1104         /* Do not reset an active device or claimed device */
1105         if (bdev->bd_openers || zram->claim) {
1106                 mutex_unlock(&bdev->bd_mutex);
1107                 bdput(bdev);
1108                 return -EBUSY;
1109         }
1110
1111         /* From now on, anyone can't open /dev/zram[0-9] */
1112         zram->claim = true;
1113         mutex_unlock(&bdev->bd_mutex);
1114
1115         /* Make sure all the pending I/O are finished */
1116         fsync_bdev(bdev);
1117         zram_reset_device(zram);
1118         revalidate_disk(zram->disk);
1119         bdput(bdev);
1120
1121         mutex_lock(&bdev->bd_mutex);
1122         zram->claim = false;
1123         mutex_unlock(&bdev->bd_mutex);
1124
1125         return len;
1126 }
1127
1128 static int zram_open(struct block_device *bdev, fmode_t mode)
1129 {
1130         int ret = 0;
1131         struct zram *zram;
1132
1133         WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1134
1135         zram = bdev->bd_disk->private_data;
1136         /* zram was claimed to reset so open request fails */
1137         if (zram->claim)
1138                 ret = -EBUSY;
1139
1140         return ret;
1141 }
1142
1143 static const struct block_device_operations zram_devops = {
1144         .open = zram_open,
1145         .swap_slot_free_notify = zram_slot_free_notify,
1146         .rw_page = zram_rw_page,
1147         .owner = THIS_MODULE
1148 };
1149
1150 static DEVICE_ATTR_WO(compact);
1151 static DEVICE_ATTR_RW(disksize);
1152 static DEVICE_ATTR_RO(initstate);
1153 static DEVICE_ATTR_WO(reset);
1154 static DEVICE_ATTR_RO(orig_data_size);
1155 static DEVICE_ATTR_RO(mem_used_total);
1156 static DEVICE_ATTR_RW(mem_limit);
1157 static DEVICE_ATTR_RW(mem_used_max);
1158 static DEVICE_ATTR_RW(max_comp_streams);
1159 static DEVICE_ATTR_RW(comp_algorithm);
1160
1161 static struct attribute *zram_disk_attrs[] = {
1162         &dev_attr_disksize.attr,
1163         &dev_attr_initstate.attr,
1164         &dev_attr_reset.attr,
1165         &dev_attr_num_reads.attr,
1166         &dev_attr_num_writes.attr,
1167         &dev_attr_failed_reads.attr,
1168         &dev_attr_failed_writes.attr,
1169         &dev_attr_compact.attr,
1170         &dev_attr_invalid_io.attr,
1171         &dev_attr_notify_free.attr,
1172         &dev_attr_zero_pages.attr,
1173         &dev_attr_orig_data_size.attr,
1174         &dev_attr_compr_data_size.attr,
1175         &dev_attr_mem_used_total.attr,
1176         &dev_attr_mem_limit.attr,
1177         &dev_attr_mem_used_max.attr,
1178         &dev_attr_max_comp_streams.attr,
1179         &dev_attr_comp_algorithm.attr,
1180         &dev_attr_io_stat.attr,
1181         &dev_attr_mm_stat.attr,
1182         NULL,
1183 };
1184
1185 static struct attribute_group zram_disk_attr_group = {
1186         .attrs = zram_disk_attrs,
1187 };
1188
1189 /*
1190  * Allocate and initialize new zram device. the function returns
1191  * '>= 0' device_id upon success, and negative value otherwise.
1192  */
1193 static int zram_add(void)
1194 {
1195         struct zram *zram;
1196         struct request_queue *queue;
1197         int ret, device_id;
1198
1199         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1200         if (!zram)
1201                 return -ENOMEM;
1202
1203         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1204         if (ret < 0)
1205                 goto out_free_dev;
1206         device_id = ret;
1207
1208         init_rwsem(&zram->init_lock);
1209
1210         queue = blk_alloc_queue(GFP_KERNEL);
1211         if (!queue) {
1212                 pr_err("Error allocating disk queue for device %d\n",
1213                         device_id);
1214                 ret = -ENOMEM;
1215                 goto out_free_idr;
1216         }
1217
1218         blk_queue_make_request(queue, zram_make_request);
1219
1220         /* gendisk structure */
1221         zram->disk = alloc_disk(1);
1222         if (!zram->disk) {
1223                 pr_err("Error allocating disk structure for device %d\n",
1224                         device_id);
1225                 ret = -ENOMEM;
1226                 goto out_free_queue;
1227         }
1228
1229         zram->disk->major = zram_major;
1230         zram->disk->first_minor = device_id;
1231         zram->disk->fops = &zram_devops;
1232         zram->disk->queue = queue;
1233         zram->disk->queue->queuedata = zram;
1234         zram->disk->private_data = zram;
1235         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1236
1237         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1238         set_capacity(zram->disk, 0);
1239         /* zram devices sort of resembles non-rotational disks */
1240         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1241         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1242         /*
1243          * To ensure that we always get PAGE_SIZE aligned
1244          * and n*PAGE_SIZED sized I/O requests.
1245          */
1246         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1247         blk_queue_logical_block_size(zram->disk->queue,
1248                                         ZRAM_LOGICAL_BLOCK_SIZE);
1249         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1250         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1251         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1252         blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1253         /*
1254          * zram_bio_discard() will clear all logical blocks if logical block
1255          * size is identical with physical block size(PAGE_SIZE). But if it is
1256          * different, we will skip discarding some parts of logical blocks in
1257          * the part of the request range which isn't aligned to physical block
1258          * size.  So we can't ensure that all discarded logical blocks are
1259          * zeroed.
1260          */
1261         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1262                 zram->disk->queue->limits.discard_zeroes_data = 1;
1263         else
1264                 zram->disk->queue->limits.discard_zeroes_data = 0;
1265         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1266
1267         add_disk(zram->disk);
1268
1269         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1270                                 &zram_disk_attr_group);
1271         if (ret < 0) {
1272                 pr_err("Error creating sysfs group for device %d\n",
1273                                 device_id);
1274                 goto out_free_disk;
1275         }
1276         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1277         zram->meta = NULL;
1278         zram->max_comp_streams = 1;
1279
1280         pr_info("Added device: %s\n", zram->disk->disk_name);
1281         return device_id;
1282
1283 out_free_disk:
1284         del_gendisk(zram->disk);
1285         put_disk(zram->disk);
1286 out_free_queue:
1287         blk_cleanup_queue(queue);
1288 out_free_idr:
1289         idr_remove(&zram_index_idr, device_id);
1290 out_free_dev:
1291         kfree(zram);
1292         return ret;
1293 }
1294
1295 static int zram_remove(struct zram *zram)
1296 {
1297         struct block_device *bdev;
1298
1299         bdev = bdget_disk(zram->disk, 0);
1300         if (!bdev)
1301                 return -ENOMEM;
1302
1303         mutex_lock(&bdev->bd_mutex);
1304         if (bdev->bd_openers || zram->claim) {
1305                 mutex_unlock(&bdev->bd_mutex);
1306                 bdput(bdev);
1307                 return -EBUSY;
1308         }
1309
1310         zram->claim = true;
1311         mutex_unlock(&bdev->bd_mutex);
1312
1313         /*
1314          * Remove sysfs first, so no one will perform a disksize
1315          * store while we destroy the devices. This also helps during
1316          * hot_remove -- zram_reset_device() is the last holder of
1317          * ->init_lock, no later/concurrent disksize_store() or any
1318          * other sysfs handlers are possible.
1319          */
1320         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1321                         &zram_disk_attr_group);
1322
1323         /* Make sure all the pending I/O are finished */
1324         fsync_bdev(bdev);
1325         zram_reset_device(zram);
1326         bdput(bdev);
1327
1328         pr_info("Removed device: %s\n", zram->disk->disk_name);
1329
1330         blk_cleanup_queue(zram->disk->queue);
1331         del_gendisk(zram->disk);
1332         put_disk(zram->disk);
1333         kfree(zram);
1334         return 0;
1335 }
1336
1337 /* zram-control sysfs attributes */
1338 static ssize_t hot_add_show(struct class *class,
1339                         struct class_attribute *attr,
1340                         char *buf)
1341 {
1342         int ret;
1343
1344         mutex_lock(&zram_index_mutex);
1345         ret = zram_add();
1346         mutex_unlock(&zram_index_mutex);
1347
1348         if (ret < 0)
1349                 return ret;
1350         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1351 }
1352
1353 static ssize_t hot_remove_store(struct class *class,
1354                         struct class_attribute *attr,
1355                         const char *buf,
1356                         size_t count)
1357 {
1358         struct zram *zram;
1359         int ret, dev_id;
1360
1361         /* dev_id is gendisk->first_minor, which is `int' */
1362         ret = kstrtoint(buf, 10, &dev_id);
1363         if (ret)
1364                 return ret;
1365         if (dev_id < 0)
1366                 return -EINVAL;
1367
1368         mutex_lock(&zram_index_mutex);
1369
1370         zram = idr_find(&zram_index_idr, dev_id);
1371         if (zram) {
1372                 ret = zram_remove(zram);
1373                 if (!ret)
1374                         idr_remove(&zram_index_idr, dev_id);
1375         } else {
1376                 ret = -ENODEV;
1377         }
1378
1379         mutex_unlock(&zram_index_mutex);
1380         return ret ? ret : count;
1381 }
1382
1383 /*
1384  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1385  * sense that reading from this file does alter the state of your system -- it
1386  * creates a new un-initialized zram device and returns back this device's
1387  * device_id (or an error code if it fails to create a new device).
1388  */
1389 static struct class_attribute zram_control_class_attrs[] = {
1390         __ATTR(hot_add, 0400, hot_add_show, NULL),
1391         __ATTR_WO(hot_remove),
1392         __ATTR_NULL,
1393 };
1394
1395 static struct class zram_control_class = {
1396         .name           = "zram-control",
1397         .owner          = THIS_MODULE,
1398         .class_attrs    = zram_control_class_attrs,
1399 };
1400
1401 static int zram_remove_cb(int id, void *ptr, void *data)
1402 {
1403         zram_remove(ptr);
1404         return 0;
1405 }
1406
1407 static void destroy_devices(void)
1408 {
1409         class_unregister(&zram_control_class);
1410         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1411         idr_destroy(&zram_index_idr);
1412         unregister_blkdev(zram_major, "zram");
1413 }
1414
1415 static int __init zram_init(void)
1416 {
1417         int ret;
1418
1419         ret = class_register(&zram_control_class);
1420         if (ret) {
1421                 pr_err("Unable to register zram-control class\n");
1422                 return ret;
1423         }
1424
1425         zram_major = register_blkdev(0, "zram");
1426         if (zram_major <= 0) {
1427                 pr_err("Unable to get major number\n");
1428                 class_unregister(&zram_control_class);
1429                 return -EBUSY;
1430         }
1431
1432         while (num_devices != 0) {
1433                 mutex_lock(&zram_index_mutex);
1434                 ret = zram_add();
1435                 mutex_unlock(&zram_index_mutex);
1436                 if (ret < 0)
1437                         goto out_error;
1438                 num_devices--;
1439         }
1440
1441         return 0;
1442
1443 out_error:
1444         destroy_devices();
1445         return ret;
1446 }
1447
1448 static void __exit zram_exit(void)
1449 {
1450         destroy_devices();
1451 }
1452
1453 module_init(zram_init);
1454 module_exit(zram_exit);
1455
1456 module_param(num_devices, uint, 0);
1457 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1458
1459 MODULE_LICENSE("Dual BSD/GPL");
1460 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1461 MODULE_DESCRIPTION("Compressed RAM Block Device");