ec6c5c6e1ac94b2bcbe0619a7fe62b9e7d0ce4a5
[kvmfornfv.git] / kernel / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define SECTOR_SHIFT    9
59 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
60
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69         unsigned int counter;
70
71         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72         if (counter <= (unsigned int)INT_MAX)
73                 return (int)counter;
74
75         atomic_dec(v);
76
77         return -EINVAL;
78 }
79
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83         int counter;
84
85         counter = atomic_dec_return(v);
86         if (counter >= 0)
87                 return counter;
88
89         atomic_inc(v);
90
91         return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR            256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN   \
101                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME      "-"
106
107 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX    64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX  64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING    (1<<0)
118 #define RBD_FEATURE_STRIPINGV2  (1<<1)
119 #define RBD_FEATURES_ALL \
120             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
125
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN            32
133 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139         /* These six fields never change for a given rbd image */
140         char *object_prefix;
141         __u8 obj_order;
142         __u8 crypt_type;
143         __u8 comp_type;
144         u64 stripe_unit;
145         u64 stripe_count;
146         u64 features;           /* Might be changeable someday? */
147
148         /* The remaining fields need to be updated occasionally */
149         u64 image_size;
150         struct ceph_snap_context *snapc;
151         char *snap_names;       /* format 1 only */
152         u64 *snap_sizes;        /* format 1 only */
153 };
154
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181         u64             pool_id;
182         const char      *pool_name;
183
184         const char      *image_id;
185         const char      *image_name;
186
187         u64             snap_id;
188         const char      *snap_name;
189
190         struct kref     kref;
191 };
192
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197         struct ceph_client      *client;
198         struct kref             kref;
199         struct list_head        node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215         OBJ_OP_WRITE,
216         OBJ_OP_READ,
217         OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
222         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
223         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
224         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228         const char              *object_name;
229         u64                     offset;         /* object start byte */
230         u64                     length;         /* bytes from offset */
231         unsigned long           flags;
232
233         /*
234          * An object request associated with an image will have its
235          * img_data flag set; a standalone object request will not.
236          *
237          * A standalone object request will have which == BAD_WHICH
238          * and a null obj_request pointer.
239          *
240          * An object request initiated in support of a layered image
241          * object (to check for its existence before a write) will
242          * have which == BAD_WHICH and a non-null obj_request pointer.
243          *
244          * Finally, an object request for rbd image data will have
245          * which != BAD_WHICH, and will have a non-null img_request
246          * pointer.  The value of which will be in the range
247          * 0..(img_request->obj_request_count-1).
248          */
249         union {
250                 struct rbd_obj_request  *obj_request;   /* STAT op */
251                 struct {
252                         struct rbd_img_request  *img_request;
253                         u64                     img_offset;
254                         /* links for img_request->obj_requests list */
255                         struct list_head        links;
256                 };
257         };
258         u32                     which;          /* posn image request list */
259
260         enum obj_request_type   type;
261         union {
262                 struct bio      *bio_list;
263                 struct {
264                         struct page     **pages;
265                         u32             page_count;
266                 };
267         };
268         struct page             **copyup_pages;
269         u32                     copyup_page_count;
270
271         struct ceph_osd_request *osd_req;
272
273         u64                     xferred;        /* bytes transferred */
274         int                     result;
275
276         rbd_obj_callback_t      callback;
277         struct completion       completion;
278
279         struct kref             kref;
280 };
281
282 enum img_req_flags {
283         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
284         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
285         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
286         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290         struct rbd_device       *rbd_dev;
291         u64                     offset; /* starting image byte offset */
292         u64                     length; /* byte count from offset */
293         unsigned long           flags;
294         union {
295                 u64                     snap_id;        /* for reads */
296                 struct ceph_snap_context *snapc;        /* for writes */
297         };
298         union {
299                 struct request          *rq;            /* block request */
300                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
301         };
302         struct page             **copyup_pages;
303         u32                     copyup_page_count;
304         spinlock_t              completion_lock;/* protects next_completion */
305         u32                     next_completion;
306         rbd_img_callback_t      callback;
307         u64                     xferred;/* aggregate bytes transferred */
308         int                     result; /* first nonzero obj_request result */
309
310         u32                     obj_request_count;
311         struct list_head        obj_requests;   /* rbd_obj_request structs */
312
313         struct kref             kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324         u64                     size;
325         u64                     features;
326         bool                    read_only;
327 };
328
329 /*
330  * a single device
331  */
332 struct rbd_device {
333         int                     dev_id;         /* blkdev unique id */
334
335         int                     major;          /* blkdev assigned major */
336         int                     minor;
337         struct gendisk          *disk;          /* blkdev's gendisk and rq */
338
339         u32                     image_format;   /* Either 1 or 2 */
340         struct rbd_client       *rbd_client;
341
342         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344         spinlock_t              lock;           /* queue, flags, open_count */
345
346         struct rbd_image_header header;
347         unsigned long           flags;          /* possibly lock protected */
348         struct rbd_spec         *spec;
349
350         char                    *header_name;
351
352         struct ceph_file_layout layout;
353
354         struct ceph_osd_event   *watch_event;
355         struct rbd_obj_request  *watch_request;
356
357         struct rbd_spec         *parent_spec;
358         u64                     parent_overlap;
359         atomic_t                parent_ref;
360         struct rbd_device       *parent;
361
362         /* Block layer tags. */
363         struct blk_mq_tag_set   tag_set;
364
365         /* protects updating the header */
366         struct rw_semaphore     header_rwsem;
367
368         struct rbd_mapping      mapping;
369
370         struct list_head        node;
371
372         /* sysfs related */
373         struct device           dev;
374         unsigned long           open_count;     /* protected by lock */
375 };
376
377 /*
378  * Flag bits for rbd_dev->flags.  If atomicity is required,
379  * rbd_dev->lock is used to protect access.
380  *
381  * Currently, only the "removing" flag (which is coupled with the
382  * "open_count" field) requires atomic access.
383  */
384 enum rbd_dev_flags {
385         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
386         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
387 };
388
389 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
390
391 static LIST_HEAD(rbd_dev_list);    /* devices */
392 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393
394 static LIST_HEAD(rbd_client_list);              /* clients */
395 static DEFINE_SPINLOCK(rbd_client_list_lock);
396
397 /* Slab caches for frequently-allocated structures */
398
399 static struct kmem_cache        *rbd_img_request_cache;
400 static struct kmem_cache        *rbd_obj_request_cache;
401 static struct kmem_cache        *rbd_segment_name_cache;
402
403 static int rbd_major;
404 static DEFINE_IDA(rbd_dev_id_ida);
405
406 static struct workqueue_struct *rbd_wq;
407
408 /*
409  * Default to false for now, as single-major requires >= 0.75 version of
410  * userspace rbd utility.
411  */
412 static bool single_major = false;
413 module_param(single_major, bool, S_IRUGO);
414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
415
416 static int rbd_img_request_submit(struct rbd_img_request *img_request);
417
418 static void rbd_dev_device_release(struct device *dev);
419
420 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
421                        size_t count);
422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
423                           size_t count);
424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
425                                     size_t count);
426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
427                                        size_t count);
428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
429 static void rbd_spec_put(struct rbd_spec *spec);
430
431 static int rbd_dev_id_to_minor(int dev_id)
432 {
433         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
434 }
435
436 static int minor_to_rbd_dev_id(int minor)
437 {
438         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
439 }
440
441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
445
446 static struct attribute *rbd_bus_attrs[] = {
447         &bus_attr_add.attr,
448         &bus_attr_remove.attr,
449         &bus_attr_add_single_major.attr,
450         &bus_attr_remove_single_major.attr,
451         NULL,
452 };
453
454 static umode_t rbd_bus_is_visible(struct kobject *kobj,
455                                   struct attribute *attr, int index)
456 {
457         if (!single_major &&
458             (attr == &bus_attr_add_single_major.attr ||
459              attr == &bus_attr_remove_single_major.attr))
460                 return 0;
461
462         return attr->mode;
463 }
464
465 static const struct attribute_group rbd_bus_group = {
466         .attrs = rbd_bus_attrs,
467         .is_visible = rbd_bus_is_visible,
468 };
469 __ATTRIBUTE_GROUPS(rbd_bus);
470
471 static struct bus_type rbd_bus_type = {
472         .name           = "rbd",
473         .bus_groups     = rbd_bus_groups,
474 };
475
476 static void rbd_root_dev_release(struct device *dev)
477 {
478 }
479
480 static struct device rbd_root_dev = {
481         .init_name =    "rbd",
482         .release =      rbd_root_dev_release,
483 };
484
485 static __printf(2, 3)
486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
487 {
488         struct va_format vaf;
489         va_list args;
490
491         va_start(args, fmt);
492         vaf.fmt = fmt;
493         vaf.va = &args;
494
495         if (!rbd_dev)
496                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
497         else if (rbd_dev->disk)
498                 printk(KERN_WARNING "%s: %s: %pV\n",
499                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
500         else if (rbd_dev->spec && rbd_dev->spec->image_name)
501                 printk(KERN_WARNING "%s: image %s: %pV\n",
502                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
503         else if (rbd_dev->spec && rbd_dev->spec->image_id)
504                 printk(KERN_WARNING "%s: id %s: %pV\n",
505                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
506         else    /* punt */
507                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
508                         RBD_DRV_NAME, rbd_dev, &vaf);
509         va_end(args);
510 }
511
512 #ifdef RBD_DEBUG
513 #define rbd_assert(expr)                                                \
514                 if (unlikely(!(expr))) {                                \
515                         printk(KERN_ERR "\nAssertion failure in %s() "  \
516                                                 "at line %d:\n\n"       \
517                                         "\trbd_assert(%s);\n\n",        \
518                                         __func__, __LINE__, #expr);     \
519                         BUG();                                          \
520                 }
521 #else /* !RBD_DEBUG */
522 #  define rbd_assert(expr)      ((void) 0)
523 #endif /* !RBD_DEBUG */
524
525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
528
529 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
531 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
534                                         u64 snap_id);
535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
536                                 u8 *order, u64 *snap_size);
537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
538                 u64 *snap_features);
539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
540
541 static int rbd_open(struct block_device *bdev, fmode_t mode)
542 {
543         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
544         bool removing = false;
545
546         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
547                 return -EROFS;
548
549         spin_lock_irq(&rbd_dev->lock);
550         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
551                 removing = true;
552         else
553                 rbd_dev->open_count++;
554         spin_unlock_irq(&rbd_dev->lock);
555         if (removing)
556                 return -ENOENT;
557
558         (void) get_device(&rbd_dev->dev);
559
560         return 0;
561 }
562
563 static void rbd_release(struct gendisk *disk, fmode_t mode)
564 {
565         struct rbd_device *rbd_dev = disk->private_data;
566         unsigned long open_count_before;
567
568         spin_lock_irq(&rbd_dev->lock);
569         open_count_before = rbd_dev->open_count--;
570         spin_unlock_irq(&rbd_dev->lock);
571         rbd_assert(open_count_before > 0);
572
573         put_device(&rbd_dev->dev);
574 }
575
576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
577 {
578         int ret = 0;
579         int val;
580         bool ro;
581         bool ro_changed = false;
582
583         /* get_user() may sleep, so call it before taking rbd_dev->lock */
584         if (get_user(val, (int __user *)(arg)))
585                 return -EFAULT;
586
587         ro = val ? true : false;
588         /* Snapshot doesn't allow to write*/
589         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
590                 return -EROFS;
591
592         spin_lock_irq(&rbd_dev->lock);
593         /* prevent others open this device */
594         if (rbd_dev->open_count > 1) {
595                 ret = -EBUSY;
596                 goto out;
597         }
598
599         if (rbd_dev->mapping.read_only != ro) {
600                 rbd_dev->mapping.read_only = ro;
601                 ro_changed = true;
602         }
603
604 out:
605         spin_unlock_irq(&rbd_dev->lock);
606         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
607         if (ret == 0 && ro_changed)
608                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
609
610         return ret;
611 }
612
613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
614                         unsigned int cmd, unsigned long arg)
615 {
616         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
617         int ret = 0;
618
619         switch (cmd) {
620         case BLKROSET:
621                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
622                 break;
623         default:
624                 ret = -ENOTTY;
625         }
626
627         return ret;
628 }
629
630 #ifdef CONFIG_COMPAT
631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
632                                 unsigned int cmd, unsigned long arg)
633 {
634         return rbd_ioctl(bdev, mode, cmd, arg);
635 }
636 #endif /* CONFIG_COMPAT */
637
638 static const struct block_device_operations rbd_bd_ops = {
639         .owner                  = THIS_MODULE,
640         .open                   = rbd_open,
641         .release                = rbd_release,
642         .ioctl                  = rbd_ioctl,
643 #ifdef CONFIG_COMPAT
644         .compat_ioctl           = rbd_compat_ioctl,
645 #endif
646 };
647
648 /*
649  * Initialize an rbd client instance.  Success or not, this function
650  * consumes ceph_opts.  Caller holds client_mutex.
651  */
652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
653 {
654         struct rbd_client *rbdc;
655         int ret = -ENOMEM;
656
657         dout("%s:\n", __func__);
658         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659         if (!rbdc)
660                 goto out_opt;
661
662         kref_init(&rbdc->kref);
663         INIT_LIST_HEAD(&rbdc->node);
664
665         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
666         if (IS_ERR(rbdc->client))
667                 goto out_rbdc;
668         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
669
670         ret = ceph_open_session(rbdc->client);
671         if (ret < 0)
672                 goto out_client;
673
674         spin_lock(&rbd_client_list_lock);
675         list_add_tail(&rbdc->node, &rbd_client_list);
676         spin_unlock(&rbd_client_list_lock);
677
678         dout("%s: rbdc %p\n", __func__, rbdc);
679
680         return rbdc;
681 out_client:
682         ceph_destroy_client(rbdc->client);
683 out_rbdc:
684         kfree(rbdc);
685 out_opt:
686         if (ceph_opts)
687                 ceph_destroy_options(ceph_opts);
688         dout("%s: error %d\n", __func__, ret);
689
690         return ERR_PTR(ret);
691 }
692
693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
694 {
695         kref_get(&rbdc->kref);
696
697         return rbdc;
698 }
699
700 /*
701  * Find a ceph client with specific addr and configuration.  If
702  * found, bump its reference count.
703  */
704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
705 {
706         struct rbd_client *client_node;
707         bool found = false;
708
709         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
710                 return NULL;
711
712         spin_lock(&rbd_client_list_lock);
713         list_for_each_entry(client_node, &rbd_client_list, node) {
714                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
715                         __rbd_get_client(client_node);
716
717                         found = true;
718                         break;
719                 }
720         }
721         spin_unlock(&rbd_client_list_lock);
722
723         return found ? client_node : NULL;
724 }
725
726 /*
727  * mount options
728  */
729 enum {
730         Opt_last_int,
731         /* int args above */
732         Opt_last_string,
733         /* string args above */
734         Opt_read_only,
735         Opt_read_write,
736         /* Boolean args above */
737         Opt_last_bool,
738 };
739
740 static match_table_t rbd_opts_tokens = {
741         /* int args above */
742         /* string args above */
743         {Opt_read_only, "read_only"},
744         {Opt_read_only, "ro"},          /* Alternate spelling */
745         {Opt_read_write, "read_write"},
746         {Opt_read_write, "rw"},         /* Alternate spelling */
747         /* Boolean args above */
748         {-1, NULL}
749 };
750
751 struct rbd_options {
752         bool    read_only;
753 };
754
755 #define RBD_READ_ONLY_DEFAULT   false
756
757 static int parse_rbd_opts_token(char *c, void *private)
758 {
759         struct rbd_options *rbd_opts = private;
760         substring_t argstr[MAX_OPT_ARGS];
761         int token, intval, ret;
762
763         token = match_token(c, rbd_opts_tokens, argstr);
764         if (token < 0)
765                 return -EINVAL;
766
767         if (token < Opt_last_int) {
768                 ret = match_int(&argstr[0], &intval);
769                 if (ret < 0) {
770                         pr_err("bad mount option arg (not int) "
771                                "at '%s'\n", c);
772                         return ret;
773                 }
774                 dout("got int token %d val %d\n", token, intval);
775         } else if (token > Opt_last_int && token < Opt_last_string) {
776                 dout("got string token %d val %s\n", token,
777                      argstr[0].from);
778         } else if (token > Opt_last_string && token < Opt_last_bool) {
779                 dout("got Boolean token %d\n", token);
780         } else {
781                 dout("got token %d\n", token);
782         }
783
784         switch (token) {
785         case Opt_read_only:
786                 rbd_opts->read_only = true;
787                 break;
788         case Opt_read_write:
789                 rbd_opts->read_only = false;
790                 break;
791         default:
792                 rbd_assert(false);
793                 break;
794         }
795         return 0;
796 }
797
798 static char* obj_op_name(enum obj_operation_type op_type)
799 {
800         switch (op_type) {
801         case OBJ_OP_READ:
802                 return "read";
803         case OBJ_OP_WRITE:
804                 return "write";
805         case OBJ_OP_DISCARD:
806                 return "discard";
807         default:
808                 return "???";
809         }
810 }
811
812 /*
813  * Get a ceph client with specific addr and configuration, if one does
814  * not exist create it.  Either way, ceph_opts is consumed by this
815  * function.
816  */
817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
818 {
819         struct rbd_client *rbdc;
820
821         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
822         rbdc = rbd_client_find(ceph_opts);
823         if (rbdc)       /* using an existing client */
824                 ceph_destroy_options(ceph_opts);
825         else
826                 rbdc = rbd_client_create(ceph_opts);
827         mutex_unlock(&client_mutex);
828
829         return rbdc;
830 }
831
832 /*
833  * Destroy ceph client
834  *
835  * Caller must hold rbd_client_list_lock.
836  */
837 static void rbd_client_release(struct kref *kref)
838 {
839         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
840
841         dout("%s: rbdc %p\n", __func__, rbdc);
842         spin_lock(&rbd_client_list_lock);
843         list_del(&rbdc->node);
844         spin_unlock(&rbd_client_list_lock);
845
846         ceph_destroy_client(rbdc->client);
847         kfree(rbdc);
848 }
849
850 /*
851  * Drop reference to ceph client node. If it's not referenced anymore, release
852  * it.
853  */
854 static void rbd_put_client(struct rbd_client *rbdc)
855 {
856         if (rbdc)
857                 kref_put(&rbdc->kref, rbd_client_release);
858 }
859
860 static bool rbd_image_format_valid(u32 image_format)
861 {
862         return image_format == 1 || image_format == 2;
863 }
864
865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
866 {
867         size_t size;
868         u32 snap_count;
869
870         /* The header has to start with the magic rbd header text */
871         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
872                 return false;
873
874         /* The bio layer requires at least sector-sized I/O */
875
876         if (ondisk->options.order < SECTOR_SHIFT)
877                 return false;
878
879         /* If we use u64 in a few spots we may be able to loosen this */
880
881         if (ondisk->options.order > 8 * sizeof (int) - 1)
882                 return false;
883
884         /*
885          * The size of a snapshot header has to fit in a size_t, and
886          * that limits the number of snapshots.
887          */
888         snap_count = le32_to_cpu(ondisk->snap_count);
889         size = SIZE_MAX - sizeof (struct ceph_snap_context);
890         if (snap_count > size / sizeof (__le64))
891                 return false;
892
893         /*
894          * Not only that, but the size of the entire the snapshot
895          * header must also be representable in a size_t.
896          */
897         size -= snap_count * sizeof (__le64);
898         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
899                 return false;
900
901         return true;
902 }
903
904 /*
905  * Fill an rbd image header with information from the given format 1
906  * on-disk header.
907  */
908 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
909                                  struct rbd_image_header_ondisk *ondisk)
910 {
911         struct rbd_image_header *header = &rbd_dev->header;
912         bool first_time = header->object_prefix == NULL;
913         struct ceph_snap_context *snapc;
914         char *object_prefix = NULL;
915         char *snap_names = NULL;
916         u64 *snap_sizes = NULL;
917         u32 snap_count;
918         size_t size;
919         int ret = -ENOMEM;
920         u32 i;
921
922         /* Allocate this now to avoid having to handle failure below */
923
924         if (first_time) {
925                 size_t len;
926
927                 len = strnlen(ondisk->object_prefix,
928                                 sizeof (ondisk->object_prefix));
929                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
930                 if (!object_prefix)
931                         return -ENOMEM;
932                 memcpy(object_prefix, ondisk->object_prefix, len);
933                 object_prefix[len] = '\0';
934         }
935
936         /* Allocate the snapshot context and fill it in */
937
938         snap_count = le32_to_cpu(ondisk->snap_count);
939         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
940         if (!snapc)
941                 goto out_err;
942         snapc->seq = le64_to_cpu(ondisk->snap_seq);
943         if (snap_count) {
944                 struct rbd_image_snap_ondisk *snaps;
945                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
946
947                 /* We'll keep a copy of the snapshot names... */
948
949                 if (snap_names_len > (u64)SIZE_MAX)
950                         goto out_2big;
951                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
952                 if (!snap_names)
953                         goto out_err;
954
955                 /* ...as well as the array of their sizes. */
956
957                 size = snap_count * sizeof (*header->snap_sizes);
958                 snap_sizes = kmalloc(size, GFP_KERNEL);
959                 if (!snap_sizes)
960                         goto out_err;
961
962                 /*
963                  * Copy the names, and fill in each snapshot's id
964                  * and size.
965                  *
966                  * Note that rbd_dev_v1_header_info() guarantees the
967                  * ondisk buffer we're working with has
968                  * snap_names_len bytes beyond the end of the
969                  * snapshot id array, this memcpy() is safe.
970                  */
971                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
972                 snaps = ondisk->snaps;
973                 for (i = 0; i < snap_count; i++) {
974                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
975                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
976                 }
977         }
978
979         /* We won't fail any more, fill in the header */
980
981         if (first_time) {
982                 header->object_prefix = object_prefix;
983                 header->obj_order = ondisk->options.order;
984                 header->crypt_type = ondisk->options.crypt_type;
985                 header->comp_type = ondisk->options.comp_type;
986                 /* The rest aren't used for format 1 images */
987                 header->stripe_unit = 0;
988                 header->stripe_count = 0;
989                 header->features = 0;
990         } else {
991                 ceph_put_snap_context(header->snapc);
992                 kfree(header->snap_names);
993                 kfree(header->snap_sizes);
994         }
995
996         /* The remaining fields always get updated (when we refresh) */
997
998         header->image_size = le64_to_cpu(ondisk->image_size);
999         header->snapc = snapc;
1000         header->snap_names = snap_names;
1001         header->snap_sizes = snap_sizes;
1002
1003         return 0;
1004 out_2big:
1005         ret = -EIO;
1006 out_err:
1007         kfree(snap_sizes);
1008         kfree(snap_names);
1009         ceph_put_snap_context(snapc);
1010         kfree(object_prefix);
1011
1012         return ret;
1013 }
1014
1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1016 {
1017         const char *snap_name;
1018
1019         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1020
1021         /* Skip over names until we find the one we are looking for */
1022
1023         snap_name = rbd_dev->header.snap_names;
1024         while (which--)
1025                 snap_name += strlen(snap_name) + 1;
1026
1027         return kstrdup(snap_name, GFP_KERNEL);
1028 }
1029
1030 /*
1031  * Snapshot id comparison function for use with qsort()/bsearch().
1032  * Note that result is for snapshots in *descending* order.
1033  */
1034 static int snapid_compare_reverse(const void *s1, const void *s2)
1035 {
1036         u64 snap_id1 = *(u64 *)s1;
1037         u64 snap_id2 = *(u64 *)s2;
1038
1039         if (snap_id1 < snap_id2)
1040                 return 1;
1041         return snap_id1 == snap_id2 ? 0 : -1;
1042 }
1043
1044 /*
1045  * Search a snapshot context to see if the given snapshot id is
1046  * present.
1047  *
1048  * Returns the position of the snapshot id in the array if it's found,
1049  * or BAD_SNAP_INDEX otherwise.
1050  *
1051  * Note: The snapshot array is in kept sorted (by the osd) in
1052  * reverse order, highest snapshot id first.
1053  */
1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1055 {
1056         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1057         u64 *found;
1058
1059         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1060                                 sizeof (snap_id), snapid_compare_reverse);
1061
1062         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1063 }
1064
1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066                                         u64 snap_id)
1067 {
1068         u32 which;
1069         const char *snap_name;
1070
1071         which = rbd_dev_snap_index(rbd_dev, snap_id);
1072         if (which == BAD_SNAP_INDEX)
1073                 return ERR_PTR(-ENOENT);
1074
1075         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1076         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1077 }
1078
1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1080 {
1081         if (snap_id == CEPH_NOSNAP)
1082                 return RBD_SNAP_HEAD_NAME;
1083
1084         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1085         if (rbd_dev->image_format == 1)
1086                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1087
1088         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1089 }
1090
1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1092                                 u64 *snap_size)
1093 {
1094         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1095         if (snap_id == CEPH_NOSNAP) {
1096                 *snap_size = rbd_dev->header.image_size;
1097         } else if (rbd_dev->image_format == 1) {
1098                 u32 which;
1099
1100                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1101                 if (which == BAD_SNAP_INDEX)
1102                         return -ENOENT;
1103
1104                 *snap_size = rbd_dev->header.snap_sizes[which];
1105         } else {
1106                 u64 size = 0;
1107                 int ret;
1108
1109                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1110                 if (ret)
1111                         return ret;
1112
1113                 *snap_size = size;
1114         }
1115         return 0;
1116 }
1117
1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1119                         u64 *snap_features)
1120 {
1121         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1122         if (snap_id == CEPH_NOSNAP) {
1123                 *snap_features = rbd_dev->header.features;
1124         } else if (rbd_dev->image_format == 1) {
1125                 *snap_features = 0;     /* No features for format 1 */
1126         } else {
1127                 u64 features = 0;
1128                 int ret;
1129
1130                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131                 if (ret)
1132                         return ret;
1133
1134                 *snap_features = features;
1135         }
1136         return 0;
1137 }
1138
1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1140 {
1141         u64 snap_id = rbd_dev->spec->snap_id;
1142         u64 size = 0;
1143         u64 features = 0;
1144         int ret;
1145
1146         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1147         if (ret)
1148                 return ret;
1149         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150         if (ret)
1151                 return ret;
1152
1153         rbd_dev->mapping.size = size;
1154         rbd_dev->mapping.features = features;
1155
1156         return 0;
1157 }
1158
1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1160 {
1161         rbd_dev->mapping.size = 0;
1162         rbd_dev->mapping.features = 0;
1163 }
1164
1165 static void rbd_segment_name_free(const char *name)
1166 {
1167         /* The explicit cast here is needed to drop the const qualifier */
1168
1169         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1170 }
1171
1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1173 {
1174         char *name;
1175         u64 segment;
1176         int ret;
1177         char *name_format;
1178
1179         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1180         if (!name)
1181                 return NULL;
1182         segment = offset >> rbd_dev->header.obj_order;
1183         name_format = "%s.%012llx";
1184         if (rbd_dev->image_format == 2)
1185                 name_format = "%s.%016llx";
1186         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1187                         rbd_dev->header.object_prefix, segment);
1188         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1189                 pr_err("error formatting segment name for #%llu (%d)\n",
1190                         segment, ret);
1191                 rbd_segment_name_free(name);
1192                 name = NULL;
1193         }
1194
1195         return name;
1196 }
1197
1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1199 {
1200         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201
1202         return offset & (segment_size - 1);
1203 }
1204
1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1206                                 u64 offset, u64 length)
1207 {
1208         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1209
1210         offset &= segment_size - 1;
1211
1212         rbd_assert(length <= U64_MAX - offset);
1213         if (offset + length > segment_size)
1214                 length = segment_size - offset;
1215
1216         return length;
1217 }
1218
1219 /*
1220  * returns the size of an object in the image
1221  */
1222 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1223 {
1224         return 1 << header->obj_order;
1225 }
1226
1227 /*
1228  * bio helpers
1229  */
1230
1231 static void bio_chain_put(struct bio *chain)
1232 {
1233         struct bio *tmp;
1234
1235         while (chain) {
1236                 tmp = chain;
1237                 chain = chain->bi_next;
1238                 bio_put(tmp);
1239         }
1240 }
1241
1242 /*
1243  * zeros a bio chain, starting at specific offset
1244  */
1245 static void zero_bio_chain(struct bio *chain, int start_ofs)
1246 {
1247         struct bio_vec bv;
1248         struct bvec_iter iter;
1249         unsigned long flags;
1250         void *buf;
1251         int pos = 0;
1252
1253         while (chain) {
1254                 bio_for_each_segment(bv, chain, iter) {
1255                         if (pos + bv.bv_len > start_ofs) {
1256                                 int remainder = max(start_ofs - pos, 0);
1257                                 buf = bvec_kmap_irq(&bv, &flags);
1258                                 memset(buf + remainder, 0,
1259                                        bv.bv_len - remainder);
1260                                 flush_dcache_page(bv.bv_page);
1261                                 bvec_kunmap_irq(buf, &flags);
1262                         }
1263                         pos += bv.bv_len;
1264                 }
1265
1266                 chain = chain->bi_next;
1267         }
1268 }
1269
1270 /*
1271  * similar to zero_bio_chain(), zeros data defined by a page array,
1272  * starting at the given byte offset from the start of the array and
1273  * continuing up to the given end offset.  The pages array is
1274  * assumed to be big enough to hold all bytes up to the end.
1275  */
1276 static void zero_pages(struct page **pages, u64 offset, u64 end)
1277 {
1278         struct page **page = &pages[offset >> PAGE_SHIFT];
1279
1280         rbd_assert(end > offset);
1281         rbd_assert(end - offset <= (u64)SIZE_MAX);
1282         while (offset < end) {
1283                 size_t page_offset;
1284                 size_t length;
1285                 unsigned long flags;
1286                 void *kaddr;
1287
1288                 page_offset = offset & ~PAGE_MASK;
1289                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1290                 local_irq_save(flags);
1291                 kaddr = kmap_atomic(*page);
1292                 memset(kaddr + page_offset, 0, length);
1293                 flush_dcache_page(*page);
1294                 kunmap_atomic(kaddr);
1295                 local_irq_restore(flags);
1296
1297                 offset += length;
1298                 page++;
1299         }
1300 }
1301
1302 /*
1303  * Clone a portion of a bio, starting at the given byte offset
1304  * and continuing for the number of bytes indicated.
1305  */
1306 static struct bio *bio_clone_range(struct bio *bio_src,
1307                                         unsigned int offset,
1308                                         unsigned int len,
1309                                         gfp_t gfpmask)
1310 {
1311         struct bio *bio;
1312
1313         bio = bio_clone(bio_src, gfpmask);
1314         if (!bio)
1315                 return NULL;    /* ENOMEM */
1316
1317         bio_advance(bio, offset);
1318         bio->bi_iter.bi_size = len;
1319
1320         return bio;
1321 }
1322
1323 /*
1324  * Clone a portion of a bio chain, starting at the given byte offset
1325  * into the first bio in the source chain and continuing for the
1326  * number of bytes indicated.  The result is another bio chain of
1327  * exactly the given length, or a null pointer on error.
1328  *
1329  * The bio_src and offset parameters are both in-out.  On entry they
1330  * refer to the first source bio and the offset into that bio where
1331  * the start of data to be cloned is located.
1332  *
1333  * On return, bio_src is updated to refer to the bio in the source
1334  * chain that contains first un-cloned byte, and *offset will
1335  * contain the offset of that byte within that bio.
1336  */
1337 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1338                                         unsigned int *offset,
1339                                         unsigned int len,
1340                                         gfp_t gfpmask)
1341 {
1342         struct bio *bi = *bio_src;
1343         unsigned int off = *offset;
1344         struct bio *chain = NULL;
1345         struct bio **end;
1346
1347         /* Build up a chain of clone bios up to the limit */
1348
1349         if (!bi || off >= bi->bi_iter.bi_size || !len)
1350                 return NULL;            /* Nothing to clone */
1351
1352         end = &chain;
1353         while (len) {
1354                 unsigned int bi_size;
1355                 struct bio *bio;
1356
1357                 if (!bi) {
1358                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1359                         goto out_err;   /* EINVAL; ran out of bio's */
1360                 }
1361                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1362                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1363                 if (!bio)
1364                         goto out_err;   /* ENOMEM */
1365
1366                 *end = bio;
1367                 end = &bio->bi_next;
1368
1369                 off += bi_size;
1370                 if (off == bi->bi_iter.bi_size) {
1371                         bi = bi->bi_next;
1372                         off = 0;
1373                 }
1374                 len -= bi_size;
1375         }
1376         *bio_src = bi;
1377         *offset = off;
1378
1379         return chain;
1380 out_err:
1381         bio_chain_put(chain);
1382
1383         return NULL;
1384 }
1385
1386 /*
1387  * The default/initial value for all object request flags is 0.  For
1388  * each flag, once its value is set to 1 it is never reset to 0
1389  * again.
1390  */
1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1392 {
1393         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1394                 struct rbd_device *rbd_dev;
1395
1396                 rbd_dev = obj_request->img_request->rbd_dev;
1397                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1398                         obj_request);
1399         }
1400 }
1401
1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1403 {
1404         smp_mb();
1405         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1406 }
1407
1408 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1409 {
1410         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1411                 struct rbd_device *rbd_dev = NULL;
1412
1413                 if (obj_request_img_data_test(obj_request))
1414                         rbd_dev = obj_request->img_request->rbd_dev;
1415                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1416                         obj_request);
1417         }
1418 }
1419
1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1421 {
1422         smp_mb();
1423         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424 }
1425
1426 /*
1427  * This sets the KNOWN flag after (possibly) setting the EXISTS
1428  * flag.  The latter is set based on the "exists" value provided.
1429  *
1430  * Note that for our purposes once an object exists it never goes
1431  * away again.  It's possible that the response from two existence
1432  * checks are separated by the creation of the target object, and
1433  * the first ("doesn't exist") response arrives *after* the second
1434  * ("does exist").  In that case we ignore the second one.
1435  */
1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437                                 bool exists)
1438 {
1439         if (exists)
1440                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1441         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442         smp_mb();
1443 }
1444
1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1446 {
1447         smp_mb();
1448         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1449 }
1450
1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1452 {
1453         smp_mb();
1454         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1455 }
1456
1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1458 {
1459         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1460
1461         return obj_request->img_offset <
1462             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1463 }
1464
1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1466 {
1467         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1468                 atomic_read(&obj_request->kref.refcount));
1469         kref_get(&obj_request->kref);
1470 }
1471
1472 static void rbd_obj_request_destroy(struct kref *kref);
1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1474 {
1475         rbd_assert(obj_request != NULL);
1476         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1477                 atomic_read(&obj_request->kref.refcount));
1478         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1479 }
1480
1481 static void rbd_img_request_get(struct rbd_img_request *img_request)
1482 {
1483         dout("%s: img %p (was %d)\n", __func__, img_request,
1484              atomic_read(&img_request->kref.refcount));
1485         kref_get(&img_request->kref);
1486 }
1487
1488 static bool img_request_child_test(struct rbd_img_request *img_request);
1489 static void rbd_parent_request_destroy(struct kref *kref);
1490 static void rbd_img_request_destroy(struct kref *kref);
1491 static void rbd_img_request_put(struct rbd_img_request *img_request)
1492 {
1493         rbd_assert(img_request != NULL);
1494         dout("%s: img %p (was %d)\n", __func__, img_request,
1495                 atomic_read(&img_request->kref.refcount));
1496         if (img_request_child_test(img_request))
1497                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1498         else
1499                 kref_put(&img_request->kref, rbd_img_request_destroy);
1500 }
1501
1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1503                                         struct rbd_obj_request *obj_request)
1504 {
1505         rbd_assert(obj_request->img_request == NULL);
1506
1507         /* Image request now owns object's original reference */
1508         obj_request->img_request = img_request;
1509         obj_request->which = img_request->obj_request_count;
1510         rbd_assert(!obj_request_img_data_test(obj_request));
1511         obj_request_img_data_set(obj_request);
1512         rbd_assert(obj_request->which != BAD_WHICH);
1513         img_request->obj_request_count++;
1514         list_add_tail(&obj_request->links, &img_request->obj_requests);
1515         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1516                 obj_request->which);
1517 }
1518
1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1520                                         struct rbd_obj_request *obj_request)
1521 {
1522         rbd_assert(obj_request->which != BAD_WHICH);
1523
1524         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1525                 obj_request->which);
1526         list_del(&obj_request->links);
1527         rbd_assert(img_request->obj_request_count > 0);
1528         img_request->obj_request_count--;
1529         rbd_assert(obj_request->which == img_request->obj_request_count);
1530         obj_request->which = BAD_WHICH;
1531         rbd_assert(obj_request_img_data_test(obj_request));
1532         rbd_assert(obj_request->img_request == img_request);
1533         obj_request->img_request = NULL;
1534         obj_request->callback = NULL;
1535         rbd_obj_request_put(obj_request);
1536 }
1537
1538 static bool obj_request_type_valid(enum obj_request_type type)
1539 {
1540         switch (type) {
1541         case OBJ_REQUEST_NODATA:
1542         case OBJ_REQUEST_BIO:
1543         case OBJ_REQUEST_PAGES:
1544                 return true;
1545         default:
1546                 return false;
1547         }
1548 }
1549
1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1551                                 struct rbd_obj_request *obj_request)
1552 {
1553         dout("%s %p\n", __func__, obj_request);
1554         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1555 }
1556
1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1558 {
1559         dout("%s %p\n", __func__, obj_request);
1560         ceph_osdc_cancel_request(obj_request->osd_req);
1561 }
1562
1563 /*
1564  * Wait for an object request to complete.  If interrupted, cancel the
1565  * underlying osd request.
1566  */
1567 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1568 {
1569         int ret;
1570
1571         dout("%s %p\n", __func__, obj_request);
1572
1573         ret = wait_for_completion_interruptible(&obj_request->completion);
1574         if (ret < 0) {
1575                 dout("%s %p interrupted\n", __func__, obj_request);
1576                 rbd_obj_request_end(obj_request);
1577                 return ret;
1578         }
1579
1580         dout("%s %p done\n", __func__, obj_request);
1581         return 0;
1582 }
1583
1584 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1585 {
1586
1587         dout("%s: img %p\n", __func__, img_request);
1588
1589         /*
1590          * If no error occurred, compute the aggregate transfer
1591          * count for the image request.  We could instead use
1592          * atomic64_cmpxchg() to update it as each object request
1593          * completes; not clear which way is better off hand.
1594          */
1595         if (!img_request->result) {
1596                 struct rbd_obj_request *obj_request;
1597                 u64 xferred = 0;
1598
1599                 for_each_obj_request(img_request, obj_request)
1600                         xferred += obj_request->xferred;
1601                 img_request->xferred = xferred;
1602         }
1603
1604         if (img_request->callback)
1605                 img_request->callback(img_request);
1606         else
1607                 rbd_img_request_put(img_request);
1608 }
1609
1610 /*
1611  * The default/initial value for all image request flags is 0.  Each
1612  * is conditionally set to 1 at image request initialization time
1613  * and currently never change thereafter.
1614  */
1615 static void img_request_write_set(struct rbd_img_request *img_request)
1616 {
1617         set_bit(IMG_REQ_WRITE, &img_request->flags);
1618         smp_mb();
1619 }
1620
1621 static bool img_request_write_test(struct rbd_img_request *img_request)
1622 {
1623         smp_mb();
1624         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1625 }
1626
1627 /*
1628  * Set the discard flag when the img_request is an discard request
1629  */
1630 static void img_request_discard_set(struct rbd_img_request *img_request)
1631 {
1632         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1633         smp_mb();
1634 }
1635
1636 static bool img_request_discard_test(struct rbd_img_request *img_request)
1637 {
1638         smp_mb();
1639         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1640 }
1641
1642 static void img_request_child_set(struct rbd_img_request *img_request)
1643 {
1644         set_bit(IMG_REQ_CHILD, &img_request->flags);
1645         smp_mb();
1646 }
1647
1648 static void img_request_child_clear(struct rbd_img_request *img_request)
1649 {
1650         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1651         smp_mb();
1652 }
1653
1654 static bool img_request_child_test(struct rbd_img_request *img_request)
1655 {
1656         smp_mb();
1657         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1658 }
1659
1660 static void img_request_layered_set(struct rbd_img_request *img_request)
1661 {
1662         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1663         smp_mb();
1664 }
1665
1666 static void img_request_layered_clear(struct rbd_img_request *img_request)
1667 {
1668         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1669         smp_mb();
1670 }
1671
1672 static bool img_request_layered_test(struct rbd_img_request *img_request)
1673 {
1674         smp_mb();
1675         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1676 }
1677
1678 static enum obj_operation_type
1679 rbd_img_request_op_type(struct rbd_img_request *img_request)
1680 {
1681         if (img_request_write_test(img_request))
1682                 return OBJ_OP_WRITE;
1683         else if (img_request_discard_test(img_request))
1684                 return OBJ_OP_DISCARD;
1685         else
1686                 return OBJ_OP_READ;
1687 }
1688
1689 static void
1690 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692         u64 xferred = obj_request->xferred;
1693         u64 length = obj_request->length;
1694
1695         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1696                 obj_request, obj_request->img_request, obj_request->result,
1697                 xferred, length);
1698         /*
1699          * ENOENT means a hole in the image.  We zero-fill the entire
1700          * length of the request.  A short read also implies zero-fill
1701          * to the end of the request.  An error requires the whole
1702          * length of the request to be reported finished with an error
1703          * to the block layer.  In each case we update the xferred
1704          * count to indicate the whole request was satisfied.
1705          */
1706         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1707         if (obj_request->result == -ENOENT) {
1708                 if (obj_request->type == OBJ_REQUEST_BIO)
1709                         zero_bio_chain(obj_request->bio_list, 0);
1710                 else
1711                         zero_pages(obj_request->pages, 0, length);
1712                 obj_request->result = 0;
1713         } else if (xferred < length && !obj_request->result) {
1714                 if (obj_request->type == OBJ_REQUEST_BIO)
1715                         zero_bio_chain(obj_request->bio_list, xferred);
1716                 else
1717                         zero_pages(obj_request->pages, xferred, length);
1718         }
1719         obj_request->xferred = length;
1720         obj_request_done_set(obj_request);
1721 }
1722
1723 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1724 {
1725         dout("%s: obj %p cb %p\n", __func__, obj_request,
1726                 obj_request->callback);
1727         if (obj_request->callback)
1728                 obj_request->callback(obj_request);
1729         else
1730                 complete_all(&obj_request->completion);
1731 }
1732
1733 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1734 {
1735         dout("%s: obj %p\n", __func__, obj_request);
1736         obj_request_done_set(obj_request);
1737 }
1738
1739 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1740 {
1741         struct rbd_img_request *img_request = NULL;
1742         struct rbd_device *rbd_dev = NULL;
1743         bool layered = false;
1744
1745         if (obj_request_img_data_test(obj_request)) {
1746                 img_request = obj_request->img_request;
1747                 layered = img_request && img_request_layered_test(img_request);
1748                 rbd_dev = img_request->rbd_dev;
1749         }
1750
1751         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1752                 obj_request, img_request, obj_request->result,
1753                 obj_request->xferred, obj_request->length);
1754         if (layered && obj_request->result == -ENOENT &&
1755                         obj_request->img_offset < rbd_dev->parent_overlap)
1756                 rbd_img_parent_read(obj_request);
1757         else if (img_request)
1758                 rbd_img_obj_request_read_callback(obj_request);
1759         else
1760                 obj_request_done_set(obj_request);
1761 }
1762
1763 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1764 {
1765         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1766                 obj_request->result, obj_request->length);
1767         /*
1768          * There is no such thing as a successful short write.  Set
1769          * it to our originally-requested length.
1770          */
1771         obj_request->xferred = obj_request->length;
1772         obj_request_done_set(obj_request);
1773 }
1774
1775 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1776 {
1777         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1778                 obj_request->result, obj_request->length);
1779         /*
1780          * There is no such thing as a successful short discard.  Set
1781          * it to our originally-requested length.
1782          */
1783         obj_request->xferred = obj_request->length;
1784         /* discarding a non-existent object is not a problem */
1785         if (obj_request->result == -ENOENT)
1786                 obj_request->result = 0;
1787         obj_request_done_set(obj_request);
1788 }
1789
1790 /*
1791  * For a simple stat call there's nothing to do.  We'll do more if
1792  * this is part of a write sequence for a layered image.
1793  */
1794 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1795 {
1796         dout("%s: obj %p\n", __func__, obj_request);
1797         obj_request_done_set(obj_request);
1798 }
1799
1800 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1801                                 struct ceph_msg *msg)
1802 {
1803         struct rbd_obj_request *obj_request = osd_req->r_priv;
1804         u16 opcode;
1805
1806         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1807         rbd_assert(osd_req == obj_request->osd_req);
1808         if (obj_request_img_data_test(obj_request)) {
1809                 rbd_assert(obj_request->img_request);
1810                 rbd_assert(obj_request->which != BAD_WHICH);
1811         } else {
1812                 rbd_assert(obj_request->which == BAD_WHICH);
1813         }
1814
1815         if (osd_req->r_result < 0)
1816                 obj_request->result = osd_req->r_result;
1817
1818         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1819
1820         /*
1821          * We support a 64-bit length, but ultimately it has to be
1822          * passed to the block layer, which just supports a 32-bit
1823          * length field.
1824          */
1825         obj_request->xferred = osd_req->r_reply_op_len[0];
1826         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1827
1828         opcode = osd_req->r_ops[0].op;
1829         switch (opcode) {
1830         case CEPH_OSD_OP_READ:
1831                 rbd_osd_read_callback(obj_request);
1832                 break;
1833         case CEPH_OSD_OP_SETALLOCHINT:
1834                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1835                 /* fall through */
1836         case CEPH_OSD_OP_WRITE:
1837                 rbd_osd_write_callback(obj_request);
1838                 break;
1839         case CEPH_OSD_OP_STAT:
1840                 rbd_osd_stat_callback(obj_request);
1841                 break;
1842         case CEPH_OSD_OP_DELETE:
1843         case CEPH_OSD_OP_TRUNCATE:
1844         case CEPH_OSD_OP_ZERO:
1845                 rbd_osd_discard_callback(obj_request);
1846                 break;
1847         case CEPH_OSD_OP_CALL:
1848         case CEPH_OSD_OP_NOTIFY_ACK:
1849         case CEPH_OSD_OP_WATCH:
1850                 rbd_osd_trivial_callback(obj_request);
1851                 break;
1852         default:
1853                 rbd_warn(NULL, "%s: unsupported op %hu",
1854                         obj_request->object_name, (unsigned short) opcode);
1855                 break;
1856         }
1857
1858         if (obj_request_done_test(obj_request))
1859                 rbd_obj_request_complete(obj_request);
1860 }
1861
1862 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1863 {
1864         struct rbd_img_request *img_request = obj_request->img_request;
1865         struct ceph_osd_request *osd_req = obj_request->osd_req;
1866         u64 snap_id;
1867
1868         rbd_assert(osd_req != NULL);
1869
1870         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1871         ceph_osdc_build_request(osd_req, obj_request->offset,
1872                         NULL, snap_id, NULL);
1873 }
1874
1875 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1876 {
1877         struct rbd_img_request *img_request = obj_request->img_request;
1878         struct ceph_osd_request *osd_req = obj_request->osd_req;
1879         struct ceph_snap_context *snapc;
1880         struct timespec mtime = CURRENT_TIME;
1881
1882         rbd_assert(osd_req != NULL);
1883
1884         snapc = img_request ? img_request->snapc : NULL;
1885         ceph_osdc_build_request(osd_req, obj_request->offset,
1886                         snapc, CEPH_NOSNAP, &mtime);
1887 }
1888
1889 /*
1890  * Create an osd request.  A read request has one osd op (read).
1891  * A write request has either one (watch) or two (hint+write) osd ops.
1892  * (All rbd data writes are prefixed with an allocation hint op, but
1893  * technically osd watch is a write request, hence this distinction.)
1894  */
1895 static struct ceph_osd_request *rbd_osd_req_create(
1896                                         struct rbd_device *rbd_dev,
1897                                         enum obj_operation_type op_type,
1898                                         unsigned int num_ops,
1899                                         struct rbd_obj_request *obj_request)
1900 {
1901         struct ceph_snap_context *snapc = NULL;
1902         struct ceph_osd_client *osdc;
1903         struct ceph_osd_request *osd_req;
1904
1905         if (obj_request_img_data_test(obj_request) &&
1906                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1907                 struct rbd_img_request *img_request = obj_request->img_request;
1908                 if (op_type == OBJ_OP_WRITE) {
1909                         rbd_assert(img_request_write_test(img_request));
1910                 } else {
1911                         rbd_assert(img_request_discard_test(img_request));
1912                 }
1913                 snapc = img_request->snapc;
1914         }
1915
1916         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1917
1918         /* Allocate and initialize the request, for the num_ops ops */
1919
1920         osdc = &rbd_dev->rbd_client->client->osdc;
1921         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1922                                           GFP_ATOMIC);
1923         if (!osd_req)
1924                 return NULL;    /* ENOMEM */
1925
1926         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1927                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1928         else
1929                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1930
1931         osd_req->r_callback = rbd_osd_req_callback;
1932         osd_req->r_priv = obj_request;
1933
1934         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1935         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1936
1937         return osd_req;
1938 }
1939
1940 /*
1941  * Create a copyup osd request based on the information in the object
1942  * request supplied.  A copyup request has two or three osd ops, a
1943  * copyup method call, potentially a hint op, and a write or truncate
1944  * or zero op.
1945  */
1946 static struct ceph_osd_request *
1947 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1948 {
1949         struct rbd_img_request *img_request;
1950         struct ceph_snap_context *snapc;
1951         struct rbd_device *rbd_dev;
1952         struct ceph_osd_client *osdc;
1953         struct ceph_osd_request *osd_req;
1954         int num_osd_ops = 3;
1955
1956         rbd_assert(obj_request_img_data_test(obj_request));
1957         img_request = obj_request->img_request;
1958         rbd_assert(img_request);
1959         rbd_assert(img_request_write_test(img_request) ||
1960                         img_request_discard_test(img_request));
1961
1962         if (img_request_discard_test(img_request))
1963                 num_osd_ops = 2;
1964
1965         /* Allocate and initialize the request, for all the ops */
1966
1967         snapc = img_request->snapc;
1968         rbd_dev = img_request->rbd_dev;
1969         osdc = &rbd_dev->rbd_client->client->osdc;
1970         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1971                                                 false, GFP_ATOMIC);
1972         if (!osd_req)
1973                 return NULL;    /* ENOMEM */
1974
1975         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1976         osd_req->r_callback = rbd_osd_req_callback;
1977         osd_req->r_priv = obj_request;
1978
1979         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1980         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1981
1982         return osd_req;
1983 }
1984
1985
1986 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1987 {
1988         ceph_osdc_put_request(osd_req);
1989 }
1990
1991 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1992
1993 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1994                                                 u64 offset, u64 length,
1995                                                 enum obj_request_type type)
1996 {
1997         struct rbd_obj_request *obj_request;
1998         size_t size;
1999         char *name;
2000
2001         rbd_assert(obj_request_type_valid(type));
2002
2003         size = strlen(object_name) + 1;
2004         name = kmalloc(size, GFP_KERNEL);
2005         if (!name)
2006                 return NULL;
2007
2008         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2009         if (!obj_request) {
2010                 kfree(name);
2011                 return NULL;
2012         }
2013
2014         obj_request->object_name = memcpy(name, object_name, size);
2015         obj_request->offset = offset;
2016         obj_request->length = length;
2017         obj_request->flags = 0;
2018         obj_request->which = BAD_WHICH;
2019         obj_request->type = type;
2020         INIT_LIST_HEAD(&obj_request->links);
2021         init_completion(&obj_request->completion);
2022         kref_init(&obj_request->kref);
2023
2024         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2025                 offset, length, (int)type, obj_request);
2026
2027         return obj_request;
2028 }
2029
2030 static void rbd_obj_request_destroy(struct kref *kref)
2031 {
2032         struct rbd_obj_request *obj_request;
2033
2034         obj_request = container_of(kref, struct rbd_obj_request, kref);
2035
2036         dout("%s: obj %p\n", __func__, obj_request);
2037
2038         rbd_assert(obj_request->img_request == NULL);
2039         rbd_assert(obj_request->which == BAD_WHICH);
2040
2041         if (obj_request->osd_req)
2042                 rbd_osd_req_destroy(obj_request->osd_req);
2043
2044         rbd_assert(obj_request_type_valid(obj_request->type));
2045         switch (obj_request->type) {
2046         case OBJ_REQUEST_NODATA:
2047                 break;          /* Nothing to do */
2048         case OBJ_REQUEST_BIO:
2049                 if (obj_request->bio_list)
2050                         bio_chain_put(obj_request->bio_list);
2051                 break;
2052         case OBJ_REQUEST_PAGES:
2053                 if (obj_request->pages)
2054                         ceph_release_page_vector(obj_request->pages,
2055                                                 obj_request->page_count);
2056                 break;
2057         }
2058
2059         kfree(obj_request->object_name);
2060         obj_request->object_name = NULL;
2061         kmem_cache_free(rbd_obj_request_cache, obj_request);
2062 }
2063
2064 /* It's OK to call this for a device with no parent */
2065
2066 static void rbd_spec_put(struct rbd_spec *spec);
2067 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2068 {
2069         rbd_dev_remove_parent(rbd_dev);
2070         rbd_spec_put(rbd_dev->parent_spec);
2071         rbd_dev->parent_spec = NULL;
2072         rbd_dev->parent_overlap = 0;
2073 }
2074
2075 /*
2076  * Parent image reference counting is used to determine when an
2077  * image's parent fields can be safely torn down--after there are no
2078  * more in-flight requests to the parent image.  When the last
2079  * reference is dropped, cleaning them up is safe.
2080  */
2081 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2082 {
2083         int counter;
2084
2085         if (!rbd_dev->parent_spec)
2086                 return;
2087
2088         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2089         if (counter > 0)
2090                 return;
2091
2092         /* Last reference; clean up parent data structures */
2093
2094         if (!counter)
2095                 rbd_dev_unparent(rbd_dev);
2096         else
2097                 rbd_warn(rbd_dev, "parent reference underflow");
2098 }
2099
2100 /*
2101  * If an image has a non-zero parent overlap, get a reference to its
2102  * parent.
2103  *
2104  * Returns true if the rbd device has a parent with a non-zero
2105  * overlap and a reference for it was successfully taken, or
2106  * false otherwise.
2107  */
2108 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2109 {
2110         int counter = 0;
2111
2112         if (!rbd_dev->parent_spec)
2113                 return false;
2114
2115         down_read(&rbd_dev->header_rwsem);
2116         if (rbd_dev->parent_overlap)
2117                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118         up_read(&rbd_dev->header_rwsem);
2119
2120         if (counter < 0)
2121                 rbd_warn(rbd_dev, "parent reference overflow");
2122
2123         return counter > 0;
2124 }
2125
2126 /*
2127  * Caller is responsible for filling in the list of object requests
2128  * that comprises the image request, and the Linux request pointer
2129  * (if there is one).
2130  */
2131 static struct rbd_img_request *rbd_img_request_create(
2132                                         struct rbd_device *rbd_dev,
2133                                         u64 offset, u64 length,
2134                                         enum obj_operation_type op_type,
2135                                         struct ceph_snap_context *snapc)
2136 {
2137         struct rbd_img_request *img_request;
2138
2139         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2140         if (!img_request)
2141                 return NULL;
2142
2143         img_request->rq = NULL;
2144         img_request->rbd_dev = rbd_dev;
2145         img_request->offset = offset;
2146         img_request->length = length;
2147         img_request->flags = 0;
2148         if (op_type == OBJ_OP_DISCARD) {
2149                 img_request_discard_set(img_request);
2150                 img_request->snapc = snapc;
2151         } else if (op_type == OBJ_OP_WRITE) {
2152                 img_request_write_set(img_request);
2153                 img_request->snapc = snapc;
2154         } else {
2155                 img_request->snap_id = rbd_dev->spec->snap_id;
2156         }
2157         if (rbd_dev_parent_get(rbd_dev))
2158                 img_request_layered_set(img_request);
2159         spin_lock_init(&img_request->completion_lock);
2160         img_request->next_completion = 0;
2161         img_request->callback = NULL;
2162         img_request->result = 0;
2163         img_request->obj_request_count = 0;
2164         INIT_LIST_HEAD(&img_request->obj_requests);
2165         kref_init(&img_request->kref);
2166
2167         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2168                 obj_op_name(op_type), offset, length, img_request);
2169
2170         return img_request;
2171 }
2172
2173 static void rbd_img_request_destroy(struct kref *kref)
2174 {
2175         struct rbd_img_request *img_request;
2176         struct rbd_obj_request *obj_request;
2177         struct rbd_obj_request *next_obj_request;
2178
2179         img_request = container_of(kref, struct rbd_img_request, kref);
2180
2181         dout("%s: img %p\n", __func__, img_request);
2182
2183         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2184                 rbd_img_obj_request_del(img_request, obj_request);
2185         rbd_assert(img_request->obj_request_count == 0);
2186
2187         if (img_request_layered_test(img_request)) {
2188                 img_request_layered_clear(img_request);
2189                 rbd_dev_parent_put(img_request->rbd_dev);
2190         }
2191
2192         if (img_request_write_test(img_request) ||
2193                 img_request_discard_test(img_request))
2194                 ceph_put_snap_context(img_request->snapc);
2195
2196         kmem_cache_free(rbd_img_request_cache, img_request);
2197 }
2198
2199 static struct rbd_img_request *rbd_parent_request_create(
2200                                         struct rbd_obj_request *obj_request,
2201                                         u64 img_offset, u64 length)
2202 {
2203         struct rbd_img_request *parent_request;
2204         struct rbd_device *rbd_dev;
2205
2206         rbd_assert(obj_request->img_request);
2207         rbd_dev = obj_request->img_request->rbd_dev;
2208
2209         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2210                                                 length, OBJ_OP_READ, NULL);
2211         if (!parent_request)
2212                 return NULL;
2213
2214         img_request_child_set(parent_request);
2215         rbd_obj_request_get(obj_request);
2216         parent_request->obj_request = obj_request;
2217
2218         return parent_request;
2219 }
2220
2221 static void rbd_parent_request_destroy(struct kref *kref)
2222 {
2223         struct rbd_img_request *parent_request;
2224         struct rbd_obj_request *orig_request;
2225
2226         parent_request = container_of(kref, struct rbd_img_request, kref);
2227         orig_request = parent_request->obj_request;
2228
2229         parent_request->obj_request = NULL;
2230         rbd_obj_request_put(orig_request);
2231         img_request_child_clear(parent_request);
2232
2233         rbd_img_request_destroy(kref);
2234 }
2235
2236 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2237 {
2238         struct rbd_img_request *img_request;
2239         unsigned int xferred;
2240         int result;
2241         bool more;
2242
2243         rbd_assert(obj_request_img_data_test(obj_request));
2244         img_request = obj_request->img_request;
2245
2246         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2247         xferred = (unsigned int)obj_request->xferred;
2248         result = obj_request->result;
2249         if (result) {
2250                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2251                 enum obj_operation_type op_type;
2252
2253                 if (img_request_discard_test(img_request))
2254                         op_type = OBJ_OP_DISCARD;
2255                 else if (img_request_write_test(img_request))
2256                         op_type = OBJ_OP_WRITE;
2257                 else
2258                         op_type = OBJ_OP_READ;
2259
2260                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2261                         obj_op_name(op_type), obj_request->length,
2262                         obj_request->img_offset, obj_request->offset);
2263                 rbd_warn(rbd_dev, "  result %d xferred %x",
2264                         result, xferred);
2265                 if (!img_request->result)
2266                         img_request->result = result;
2267                 /*
2268                  * Need to end I/O on the entire obj_request worth of
2269                  * bytes in case of error.
2270                  */
2271                 xferred = obj_request->length;
2272         }
2273
2274         /* Image object requests don't own their page array */
2275
2276         if (obj_request->type == OBJ_REQUEST_PAGES) {
2277                 obj_request->pages = NULL;
2278                 obj_request->page_count = 0;
2279         }
2280
2281         if (img_request_child_test(img_request)) {
2282                 rbd_assert(img_request->obj_request != NULL);
2283                 more = obj_request->which < img_request->obj_request_count - 1;
2284         } else {
2285                 rbd_assert(img_request->rq != NULL);
2286
2287                 more = blk_update_request(img_request->rq, result, xferred);
2288                 if (!more)
2289                         __blk_mq_end_request(img_request->rq, result);
2290         }
2291
2292         return more;
2293 }
2294
2295 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2296 {
2297         struct rbd_img_request *img_request;
2298         u32 which = obj_request->which;
2299         bool more = true;
2300
2301         rbd_assert(obj_request_img_data_test(obj_request));
2302         img_request = obj_request->img_request;
2303
2304         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2305         rbd_assert(img_request != NULL);
2306         rbd_assert(img_request->obj_request_count > 0);
2307         rbd_assert(which != BAD_WHICH);
2308         rbd_assert(which < img_request->obj_request_count);
2309
2310         spin_lock_irq(&img_request->completion_lock);
2311         if (which != img_request->next_completion)
2312                 goto out;
2313
2314         for_each_obj_request_from(img_request, obj_request) {
2315                 rbd_assert(more);
2316                 rbd_assert(which < img_request->obj_request_count);
2317
2318                 if (!obj_request_done_test(obj_request))
2319                         break;
2320                 more = rbd_img_obj_end_request(obj_request);
2321                 which++;
2322         }
2323
2324         rbd_assert(more ^ (which == img_request->obj_request_count));
2325         img_request->next_completion = which;
2326 out:
2327         spin_unlock_irq(&img_request->completion_lock);
2328         rbd_img_request_put(img_request);
2329
2330         if (!more)
2331                 rbd_img_request_complete(img_request);
2332 }
2333
2334 /*
2335  * Add individual osd ops to the given ceph_osd_request and prepare
2336  * them for submission. num_ops is the current number of
2337  * osd operations already to the object request.
2338  */
2339 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2340                                 struct ceph_osd_request *osd_request,
2341                                 enum obj_operation_type op_type,
2342                                 unsigned int num_ops)
2343 {
2344         struct rbd_img_request *img_request = obj_request->img_request;
2345         struct rbd_device *rbd_dev = img_request->rbd_dev;
2346         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2347         u64 offset = obj_request->offset;
2348         u64 length = obj_request->length;
2349         u64 img_end;
2350         u16 opcode;
2351
2352         if (op_type == OBJ_OP_DISCARD) {
2353                 if (!offset && length == object_size &&
2354                     (!img_request_layered_test(img_request) ||
2355                      !obj_request_overlaps_parent(obj_request))) {
2356                         opcode = CEPH_OSD_OP_DELETE;
2357                 } else if ((offset + length == object_size)) {
2358                         opcode = CEPH_OSD_OP_TRUNCATE;
2359                 } else {
2360                         down_read(&rbd_dev->header_rwsem);
2361                         img_end = rbd_dev->header.image_size;
2362                         up_read(&rbd_dev->header_rwsem);
2363
2364                         if (obj_request->img_offset + length == img_end)
2365                                 opcode = CEPH_OSD_OP_TRUNCATE;
2366                         else
2367                                 opcode = CEPH_OSD_OP_ZERO;
2368                 }
2369         } else if (op_type == OBJ_OP_WRITE) {
2370                 opcode = CEPH_OSD_OP_WRITE;
2371                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2372                                         object_size, object_size);
2373                 num_ops++;
2374         } else {
2375                 opcode = CEPH_OSD_OP_READ;
2376         }
2377
2378         if (opcode == CEPH_OSD_OP_DELETE)
2379                 osd_req_op_init(osd_request, num_ops, opcode);
2380         else
2381                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2382                                        offset, length, 0, 0);
2383
2384         if (obj_request->type == OBJ_REQUEST_BIO)
2385                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2386                                         obj_request->bio_list, length);
2387         else if (obj_request->type == OBJ_REQUEST_PAGES)
2388                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2389                                         obj_request->pages, length,
2390                                         offset & ~PAGE_MASK, false, false);
2391
2392         /* Discards are also writes */
2393         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2394                 rbd_osd_req_format_write(obj_request);
2395         else
2396                 rbd_osd_req_format_read(obj_request);
2397 }
2398
2399 /*
2400  * Split up an image request into one or more object requests, each
2401  * to a different object.  The "type" parameter indicates whether
2402  * "data_desc" is the pointer to the head of a list of bio
2403  * structures, or the base of a page array.  In either case this
2404  * function assumes data_desc describes memory sufficient to hold
2405  * all data described by the image request.
2406  */
2407 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2408                                         enum obj_request_type type,
2409                                         void *data_desc)
2410 {
2411         struct rbd_device *rbd_dev = img_request->rbd_dev;
2412         struct rbd_obj_request *obj_request = NULL;
2413         struct rbd_obj_request *next_obj_request;
2414         struct bio *bio_list = NULL;
2415         unsigned int bio_offset = 0;
2416         struct page **pages = NULL;
2417         enum obj_operation_type op_type;
2418         u64 img_offset;
2419         u64 resid;
2420
2421         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2422                 (int)type, data_desc);
2423
2424         img_offset = img_request->offset;
2425         resid = img_request->length;
2426         rbd_assert(resid > 0);
2427         op_type = rbd_img_request_op_type(img_request);
2428
2429         if (type == OBJ_REQUEST_BIO) {
2430                 bio_list = data_desc;
2431                 rbd_assert(img_offset ==
2432                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2433         } else if (type == OBJ_REQUEST_PAGES) {
2434                 pages = data_desc;
2435         }
2436
2437         while (resid) {
2438                 struct ceph_osd_request *osd_req;
2439                 const char *object_name;
2440                 u64 offset;
2441                 u64 length;
2442
2443                 object_name = rbd_segment_name(rbd_dev, img_offset);
2444                 if (!object_name)
2445                         goto out_unwind;
2446                 offset = rbd_segment_offset(rbd_dev, img_offset);
2447                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2448                 obj_request = rbd_obj_request_create(object_name,
2449                                                 offset, length, type);
2450                 /* object request has its own copy of the object name */
2451                 rbd_segment_name_free(object_name);
2452                 if (!obj_request)
2453                         goto out_unwind;
2454
2455                 /*
2456                  * set obj_request->img_request before creating the
2457                  * osd_request so that it gets the right snapc
2458                  */
2459                 rbd_img_obj_request_add(img_request, obj_request);
2460
2461                 if (type == OBJ_REQUEST_BIO) {
2462                         unsigned int clone_size;
2463
2464                         rbd_assert(length <= (u64)UINT_MAX);
2465                         clone_size = (unsigned int)length;
2466                         obj_request->bio_list =
2467                                         bio_chain_clone_range(&bio_list,
2468                                                                 &bio_offset,
2469                                                                 clone_size,
2470                                                                 GFP_ATOMIC);
2471                         if (!obj_request->bio_list)
2472                                 goto out_unwind;
2473                 } else if (type == OBJ_REQUEST_PAGES) {
2474                         unsigned int page_count;
2475
2476                         obj_request->pages = pages;
2477                         page_count = (u32)calc_pages_for(offset, length);
2478                         obj_request->page_count = page_count;
2479                         if ((offset + length) & ~PAGE_MASK)
2480                                 page_count--;   /* more on last page */
2481                         pages += page_count;
2482                 }
2483
2484                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2485                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2486                                         obj_request);
2487                 if (!osd_req)
2488                         goto out_unwind;
2489
2490                 obj_request->osd_req = osd_req;
2491                 obj_request->callback = rbd_img_obj_callback;
2492                 obj_request->img_offset = img_offset;
2493
2494                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2495
2496                 rbd_img_request_get(img_request);
2497
2498                 img_offset += length;
2499                 resid -= length;
2500         }
2501
2502         return 0;
2503
2504 out_unwind:
2505         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2506                 rbd_img_obj_request_del(img_request, obj_request);
2507
2508         return -ENOMEM;
2509 }
2510
2511 static void
2512 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2513 {
2514         struct rbd_img_request *img_request;
2515         struct rbd_device *rbd_dev;
2516         struct page **pages;
2517         u32 page_count;
2518
2519         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2520                 obj_request->type == OBJ_REQUEST_NODATA);
2521         rbd_assert(obj_request_img_data_test(obj_request));
2522         img_request = obj_request->img_request;
2523         rbd_assert(img_request);
2524
2525         rbd_dev = img_request->rbd_dev;
2526         rbd_assert(rbd_dev);
2527
2528         pages = obj_request->copyup_pages;
2529         rbd_assert(pages != NULL);
2530         obj_request->copyup_pages = NULL;
2531         page_count = obj_request->copyup_page_count;
2532         rbd_assert(page_count);
2533         obj_request->copyup_page_count = 0;
2534         ceph_release_page_vector(pages, page_count);
2535
2536         /*
2537          * We want the transfer count to reflect the size of the
2538          * original write request.  There is no such thing as a
2539          * successful short write, so if the request was successful
2540          * we can just set it to the originally-requested length.
2541          */
2542         if (!obj_request->result)
2543                 obj_request->xferred = obj_request->length;
2544
2545         /* Finish up with the normal image object callback */
2546
2547         rbd_img_obj_callback(obj_request);
2548 }
2549
2550 static void
2551 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2552 {
2553         struct rbd_obj_request *orig_request;
2554         struct ceph_osd_request *osd_req;
2555         struct ceph_osd_client *osdc;
2556         struct rbd_device *rbd_dev;
2557         struct page **pages;
2558         enum obj_operation_type op_type;
2559         u32 page_count;
2560         int img_result;
2561         u64 parent_length;
2562
2563         rbd_assert(img_request_child_test(img_request));
2564
2565         /* First get what we need from the image request */
2566
2567         pages = img_request->copyup_pages;
2568         rbd_assert(pages != NULL);
2569         img_request->copyup_pages = NULL;
2570         page_count = img_request->copyup_page_count;
2571         rbd_assert(page_count);
2572         img_request->copyup_page_count = 0;
2573
2574         orig_request = img_request->obj_request;
2575         rbd_assert(orig_request != NULL);
2576         rbd_assert(obj_request_type_valid(orig_request->type));
2577         img_result = img_request->result;
2578         parent_length = img_request->length;
2579         rbd_assert(parent_length == img_request->xferred);
2580         rbd_img_request_put(img_request);
2581
2582         rbd_assert(orig_request->img_request);
2583         rbd_dev = orig_request->img_request->rbd_dev;
2584         rbd_assert(rbd_dev);
2585
2586         /*
2587          * If the overlap has become 0 (most likely because the
2588          * image has been flattened) we need to free the pages
2589          * and re-submit the original write request.
2590          */
2591         if (!rbd_dev->parent_overlap) {
2592                 struct ceph_osd_client *osdc;
2593
2594                 ceph_release_page_vector(pages, page_count);
2595                 osdc = &rbd_dev->rbd_client->client->osdc;
2596                 img_result = rbd_obj_request_submit(osdc, orig_request);
2597                 if (!img_result)
2598                         return;
2599         }
2600
2601         if (img_result)
2602                 goto out_err;
2603
2604         /*
2605          * The original osd request is of no use to use any more.
2606          * We need a new one that can hold the three ops in a copyup
2607          * request.  Allocate the new copyup osd request for the
2608          * original request, and release the old one.
2609          */
2610         img_result = -ENOMEM;
2611         osd_req = rbd_osd_req_create_copyup(orig_request);
2612         if (!osd_req)
2613                 goto out_err;
2614         rbd_osd_req_destroy(orig_request->osd_req);
2615         orig_request->osd_req = osd_req;
2616         orig_request->copyup_pages = pages;
2617         orig_request->copyup_page_count = page_count;
2618
2619         /* Initialize the copyup op */
2620
2621         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2622         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2623                                                 false, false);
2624
2625         /* Add the other op(s) */
2626
2627         op_type = rbd_img_request_op_type(orig_request->img_request);
2628         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2629
2630         /* All set, send it off. */
2631
2632         orig_request->callback = rbd_img_obj_copyup_callback;
2633         osdc = &rbd_dev->rbd_client->client->osdc;
2634         img_result = rbd_obj_request_submit(osdc, orig_request);
2635         if (!img_result)
2636                 return;
2637 out_err:
2638         /* Record the error code and complete the request */
2639
2640         orig_request->result = img_result;
2641         orig_request->xferred = 0;
2642         obj_request_done_set(orig_request);
2643         rbd_obj_request_complete(orig_request);
2644 }
2645
2646 /*
2647  * Read from the parent image the range of data that covers the
2648  * entire target of the given object request.  This is used for
2649  * satisfying a layered image write request when the target of an
2650  * object request from the image request does not exist.
2651  *
2652  * A page array big enough to hold the returned data is allocated
2653  * and supplied to rbd_img_request_fill() as the "data descriptor."
2654  * When the read completes, this page array will be transferred to
2655  * the original object request for the copyup operation.
2656  *
2657  * If an error occurs, record it as the result of the original
2658  * object request and mark it done so it gets completed.
2659  */
2660 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2661 {
2662         struct rbd_img_request *img_request = NULL;
2663         struct rbd_img_request *parent_request = NULL;
2664         struct rbd_device *rbd_dev;
2665         u64 img_offset;
2666         u64 length;
2667         struct page **pages = NULL;
2668         u32 page_count;
2669         int result;
2670
2671         rbd_assert(obj_request_img_data_test(obj_request));
2672         rbd_assert(obj_request_type_valid(obj_request->type));
2673
2674         img_request = obj_request->img_request;
2675         rbd_assert(img_request != NULL);
2676         rbd_dev = img_request->rbd_dev;
2677         rbd_assert(rbd_dev->parent != NULL);
2678
2679         /*
2680          * Determine the byte range covered by the object in the
2681          * child image to which the original request was to be sent.
2682          */
2683         img_offset = obj_request->img_offset - obj_request->offset;
2684         length = (u64)1 << rbd_dev->header.obj_order;
2685
2686         /*
2687          * There is no defined parent data beyond the parent
2688          * overlap, so limit what we read at that boundary if
2689          * necessary.
2690          */
2691         if (img_offset + length > rbd_dev->parent_overlap) {
2692                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2693                 length = rbd_dev->parent_overlap - img_offset;
2694         }
2695
2696         /*
2697          * Allocate a page array big enough to receive the data read
2698          * from the parent.
2699          */
2700         page_count = (u32)calc_pages_for(0, length);
2701         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2702         if (IS_ERR(pages)) {
2703                 result = PTR_ERR(pages);
2704                 pages = NULL;
2705                 goto out_err;
2706         }
2707
2708         result = -ENOMEM;
2709         parent_request = rbd_parent_request_create(obj_request,
2710                                                 img_offset, length);
2711         if (!parent_request)
2712                 goto out_err;
2713
2714         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2715         if (result)
2716                 goto out_err;
2717         parent_request->copyup_pages = pages;
2718         parent_request->copyup_page_count = page_count;
2719
2720         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2721         result = rbd_img_request_submit(parent_request);
2722         if (!result)
2723                 return 0;
2724
2725         parent_request->copyup_pages = NULL;
2726         parent_request->copyup_page_count = 0;
2727         parent_request->obj_request = NULL;
2728         rbd_obj_request_put(obj_request);
2729 out_err:
2730         if (pages)
2731                 ceph_release_page_vector(pages, page_count);
2732         if (parent_request)
2733                 rbd_img_request_put(parent_request);
2734         obj_request->result = result;
2735         obj_request->xferred = 0;
2736         obj_request_done_set(obj_request);
2737
2738         return result;
2739 }
2740
2741 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2742 {
2743         struct rbd_obj_request *orig_request;
2744         struct rbd_device *rbd_dev;
2745         int result;
2746
2747         rbd_assert(!obj_request_img_data_test(obj_request));
2748
2749         /*
2750          * All we need from the object request is the original
2751          * request and the result of the STAT op.  Grab those, then
2752          * we're done with the request.
2753          */
2754         orig_request = obj_request->obj_request;
2755         obj_request->obj_request = NULL;
2756         rbd_obj_request_put(orig_request);
2757         rbd_assert(orig_request);
2758         rbd_assert(orig_request->img_request);
2759
2760         result = obj_request->result;
2761         obj_request->result = 0;
2762
2763         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2764                 obj_request, orig_request, result,
2765                 obj_request->xferred, obj_request->length);
2766         rbd_obj_request_put(obj_request);
2767
2768         /*
2769          * If the overlap has become 0 (most likely because the
2770          * image has been flattened) we need to free the pages
2771          * and re-submit the original write request.
2772          */
2773         rbd_dev = orig_request->img_request->rbd_dev;
2774         if (!rbd_dev->parent_overlap) {
2775                 struct ceph_osd_client *osdc;
2776
2777                 osdc = &rbd_dev->rbd_client->client->osdc;
2778                 result = rbd_obj_request_submit(osdc, orig_request);
2779                 if (!result)
2780                         return;
2781         }
2782
2783         /*
2784          * Our only purpose here is to determine whether the object
2785          * exists, and we don't want to treat the non-existence as
2786          * an error.  If something else comes back, transfer the
2787          * error to the original request and complete it now.
2788          */
2789         if (!result) {
2790                 obj_request_existence_set(orig_request, true);
2791         } else if (result == -ENOENT) {
2792                 obj_request_existence_set(orig_request, false);
2793         } else if (result) {
2794                 orig_request->result = result;
2795                 goto out;
2796         }
2797
2798         /*
2799          * Resubmit the original request now that we have recorded
2800          * whether the target object exists.
2801          */
2802         orig_request->result = rbd_img_obj_request_submit(orig_request);
2803 out:
2804         if (orig_request->result)
2805                 rbd_obj_request_complete(orig_request);
2806 }
2807
2808 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2809 {
2810         struct rbd_obj_request *stat_request;
2811         struct rbd_device *rbd_dev;
2812         struct ceph_osd_client *osdc;
2813         struct page **pages = NULL;
2814         u32 page_count;
2815         size_t size;
2816         int ret;
2817
2818         /*
2819          * The response data for a STAT call consists of:
2820          *     le64 length;
2821          *     struct {
2822          *         le32 tv_sec;
2823          *         le32 tv_nsec;
2824          *     } mtime;
2825          */
2826         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2827         page_count = (u32)calc_pages_for(0, size);
2828         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2829         if (IS_ERR(pages))
2830                 return PTR_ERR(pages);
2831
2832         ret = -ENOMEM;
2833         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2834                                                         OBJ_REQUEST_PAGES);
2835         if (!stat_request)
2836                 goto out;
2837
2838         rbd_obj_request_get(obj_request);
2839         stat_request->obj_request = obj_request;
2840         stat_request->pages = pages;
2841         stat_request->page_count = page_count;
2842
2843         rbd_assert(obj_request->img_request);
2844         rbd_dev = obj_request->img_request->rbd_dev;
2845         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2846                                                    stat_request);
2847         if (!stat_request->osd_req)
2848                 goto out;
2849         stat_request->callback = rbd_img_obj_exists_callback;
2850
2851         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2852         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2853                                         false, false);
2854         rbd_osd_req_format_read(stat_request);
2855
2856         osdc = &rbd_dev->rbd_client->client->osdc;
2857         ret = rbd_obj_request_submit(osdc, stat_request);
2858 out:
2859         if (ret)
2860                 rbd_obj_request_put(obj_request);
2861
2862         return ret;
2863 }
2864
2865 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2866 {
2867         struct rbd_img_request *img_request;
2868         struct rbd_device *rbd_dev;
2869
2870         rbd_assert(obj_request_img_data_test(obj_request));
2871
2872         img_request = obj_request->img_request;
2873         rbd_assert(img_request);
2874         rbd_dev = img_request->rbd_dev;
2875
2876         /* Reads */
2877         if (!img_request_write_test(img_request) &&
2878             !img_request_discard_test(img_request))
2879                 return true;
2880
2881         /* Non-layered writes */
2882         if (!img_request_layered_test(img_request))
2883                 return true;
2884
2885         /*
2886          * Layered writes outside of the parent overlap range don't
2887          * share any data with the parent.
2888          */
2889         if (!obj_request_overlaps_parent(obj_request))
2890                 return true;
2891
2892         /*
2893          * Entire-object layered writes - we will overwrite whatever
2894          * parent data there is anyway.
2895          */
2896         if (!obj_request->offset &&
2897             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2898                 return true;
2899
2900         /*
2901          * If the object is known to already exist, its parent data has
2902          * already been copied.
2903          */
2904         if (obj_request_known_test(obj_request) &&
2905             obj_request_exists_test(obj_request))
2906                 return true;
2907
2908         return false;
2909 }
2910
2911 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2912 {
2913         if (img_obj_request_simple(obj_request)) {
2914                 struct rbd_device *rbd_dev;
2915                 struct ceph_osd_client *osdc;
2916
2917                 rbd_dev = obj_request->img_request->rbd_dev;
2918                 osdc = &rbd_dev->rbd_client->client->osdc;
2919
2920                 return rbd_obj_request_submit(osdc, obj_request);
2921         }
2922
2923         /*
2924          * It's a layered write.  The target object might exist but
2925          * we may not know that yet.  If we know it doesn't exist,
2926          * start by reading the data for the full target object from
2927          * the parent so we can use it for a copyup to the target.
2928          */
2929         if (obj_request_known_test(obj_request))
2930                 return rbd_img_obj_parent_read_full(obj_request);
2931
2932         /* We don't know whether the target exists.  Go find out. */
2933
2934         return rbd_img_obj_exists_submit(obj_request);
2935 }
2936
2937 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2938 {
2939         struct rbd_obj_request *obj_request;
2940         struct rbd_obj_request *next_obj_request;
2941
2942         dout("%s: img %p\n", __func__, img_request);
2943         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2944                 int ret;
2945
2946                 ret = rbd_img_obj_request_submit(obj_request);
2947                 if (ret)
2948                         return ret;
2949         }
2950
2951         return 0;
2952 }
2953
2954 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2955 {
2956         struct rbd_obj_request *obj_request;
2957         struct rbd_device *rbd_dev;
2958         u64 obj_end;
2959         u64 img_xferred;
2960         int img_result;
2961
2962         rbd_assert(img_request_child_test(img_request));
2963
2964         /* First get what we need from the image request and release it */
2965
2966         obj_request = img_request->obj_request;
2967         img_xferred = img_request->xferred;
2968         img_result = img_request->result;
2969         rbd_img_request_put(img_request);
2970
2971         /*
2972          * If the overlap has become 0 (most likely because the
2973          * image has been flattened) we need to re-submit the
2974          * original request.
2975          */
2976         rbd_assert(obj_request);
2977         rbd_assert(obj_request->img_request);
2978         rbd_dev = obj_request->img_request->rbd_dev;
2979         if (!rbd_dev->parent_overlap) {
2980                 struct ceph_osd_client *osdc;
2981
2982                 osdc = &rbd_dev->rbd_client->client->osdc;
2983                 img_result = rbd_obj_request_submit(osdc, obj_request);
2984                 if (!img_result)
2985                         return;
2986         }
2987
2988         obj_request->result = img_result;
2989         if (obj_request->result)
2990                 goto out;
2991
2992         /*
2993          * We need to zero anything beyond the parent overlap
2994          * boundary.  Since rbd_img_obj_request_read_callback()
2995          * will zero anything beyond the end of a short read, an
2996          * easy way to do this is to pretend the data from the
2997          * parent came up short--ending at the overlap boundary.
2998          */
2999         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3000         obj_end = obj_request->img_offset + obj_request->length;
3001         if (obj_end > rbd_dev->parent_overlap) {
3002                 u64 xferred = 0;
3003
3004                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3005                         xferred = rbd_dev->parent_overlap -
3006                                         obj_request->img_offset;
3007
3008                 obj_request->xferred = min(img_xferred, xferred);
3009         } else {
3010                 obj_request->xferred = img_xferred;
3011         }
3012 out:
3013         rbd_img_obj_request_read_callback(obj_request);
3014         rbd_obj_request_complete(obj_request);
3015 }
3016
3017 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3018 {
3019         struct rbd_img_request *img_request;
3020         int result;
3021
3022         rbd_assert(obj_request_img_data_test(obj_request));
3023         rbd_assert(obj_request->img_request != NULL);
3024         rbd_assert(obj_request->result == (s32) -ENOENT);
3025         rbd_assert(obj_request_type_valid(obj_request->type));
3026
3027         /* rbd_read_finish(obj_request, obj_request->length); */
3028         img_request = rbd_parent_request_create(obj_request,
3029                                                 obj_request->img_offset,
3030                                                 obj_request->length);
3031         result = -ENOMEM;
3032         if (!img_request)
3033                 goto out_err;
3034
3035         if (obj_request->type == OBJ_REQUEST_BIO)
3036                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3037                                                 obj_request->bio_list);
3038         else
3039                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3040                                                 obj_request->pages);
3041         if (result)
3042                 goto out_err;
3043
3044         img_request->callback = rbd_img_parent_read_callback;
3045         result = rbd_img_request_submit(img_request);
3046         if (result)
3047                 goto out_err;
3048
3049         return;
3050 out_err:
3051         if (img_request)
3052                 rbd_img_request_put(img_request);
3053         obj_request->result = result;
3054         obj_request->xferred = 0;
3055         obj_request_done_set(obj_request);
3056 }
3057
3058 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3059 {
3060         struct rbd_obj_request *obj_request;
3061         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3062         int ret;
3063
3064         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3065                                                         OBJ_REQUEST_NODATA);
3066         if (!obj_request)
3067                 return -ENOMEM;
3068
3069         ret = -ENOMEM;
3070         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3071                                                   obj_request);
3072         if (!obj_request->osd_req)
3073                 goto out;
3074
3075         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3076                                         notify_id, 0, 0);
3077         rbd_osd_req_format_read(obj_request);
3078
3079         ret = rbd_obj_request_submit(osdc, obj_request);
3080         if (ret)
3081                 goto out;
3082         ret = rbd_obj_request_wait(obj_request);
3083 out:
3084         rbd_obj_request_put(obj_request);
3085
3086         return ret;
3087 }
3088
3089 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3090 {
3091         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3092         int ret;
3093
3094         if (!rbd_dev)
3095                 return;
3096
3097         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3098                 rbd_dev->header_name, (unsigned long long)notify_id,
3099                 (unsigned int)opcode);
3100
3101         /*
3102          * Until adequate refresh error handling is in place, there is
3103          * not much we can do here, except warn.
3104          *
3105          * See http://tracker.ceph.com/issues/5040
3106          */
3107         ret = rbd_dev_refresh(rbd_dev);
3108         if (ret)
3109                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3110
3111         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3112         if (ret)
3113                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3114 }
3115
3116 /*
3117  * Send a (un)watch request and wait for the ack.  Return a request
3118  * with a ref held on success or error.
3119  */
3120 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3121                                                 struct rbd_device *rbd_dev,
3122                                                 bool watch)
3123 {
3124         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3125         struct rbd_obj_request *obj_request;
3126         int ret;
3127
3128         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3129                                              OBJ_REQUEST_NODATA);
3130         if (!obj_request)
3131                 return ERR_PTR(-ENOMEM);
3132
3133         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3134                                                   obj_request);
3135         if (!obj_request->osd_req) {
3136                 ret = -ENOMEM;
3137                 goto out;
3138         }
3139
3140         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3141                               rbd_dev->watch_event->cookie, 0, watch);
3142         rbd_osd_req_format_write(obj_request);
3143
3144         if (watch)
3145                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3146
3147         ret = rbd_obj_request_submit(osdc, obj_request);
3148         if (ret)
3149                 goto out;
3150
3151         ret = rbd_obj_request_wait(obj_request);
3152         if (ret)
3153                 goto out;
3154
3155         ret = obj_request->result;
3156         if (ret) {
3157                 if (watch)
3158                         rbd_obj_request_end(obj_request);
3159                 goto out;
3160         }
3161
3162         return obj_request;
3163
3164 out:
3165         rbd_obj_request_put(obj_request);
3166         return ERR_PTR(ret);
3167 }
3168
3169 /*
3170  * Initiate a watch request, synchronously.
3171  */
3172 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3173 {
3174         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3175         struct rbd_obj_request *obj_request;
3176         int ret;
3177
3178         rbd_assert(!rbd_dev->watch_event);
3179         rbd_assert(!rbd_dev->watch_request);
3180
3181         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3182                                      &rbd_dev->watch_event);
3183         if (ret < 0)
3184                 return ret;
3185
3186         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3187         if (IS_ERR(obj_request)) {
3188                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3189                 rbd_dev->watch_event = NULL;
3190                 return PTR_ERR(obj_request);
3191         }
3192
3193         /*
3194          * A watch request is set to linger, so the underlying osd
3195          * request won't go away until we unregister it.  We retain
3196          * a pointer to the object request during that time (in
3197          * rbd_dev->watch_request), so we'll keep a reference to it.
3198          * We'll drop that reference after we've unregistered it in
3199          * rbd_dev_header_unwatch_sync().
3200          */
3201         rbd_dev->watch_request = obj_request;
3202
3203         return 0;
3204 }
3205
3206 /*
3207  * Tear down a watch request, synchronously.
3208  */
3209 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3210 {
3211         struct rbd_obj_request *obj_request;
3212
3213         rbd_assert(rbd_dev->watch_event);
3214         rbd_assert(rbd_dev->watch_request);
3215
3216         rbd_obj_request_end(rbd_dev->watch_request);
3217         rbd_obj_request_put(rbd_dev->watch_request);
3218         rbd_dev->watch_request = NULL;
3219
3220         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3221         if (!IS_ERR(obj_request))
3222                 rbd_obj_request_put(obj_request);
3223         else
3224                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3225                          PTR_ERR(obj_request));
3226
3227         ceph_osdc_cancel_event(rbd_dev->watch_event);
3228         rbd_dev->watch_event = NULL;
3229 }
3230
3231 /*
3232  * Synchronous osd object method call.  Returns the number of bytes
3233  * returned in the outbound buffer, or a negative error code.
3234  */
3235 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3236                              const char *object_name,
3237                              const char *class_name,
3238                              const char *method_name,
3239                              const void *outbound,
3240                              size_t outbound_size,
3241                              void *inbound,
3242                              size_t inbound_size)
3243 {
3244         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3245         struct rbd_obj_request *obj_request;
3246         struct page **pages;
3247         u32 page_count;
3248         int ret;
3249
3250         /*
3251          * Method calls are ultimately read operations.  The result
3252          * should placed into the inbound buffer provided.  They
3253          * also supply outbound data--parameters for the object
3254          * method.  Currently if this is present it will be a
3255          * snapshot id.
3256          */
3257         page_count = (u32)calc_pages_for(0, inbound_size);
3258         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3259         if (IS_ERR(pages))
3260                 return PTR_ERR(pages);
3261
3262         ret = -ENOMEM;
3263         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3264                                                         OBJ_REQUEST_PAGES);
3265         if (!obj_request)
3266                 goto out;
3267
3268         obj_request->pages = pages;
3269         obj_request->page_count = page_count;
3270
3271         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3272                                                   obj_request);
3273         if (!obj_request->osd_req)
3274                 goto out;
3275
3276         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3277                                         class_name, method_name);
3278         if (outbound_size) {
3279                 struct ceph_pagelist *pagelist;
3280
3281                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3282                 if (!pagelist)
3283                         goto out;
3284
3285                 ceph_pagelist_init(pagelist);
3286                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3287                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3288                                                 pagelist);
3289         }
3290         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3291                                         obj_request->pages, inbound_size,
3292                                         0, false, false);
3293         rbd_osd_req_format_read(obj_request);
3294
3295         ret = rbd_obj_request_submit(osdc, obj_request);
3296         if (ret)
3297                 goto out;
3298         ret = rbd_obj_request_wait(obj_request);
3299         if (ret)
3300                 goto out;
3301
3302         ret = obj_request->result;
3303         if (ret < 0)
3304                 goto out;
3305
3306         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3307         ret = (int)obj_request->xferred;
3308         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3309 out:
3310         if (obj_request)
3311                 rbd_obj_request_put(obj_request);
3312         else
3313                 ceph_release_page_vector(pages, page_count);
3314
3315         return ret;
3316 }
3317
3318 static void rbd_queue_workfn(struct work_struct *work)
3319 {
3320         struct request *rq = blk_mq_rq_from_pdu(work);
3321         struct rbd_device *rbd_dev = rq->q->queuedata;
3322         struct rbd_img_request *img_request;
3323         struct ceph_snap_context *snapc = NULL;
3324         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3325         u64 length = blk_rq_bytes(rq);
3326         enum obj_operation_type op_type;
3327         u64 mapping_size;
3328         int result;
3329
3330         if (rq->cmd_type != REQ_TYPE_FS) {
3331                 dout("%s: non-fs request type %d\n", __func__,
3332                         (int) rq->cmd_type);
3333                 result = -EIO;
3334                 goto err;
3335         }
3336
3337         if (rq->cmd_flags & REQ_DISCARD)
3338                 op_type = OBJ_OP_DISCARD;
3339         else if (rq->cmd_flags & REQ_WRITE)
3340                 op_type = OBJ_OP_WRITE;
3341         else
3342                 op_type = OBJ_OP_READ;
3343
3344         /* Ignore/skip any zero-length requests */
3345
3346         if (!length) {
3347                 dout("%s: zero-length request\n", __func__);
3348                 result = 0;
3349                 goto err_rq;
3350         }
3351
3352         /* Only reads are allowed to a read-only device */
3353
3354         if (op_type != OBJ_OP_READ) {
3355                 if (rbd_dev->mapping.read_only) {
3356                         result = -EROFS;
3357                         goto err_rq;
3358                 }
3359                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3360         }
3361
3362         /*
3363          * Quit early if the mapped snapshot no longer exists.  It's
3364          * still possible the snapshot will have disappeared by the
3365          * time our request arrives at the osd, but there's no sense in
3366          * sending it if we already know.
3367          */
3368         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3369                 dout("request for non-existent snapshot");
3370                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3371                 result = -ENXIO;
3372                 goto err_rq;
3373         }
3374
3375         if (offset && length > U64_MAX - offset + 1) {
3376                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3377                          length);
3378                 result = -EINVAL;
3379                 goto err_rq;    /* Shouldn't happen */
3380         }
3381
3382         blk_mq_start_request(rq);
3383
3384         down_read(&rbd_dev->header_rwsem);
3385         mapping_size = rbd_dev->mapping.size;
3386         if (op_type != OBJ_OP_READ) {
3387                 snapc = rbd_dev->header.snapc;
3388                 ceph_get_snap_context(snapc);
3389         }
3390         up_read(&rbd_dev->header_rwsem);
3391
3392         if (offset + length > mapping_size) {
3393                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3394                          length, mapping_size);
3395                 result = -EIO;
3396                 goto err_rq;
3397         }
3398
3399         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3400                                              snapc);
3401         if (!img_request) {
3402                 result = -ENOMEM;
3403                 goto err_rq;
3404         }
3405         img_request->rq = rq;
3406
3407         if (op_type == OBJ_OP_DISCARD)
3408                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3409                                               NULL);
3410         else
3411                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3412                                               rq->bio);
3413         if (result)
3414                 goto err_img_request;
3415
3416         result = rbd_img_request_submit(img_request);
3417         if (result)
3418                 goto err_img_request;
3419
3420         return;
3421
3422 err_img_request:
3423         rbd_img_request_put(img_request);
3424 err_rq:
3425         if (result)
3426                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3427                          obj_op_name(op_type), length, offset, result);
3428         ceph_put_snap_context(snapc);
3429 err:
3430         blk_mq_end_request(rq, result);
3431 }
3432
3433 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3434                 const struct blk_mq_queue_data *bd)
3435 {
3436         struct request *rq = bd->rq;
3437         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3438
3439         queue_work(rbd_wq, work);
3440         return BLK_MQ_RQ_QUEUE_OK;
3441 }
3442
3443 /*
3444  * a queue callback. Makes sure that we don't create a bio that spans across
3445  * multiple osd objects. One exception would be with a single page bios,
3446  * which we handle later at bio_chain_clone_range()
3447  */
3448 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3449                           struct bio_vec *bvec)
3450 {
3451         struct rbd_device *rbd_dev = q->queuedata;
3452         sector_t sector_offset;
3453         sector_t sectors_per_obj;
3454         sector_t obj_sector_offset;
3455         int ret;
3456
3457         /*
3458          * Find how far into its rbd object the partition-relative
3459          * bio start sector is to offset relative to the enclosing
3460          * device.
3461          */
3462         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3463         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3464         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3465
3466         /*
3467          * Compute the number of bytes from that offset to the end
3468          * of the object.  Account for what's already used by the bio.
3469          */
3470         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3471         if (ret > bmd->bi_size)
3472                 ret -= bmd->bi_size;
3473         else
3474                 ret = 0;
3475
3476         /*
3477          * Don't send back more than was asked for.  And if the bio
3478          * was empty, let the whole thing through because:  "Note
3479          * that a block device *must* allow a single page to be
3480          * added to an empty bio."
3481          */
3482         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3483         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3484                 ret = (int) bvec->bv_len;
3485
3486         return ret;
3487 }
3488
3489 static void rbd_free_disk(struct rbd_device *rbd_dev)
3490 {
3491         struct gendisk *disk = rbd_dev->disk;
3492
3493         if (!disk)
3494                 return;
3495
3496         rbd_dev->disk = NULL;
3497         if (disk->flags & GENHD_FL_UP) {
3498                 del_gendisk(disk);
3499                 if (disk->queue)
3500                         blk_cleanup_queue(disk->queue);
3501                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3502         }
3503         put_disk(disk);
3504 }
3505
3506 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3507                                 const char *object_name,
3508                                 u64 offset, u64 length, void *buf)
3509
3510 {
3511         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3512         struct rbd_obj_request *obj_request;
3513         struct page **pages = NULL;
3514         u32 page_count;
3515         size_t size;
3516         int ret;
3517
3518         page_count = (u32) calc_pages_for(offset, length);
3519         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3520         if (IS_ERR(pages))
3521                 return PTR_ERR(pages);
3522
3523         ret = -ENOMEM;
3524         obj_request = rbd_obj_request_create(object_name, offset, length,
3525                                                         OBJ_REQUEST_PAGES);
3526         if (!obj_request)
3527                 goto out;
3528
3529         obj_request->pages = pages;
3530         obj_request->page_count = page_count;
3531
3532         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3533                                                   obj_request);
3534         if (!obj_request->osd_req)
3535                 goto out;
3536
3537         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3538                                         offset, length, 0, 0);
3539         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3540                                         obj_request->pages,
3541                                         obj_request->length,
3542                                         obj_request->offset & ~PAGE_MASK,
3543                                         false, false);
3544         rbd_osd_req_format_read(obj_request);
3545
3546         ret = rbd_obj_request_submit(osdc, obj_request);
3547         if (ret)
3548                 goto out;
3549         ret = rbd_obj_request_wait(obj_request);
3550         if (ret)
3551                 goto out;
3552
3553         ret = obj_request->result;
3554         if (ret < 0)
3555                 goto out;
3556
3557         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3558         size = (size_t) obj_request->xferred;
3559         ceph_copy_from_page_vector(pages, buf, 0, size);
3560         rbd_assert(size <= (size_t)INT_MAX);
3561         ret = (int)size;
3562 out:
3563         if (obj_request)
3564                 rbd_obj_request_put(obj_request);
3565         else
3566                 ceph_release_page_vector(pages, page_count);
3567
3568         return ret;
3569 }
3570
3571 /*
3572  * Read the complete header for the given rbd device.  On successful
3573  * return, the rbd_dev->header field will contain up-to-date
3574  * information about the image.
3575  */
3576 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3577 {
3578         struct rbd_image_header_ondisk *ondisk = NULL;
3579         u32 snap_count = 0;
3580         u64 names_size = 0;
3581         u32 want_count;
3582         int ret;
3583
3584         /*
3585          * The complete header will include an array of its 64-bit
3586          * snapshot ids, followed by the names of those snapshots as
3587          * a contiguous block of NUL-terminated strings.  Note that
3588          * the number of snapshots could change by the time we read
3589          * it in, in which case we re-read it.
3590          */
3591         do {
3592                 size_t size;
3593
3594                 kfree(ondisk);
3595
3596                 size = sizeof (*ondisk);
3597                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3598                 size += names_size;
3599                 ondisk = kmalloc(size, GFP_KERNEL);
3600                 if (!ondisk)
3601                         return -ENOMEM;
3602
3603                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3604                                        0, size, ondisk);
3605                 if (ret < 0)
3606                         goto out;
3607                 if ((size_t)ret < size) {
3608                         ret = -ENXIO;
3609                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3610                                 size, ret);
3611                         goto out;
3612                 }
3613                 if (!rbd_dev_ondisk_valid(ondisk)) {
3614                         ret = -ENXIO;
3615                         rbd_warn(rbd_dev, "invalid header");
3616                         goto out;
3617                 }
3618
3619                 names_size = le64_to_cpu(ondisk->snap_names_len);
3620                 want_count = snap_count;
3621                 snap_count = le32_to_cpu(ondisk->snap_count);
3622         } while (snap_count != want_count);
3623
3624         ret = rbd_header_from_disk(rbd_dev, ondisk);
3625 out:
3626         kfree(ondisk);
3627
3628         return ret;
3629 }
3630
3631 /*
3632  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3633  * has disappeared from the (just updated) snapshot context.
3634  */
3635 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3636 {
3637         u64 snap_id;
3638
3639         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3640                 return;
3641
3642         snap_id = rbd_dev->spec->snap_id;
3643         if (snap_id == CEPH_NOSNAP)
3644                 return;
3645
3646         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3647                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3648 }
3649
3650 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3651 {
3652         sector_t size;
3653         bool removing;
3654
3655         /*
3656          * Don't hold the lock while doing disk operations,
3657          * or lock ordering will conflict with the bdev mutex via:
3658          * rbd_add() -> blkdev_get() -> rbd_open()
3659          */
3660         spin_lock_irq(&rbd_dev->lock);
3661         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3662         spin_unlock_irq(&rbd_dev->lock);
3663         /*
3664          * If the device is being removed, rbd_dev->disk has
3665          * been destroyed, so don't try to update its size
3666          */
3667         if (!removing) {
3668                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3669                 dout("setting size to %llu sectors", (unsigned long long)size);
3670                 set_capacity(rbd_dev->disk, size);
3671                 revalidate_disk(rbd_dev->disk);
3672         }
3673 }
3674
3675 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3676 {
3677         u64 mapping_size;
3678         int ret;
3679
3680         down_write(&rbd_dev->header_rwsem);
3681         mapping_size = rbd_dev->mapping.size;
3682
3683         ret = rbd_dev_header_info(rbd_dev);
3684         if (ret)
3685                 goto out;
3686
3687         /*
3688          * If there is a parent, see if it has disappeared due to the
3689          * mapped image getting flattened.
3690          */
3691         if (rbd_dev->parent) {
3692                 ret = rbd_dev_v2_parent_info(rbd_dev);
3693                 if (ret)
3694                         goto out;
3695         }
3696
3697         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3698                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3699         } else {
3700                 /* validate mapped snapshot's EXISTS flag */
3701                 rbd_exists_validate(rbd_dev);
3702         }
3703
3704 out:
3705         up_write(&rbd_dev->header_rwsem);
3706         if (!ret && mapping_size != rbd_dev->mapping.size)
3707                 rbd_dev_update_size(rbd_dev);
3708
3709         return ret;
3710 }
3711
3712 static int rbd_init_request(void *data, struct request *rq,
3713                 unsigned int hctx_idx, unsigned int request_idx,
3714                 unsigned int numa_node)
3715 {
3716         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3717
3718         INIT_WORK(work, rbd_queue_workfn);
3719         return 0;
3720 }
3721
3722 static struct blk_mq_ops rbd_mq_ops = {
3723         .queue_rq       = rbd_queue_rq,
3724         .map_queue      = blk_mq_map_queue,
3725         .init_request   = rbd_init_request,
3726 };
3727
3728 static int rbd_init_disk(struct rbd_device *rbd_dev)
3729 {
3730         struct gendisk *disk;
3731         struct request_queue *q;
3732         u64 segment_size;
3733         int err;
3734
3735         /* create gendisk info */
3736         disk = alloc_disk(single_major ?
3737                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3738                           RBD_MINORS_PER_MAJOR);
3739         if (!disk)
3740                 return -ENOMEM;
3741
3742         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3743                  rbd_dev->dev_id);
3744         disk->major = rbd_dev->major;
3745         disk->first_minor = rbd_dev->minor;
3746         if (single_major)
3747                 disk->flags |= GENHD_FL_EXT_DEVT;
3748         disk->fops = &rbd_bd_ops;
3749         disk->private_data = rbd_dev;
3750
3751         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3752         rbd_dev->tag_set.ops = &rbd_mq_ops;
3753         rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3754         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3755         rbd_dev->tag_set.flags =
3756                 BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3757         rbd_dev->tag_set.nr_hw_queues = 1;
3758         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3759
3760         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3761         if (err)
3762                 goto out_disk;
3763
3764         q = blk_mq_init_queue(&rbd_dev->tag_set);
3765         if (IS_ERR(q)) {
3766                 err = PTR_ERR(q);
3767                 goto out_tag_set;
3768         }
3769
3770         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3771         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3772
3773         /* set io sizes to object size */
3774         segment_size = rbd_obj_bytes(&rbd_dev->header);
3775         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3776         blk_queue_max_segment_size(q, segment_size);
3777         blk_queue_io_min(q, segment_size);
3778         blk_queue_io_opt(q, segment_size);
3779
3780         /* enable the discard support */
3781         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3782         q->limits.discard_granularity = segment_size;
3783         q->limits.discard_alignment = segment_size;
3784         q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3785         q->limits.discard_zeroes_data = 1;
3786
3787         blk_queue_merge_bvec(q, rbd_merge_bvec);
3788         disk->queue = q;
3789
3790         q->queuedata = rbd_dev;
3791
3792         rbd_dev->disk = disk;
3793
3794         return 0;
3795 out_tag_set:
3796         blk_mq_free_tag_set(&rbd_dev->tag_set);
3797 out_disk:
3798         put_disk(disk);
3799         return err;
3800 }
3801
3802 /*
3803   sysfs
3804 */
3805
3806 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3807 {
3808         return container_of(dev, struct rbd_device, dev);
3809 }
3810
3811 static ssize_t rbd_size_show(struct device *dev,
3812                              struct device_attribute *attr, char *buf)
3813 {
3814         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815
3816         return sprintf(buf, "%llu\n",
3817                 (unsigned long long)rbd_dev->mapping.size);
3818 }
3819
3820 /*
3821  * Note this shows the features for whatever's mapped, which is not
3822  * necessarily the base image.
3823  */
3824 static ssize_t rbd_features_show(struct device *dev,
3825                              struct device_attribute *attr, char *buf)
3826 {
3827         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3828
3829         return sprintf(buf, "0x%016llx\n",
3830                         (unsigned long long)rbd_dev->mapping.features);
3831 }
3832
3833 static ssize_t rbd_major_show(struct device *dev,
3834                               struct device_attribute *attr, char *buf)
3835 {
3836         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3837
3838         if (rbd_dev->major)
3839                 return sprintf(buf, "%d\n", rbd_dev->major);
3840
3841         return sprintf(buf, "(none)\n");
3842 }
3843
3844 static ssize_t rbd_minor_show(struct device *dev,
3845                               struct device_attribute *attr, char *buf)
3846 {
3847         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3848
3849         return sprintf(buf, "%d\n", rbd_dev->minor);
3850 }
3851
3852 static ssize_t rbd_client_id_show(struct device *dev,
3853                                   struct device_attribute *attr, char *buf)
3854 {
3855         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3856
3857         return sprintf(buf, "client%lld\n",
3858                         ceph_client_id(rbd_dev->rbd_client->client));
3859 }
3860
3861 static ssize_t rbd_pool_show(struct device *dev,
3862                              struct device_attribute *attr, char *buf)
3863 {
3864         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3865
3866         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3867 }
3868
3869 static ssize_t rbd_pool_id_show(struct device *dev,
3870                              struct device_attribute *attr, char *buf)
3871 {
3872         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3873
3874         return sprintf(buf, "%llu\n",
3875                         (unsigned long long) rbd_dev->spec->pool_id);
3876 }
3877
3878 static ssize_t rbd_name_show(struct device *dev,
3879                              struct device_attribute *attr, char *buf)
3880 {
3881         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3882
3883         if (rbd_dev->spec->image_name)
3884                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3885
3886         return sprintf(buf, "(unknown)\n");
3887 }
3888
3889 static ssize_t rbd_image_id_show(struct device *dev,
3890                              struct device_attribute *attr, char *buf)
3891 {
3892         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893
3894         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3895 }
3896
3897 /*
3898  * Shows the name of the currently-mapped snapshot (or
3899  * RBD_SNAP_HEAD_NAME for the base image).
3900  */
3901 static ssize_t rbd_snap_show(struct device *dev,
3902                              struct device_attribute *attr,
3903                              char *buf)
3904 {
3905         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3906
3907         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3908 }
3909
3910 /*
3911  * For a v2 image, shows the chain of parent images, separated by empty
3912  * lines.  For v1 images or if there is no parent, shows "(no parent
3913  * image)".
3914  */
3915 static ssize_t rbd_parent_show(struct device *dev,
3916                                struct device_attribute *attr,
3917                                char *buf)
3918 {
3919         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3920         ssize_t count = 0;
3921
3922         if (!rbd_dev->parent)
3923                 return sprintf(buf, "(no parent image)\n");
3924
3925         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3926                 struct rbd_spec *spec = rbd_dev->parent_spec;
3927
3928                 count += sprintf(&buf[count], "%s"
3929                             "pool_id %llu\npool_name %s\n"
3930                             "image_id %s\nimage_name %s\n"
3931                             "snap_id %llu\nsnap_name %s\n"
3932                             "overlap %llu\n",
3933                             !count ? "" : "\n", /* first? */
3934                             spec->pool_id, spec->pool_name,
3935                             spec->image_id, spec->image_name ?: "(unknown)",
3936                             spec->snap_id, spec->snap_name,
3937                             rbd_dev->parent_overlap);
3938         }
3939
3940         return count;
3941 }
3942
3943 static ssize_t rbd_image_refresh(struct device *dev,
3944                                  struct device_attribute *attr,
3945                                  const char *buf,
3946                                  size_t size)
3947 {
3948         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3949         int ret;
3950
3951         ret = rbd_dev_refresh(rbd_dev);
3952         if (ret)
3953                 return ret;
3954
3955         return size;
3956 }
3957
3958 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3959 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3960 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3961 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3962 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3963 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3964 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3965 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3966 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3967 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3968 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3969 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3970
3971 static struct attribute *rbd_attrs[] = {
3972         &dev_attr_size.attr,
3973         &dev_attr_features.attr,
3974         &dev_attr_major.attr,
3975         &dev_attr_minor.attr,
3976         &dev_attr_client_id.attr,
3977         &dev_attr_pool.attr,
3978         &dev_attr_pool_id.attr,
3979         &dev_attr_name.attr,
3980         &dev_attr_image_id.attr,
3981         &dev_attr_current_snap.attr,
3982         &dev_attr_parent.attr,
3983         &dev_attr_refresh.attr,
3984         NULL
3985 };
3986
3987 static struct attribute_group rbd_attr_group = {
3988         .attrs = rbd_attrs,
3989 };
3990
3991 static const struct attribute_group *rbd_attr_groups[] = {
3992         &rbd_attr_group,
3993         NULL
3994 };
3995
3996 static void rbd_sysfs_dev_release(struct device *dev)
3997 {
3998 }
3999
4000 static struct device_type rbd_device_type = {
4001         .name           = "rbd",
4002         .groups         = rbd_attr_groups,
4003         .release        = rbd_sysfs_dev_release,
4004 };
4005
4006 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4007 {
4008         kref_get(&spec->kref);
4009
4010         return spec;
4011 }
4012
4013 static void rbd_spec_free(struct kref *kref);
4014 static void rbd_spec_put(struct rbd_spec *spec)
4015 {
4016         if (spec)
4017                 kref_put(&spec->kref, rbd_spec_free);
4018 }
4019
4020 static struct rbd_spec *rbd_spec_alloc(void)
4021 {
4022         struct rbd_spec *spec;
4023
4024         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4025         if (!spec)
4026                 return NULL;
4027
4028         spec->pool_id = CEPH_NOPOOL;
4029         spec->snap_id = CEPH_NOSNAP;
4030         kref_init(&spec->kref);
4031
4032         return spec;
4033 }
4034
4035 static void rbd_spec_free(struct kref *kref)
4036 {
4037         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4038
4039         kfree(spec->pool_name);
4040         kfree(spec->image_id);
4041         kfree(spec->image_name);
4042         kfree(spec->snap_name);
4043         kfree(spec);
4044 }
4045
4046 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4047                                 struct rbd_spec *spec)
4048 {
4049         struct rbd_device *rbd_dev;
4050
4051         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4052         if (!rbd_dev)
4053                 return NULL;
4054
4055         spin_lock_init(&rbd_dev->lock);
4056         rbd_dev->flags = 0;
4057         atomic_set(&rbd_dev->parent_ref, 0);
4058         INIT_LIST_HEAD(&rbd_dev->node);
4059         init_rwsem(&rbd_dev->header_rwsem);
4060
4061         rbd_dev->spec = spec;
4062         rbd_dev->rbd_client = rbdc;
4063
4064         /* Initialize the layout used for all rbd requests */
4065
4066         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4067         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4068         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4069         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4070
4071         return rbd_dev;
4072 }
4073
4074 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4075 {
4076         rbd_put_client(rbd_dev->rbd_client);
4077         rbd_spec_put(rbd_dev->spec);
4078         kfree(rbd_dev);
4079 }
4080
4081 /*
4082  * Get the size and object order for an image snapshot, or if
4083  * snap_id is CEPH_NOSNAP, gets this information for the base
4084  * image.
4085  */
4086 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4087                                 u8 *order, u64 *snap_size)
4088 {
4089         __le64 snapid = cpu_to_le64(snap_id);
4090         int ret;
4091         struct {
4092                 u8 order;
4093                 __le64 size;
4094         } __attribute__ ((packed)) size_buf = { 0 };
4095
4096         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4097                                 "rbd", "get_size",
4098                                 &snapid, sizeof (snapid),
4099                                 &size_buf, sizeof (size_buf));
4100         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4101         if (ret < 0)
4102                 return ret;
4103         if (ret < sizeof (size_buf))
4104                 return -ERANGE;
4105
4106         if (order) {
4107                 *order = size_buf.order;
4108                 dout("  order %u", (unsigned int)*order);
4109         }
4110         *snap_size = le64_to_cpu(size_buf.size);
4111
4112         dout("  snap_id 0x%016llx snap_size = %llu\n",
4113                 (unsigned long long)snap_id,
4114                 (unsigned long long)*snap_size);
4115
4116         return 0;
4117 }
4118
4119 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4120 {
4121         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4122                                         &rbd_dev->header.obj_order,
4123                                         &rbd_dev->header.image_size);
4124 }
4125
4126 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4127 {
4128         void *reply_buf;
4129         int ret;
4130         void *p;
4131
4132         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4133         if (!reply_buf)
4134                 return -ENOMEM;
4135
4136         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4137                                 "rbd", "get_object_prefix", NULL, 0,
4138                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4139         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4140         if (ret < 0)
4141                 goto out;
4142
4143         p = reply_buf;
4144         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4145                                                 p + ret, NULL, GFP_NOIO);
4146         ret = 0;
4147
4148         if (IS_ERR(rbd_dev->header.object_prefix)) {
4149                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4150                 rbd_dev->header.object_prefix = NULL;
4151         } else {
4152                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4153         }
4154 out:
4155         kfree(reply_buf);
4156
4157         return ret;
4158 }
4159
4160 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4161                 u64 *snap_features)
4162 {
4163         __le64 snapid = cpu_to_le64(snap_id);
4164         struct {
4165                 __le64 features;
4166                 __le64 incompat;
4167         } __attribute__ ((packed)) features_buf = { 0 };
4168         u64 incompat;
4169         int ret;
4170
4171         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4172                                 "rbd", "get_features",
4173                                 &snapid, sizeof (snapid),
4174                                 &features_buf, sizeof (features_buf));
4175         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4176         if (ret < 0)
4177                 return ret;
4178         if (ret < sizeof (features_buf))
4179                 return -ERANGE;
4180
4181         incompat = le64_to_cpu(features_buf.incompat);
4182         if (incompat & ~RBD_FEATURES_SUPPORTED)
4183                 return -ENXIO;
4184
4185         *snap_features = le64_to_cpu(features_buf.features);
4186
4187         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4188                 (unsigned long long)snap_id,
4189                 (unsigned long long)*snap_features,
4190                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4191
4192         return 0;
4193 }
4194
4195 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4196 {
4197         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4198                                                 &rbd_dev->header.features);
4199 }
4200
4201 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4202 {
4203         struct rbd_spec *parent_spec;
4204         size_t size;
4205         void *reply_buf = NULL;
4206         __le64 snapid;
4207         void *p;
4208         void *end;
4209         u64 pool_id;
4210         char *image_id;
4211         u64 snap_id;
4212         u64 overlap;
4213         int ret;
4214
4215         parent_spec = rbd_spec_alloc();
4216         if (!parent_spec)
4217                 return -ENOMEM;
4218
4219         size = sizeof (__le64) +                                /* pool_id */
4220                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4221                 sizeof (__le64) +                               /* snap_id */
4222                 sizeof (__le64);                                /* overlap */
4223         reply_buf = kmalloc(size, GFP_KERNEL);
4224         if (!reply_buf) {
4225                 ret = -ENOMEM;
4226                 goto out_err;
4227         }
4228
4229         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4230         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4231                                 "rbd", "get_parent",
4232                                 &snapid, sizeof (snapid),
4233                                 reply_buf, size);
4234         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4235         if (ret < 0)
4236                 goto out_err;
4237
4238         p = reply_buf;
4239         end = reply_buf + ret;
4240         ret = -ERANGE;
4241         ceph_decode_64_safe(&p, end, pool_id, out_err);
4242         if (pool_id == CEPH_NOPOOL) {
4243                 /*
4244                  * Either the parent never existed, or we have
4245                  * record of it but the image got flattened so it no
4246                  * longer has a parent.  When the parent of a
4247                  * layered image disappears we immediately set the
4248                  * overlap to 0.  The effect of this is that all new
4249                  * requests will be treated as if the image had no
4250                  * parent.
4251                  */
4252                 if (rbd_dev->parent_overlap) {
4253                         rbd_dev->parent_overlap = 0;
4254                         rbd_dev_parent_put(rbd_dev);
4255                         pr_info("%s: clone image has been flattened\n",
4256                                 rbd_dev->disk->disk_name);
4257                 }
4258
4259                 goto out;       /* No parent?  No problem. */
4260         }
4261
4262         /* The ceph file layout needs to fit pool id in 32 bits */
4263
4264         ret = -EIO;
4265         if (pool_id > (u64)U32_MAX) {
4266                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4267                         (unsigned long long)pool_id, U32_MAX);
4268                 goto out_err;
4269         }
4270
4271         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4272         if (IS_ERR(image_id)) {
4273                 ret = PTR_ERR(image_id);
4274                 goto out_err;
4275         }
4276         ceph_decode_64_safe(&p, end, snap_id, out_err);
4277         ceph_decode_64_safe(&p, end, overlap, out_err);
4278
4279         /*
4280          * The parent won't change (except when the clone is
4281          * flattened, already handled that).  So we only need to
4282          * record the parent spec we have not already done so.
4283          */
4284         if (!rbd_dev->parent_spec) {
4285                 parent_spec->pool_id = pool_id;
4286                 parent_spec->image_id = image_id;
4287                 parent_spec->snap_id = snap_id;
4288                 rbd_dev->parent_spec = parent_spec;
4289                 parent_spec = NULL;     /* rbd_dev now owns this */
4290         } else {
4291                 kfree(image_id);
4292         }
4293
4294         /*
4295          * We always update the parent overlap.  If it's zero we issue
4296          * a warning, as we will proceed as if there was no parent.
4297          */
4298         if (!overlap) {
4299                 if (parent_spec) {
4300                         /* refresh, careful to warn just once */
4301                         if (rbd_dev->parent_overlap)
4302                                 rbd_warn(rbd_dev,
4303                                     "clone now standalone (overlap became 0)");
4304                 } else {
4305                         /* initial probe */
4306                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4307                 }
4308         }
4309         rbd_dev->parent_overlap = overlap;
4310
4311 out:
4312         ret = 0;
4313 out_err:
4314         kfree(reply_buf);
4315         rbd_spec_put(parent_spec);
4316
4317         return ret;
4318 }
4319
4320 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4321 {
4322         struct {
4323                 __le64 stripe_unit;
4324                 __le64 stripe_count;
4325         } __attribute__ ((packed)) striping_info_buf = { 0 };
4326         size_t size = sizeof (striping_info_buf);
4327         void *p;
4328         u64 obj_size;
4329         u64 stripe_unit;
4330         u64 stripe_count;
4331         int ret;
4332
4333         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4334                                 "rbd", "get_stripe_unit_count", NULL, 0,
4335                                 (char *)&striping_info_buf, size);
4336         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4337         if (ret < 0)
4338                 return ret;
4339         if (ret < size)
4340                 return -ERANGE;
4341
4342         /*
4343          * We don't actually support the "fancy striping" feature
4344          * (STRIPINGV2) yet, but if the striping sizes are the
4345          * defaults the behavior is the same as before.  So find
4346          * out, and only fail if the image has non-default values.
4347          */
4348         ret = -EINVAL;
4349         obj_size = (u64)1 << rbd_dev->header.obj_order;
4350         p = &striping_info_buf;
4351         stripe_unit = ceph_decode_64(&p);
4352         if (stripe_unit != obj_size) {
4353                 rbd_warn(rbd_dev, "unsupported stripe unit "
4354                                 "(got %llu want %llu)",
4355                                 stripe_unit, obj_size);
4356                 return -EINVAL;
4357         }
4358         stripe_count = ceph_decode_64(&p);
4359         if (stripe_count != 1) {
4360                 rbd_warn(rbd_dev, "unsupported stripe count "
4361                                 "(got %llu want 1)", stripe_count);
4362                 return -EINVAL;
4363         }
4364         rbd_dev->header.stripe_unit = stripe_unit;
4365         rbd_dev->header.stripe_count = stripe_count;
4366
4367         return 0;
4368 }
4369
4370 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4371 {
4372         size_t image_id_size;
4373         char *image_id;
4374         void *p;
4375         void *end;
4376         size_t size;
4377         void *reply_buf = NULL;
4378         size_t len = 0;
4379         char *image_name = NULL;
4380         int ret;
4381
4382         rbd_assert(!rbd_dev->spec->image_name);
4383
4384         len = strlen(rbd_dev->spec->image_id);
4385         image_id_size = sizeof (__le32) + len;
4386         image_id = kmalloc(image_id_size, GFP_KERNEL);
4387         if (!image_id)
4388                 return NULL;
4389
4390         p = image_id;
4391         end = image_id + image_id_size;
4392         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4393
4394         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4395         reply_buf = kmalloc(size, GFP_KERNEL);
4396         if (!reply_buf)
4397                 goto out;
4398
4399         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4400                                 "rbd", "dir_get_name",
4401                                 image_id, image_id_size,
4402                                 reply_buf, size);
4403         if (ret < 0)
4404                 goto out;
4405         p = reply_buf;
4406         end = reply_buf + ret;
4407
4408         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4409         if (IS_ERR(image_name))
4410                 image_name = NULL;
4411         else
4412                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4413 out:
4414         kfree(reply_buf);
4415         kfree(image_id);
4416
4417         return image_name;
4418 }
4419
4420 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4421 {
4422         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4423         const char *snap_name;
4424         u32 which = 0;
4425
4426         /* Skip over names until we find the one we are looking for */
4427
4428         snap_name = rbd_dev->header.snap_names;
4429         while (which < snapc->num_snaps) {
4430                 if (!strcmp(name, snap_name))
4431                         return snapc->snaps[which];
4432                 snap_name += strlen(snap_name) + 1;
4433                 which++;
4434         }
4435         return CEPH_NOSNAP;
4436 }
4437
4438 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4439 {
4440         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4441         u32 which;
4442         bool found = false;
4443         u64 snap_id;
4444
4445         for (which = 0; !found && which < snapc->num_snaps; which++) {
4446                 const char *snap_name;
4447
4448                 snap_id = snapc->snaps[which];
4449                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4450                 if (IS_ERR(snap_name)) {
4451                         /* ignore no-longer existing snapshots */
4452                         if (PTR_ERR(snap_name) == -ENOENT)
4453                                 continue;
4454                         else
4455                                 break;
4456                 }
4457                 found = !strcmp(name, snap_name);
4458                 kfree(snap_name);
4459         }
4460         return found ? snap_id : CEPH_NOSNAP;
4461 }
4462
4463 /*
4464  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4465  * no snapshot by that name is found, or if an error occurs.
4466  */
4467 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4468 {
4469         if (rbd_dev->image_format == 1)
4470                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4471
4472         return rbd_v2_snap_id_by_name(rbd_dev, name);
4473 }
4474
4475 /*
4476  * An image being mapped will have everything but the snap id.
4477  */
4478 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4479 {
4480         struct rbd_spec *spec = rbd_dev->spec;
4481
4482         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4483         rbd_assert(spec->image_id && spec->image_name);
4484         rbd_assert(spec->snap_name);
4485
4486         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4487                 u64 snap_id;
4488
4489                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4490                 if (snap_id == CEPH_NOSNAP)
4491                         return -ENOENT;
4492
4493                 spec->snap_id = snap_id;
4494         } else {
4495                 spec->snap_id = CEPH_NOSNAP;
4496         }
4497
4498         return 0;
4499 }
4500
4501 /*
4502  * A parent image will have all ids but none of the names.
4503  *
4504  * All names in an rbd spec are dynamically allocated.  It's OK if we
4505  * can't figure out the name for an image id.
4506  */
4507 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4508 {
4509         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4510         struct rbd_spec *spec = rbd_dev->spec;
4511         const char *pool_name;
4512         const char *image_name;
4513         const char *snap_name;
4514         int ret;
4515
4516         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4517         rbd_assert(spec->image_id);
4518         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4519
4520         /* Get the pool name; we have to make our own copy of this */
4521
4522         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4523         if (!pool_name) {
4524                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4525                 return -EIO;
4526         }
4527         pool_name = kstrdup(pool_name, GFP_KERNEL);
4528         if (!pool_name)
4529                 return -ENOMEM;
4530
4531         /* Fetch the image name; tolerate failure here */
4532
4533         image_name = rbd_dev_image_name(rbd_dev);
4534         if (!image_name)
4535                 rbd_warn(rbd_dev, "unable to get image name");
4536
4537         /* Fetch the snapshot name */
4538
4539         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4540         if (IS_ERR(snap_name)) {
4541                 ret = PTR_ERR(snap_name);
4542                 goto out_err;
4543         }
4544
4545         spec->pool_name = pool_name;
4546         spec->image_name = image_name;
4547         spec->snap_name = snap_name;
4548
4549         return 0;
4550
4551 out_err:
4552         kfree(image_name);
4553         kfree(pool_name);
4554         return ret;
4555 }
4556
4557 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4558 {
4559         size_t size;
4560         int ret;
4561         void *reply_buf;
4562         void *p;
4563         void *end;
4564         u64 seq;
4565         u32 snap_count;
4566         struct ceph_snap_context *snapc;
4567         u32 i;
4568
4569         /*
4570          * We'll need room for the seq value (maximum snapshot id),
4571          * snapshot count, and array of that many snapshot ids.
4572          * For now we have a fixed upper limit on the number we're
4573          * prepared to receive.
4574          */
4575         size = sizeof (__le64) + sizeof (__le32) +
4576                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4577         reply_buf = kzalloc(size, GFP_KERNEL);
4578         if (!reply_buf)
4579                 return -ENOMEM;
4580
4581         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4582                                 "rbd", "get_snapcontext", NULL, 0,
4583                                 reply_buf, size);
4584         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4585         if (ret < 0)
4586                 goto out;
4587
4588         p = reply_buf;
4589         end = reply_buf + ret;
4590         ret = -ERANGE;
4591         ceph_decode_64_safe(&p, end, seq, out);
4592         ceph_decode_32_safe(&p, end, snap_count, out);
4593
4594         /*
4595          * Make sure the reported number of snapshot ids wouldn't go
4596          * beyond the end of our buffer.  But before checking that,
4597          * make sure the computed size of the snapshot context we
4598          * allocate is representable in a size_t.
4599          */
4600         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4601                                  / sizeof (u64)) {
4602                 ret = -EINVAL;
4603                 goto out;
4604         }
4605         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4606                 goto out;
4607         ret = 0;
4608
4609         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4610         if (!snapc) {
4611                 ret = -ENOMEM;
4612                 goto out;
4613         }
4614         snapc->seq = seq;
4615         for (i = 0; i < snap_count; i++)
4616                 snapc->snaps[i] = ceph_decode_64(&p);
4617
4618         ceph_put_snap_context(rbd_dev->header.snapc);
4619         rbd_dev->header.snapc = snapc;
4620
4621         dout("  snap context seq = %llu, snap_count = %u\n",
4622                 (unsigned long long)seq, (unsigned int)snap_count);
4623 out:
4624         kfree(reply_buf);
4625
4626         return ret;
4627 }
4628
4629 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4630                                         u64 snap_id)
4631 {
4632         size_t size;
4633         void *reply_buf;
4634         __le64 snapid;
4635         int ret;
4636         void *p;
4637         void *end;
4638         char *snap_name;
4639
4640         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4641         reply_buf = kmalloc(size, GFP_KERNEL);
4642         if (!reply_buf)
4643                 return ERR_PTR(-ENOMEM);
4644
4645         snapid = cpu_to_le64(snap_id);
4646         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4647                                 "rbd", "get_snapshot_name",
4648                                 &snapid, sizeof (snapid),
4649                                 reply_buf, size);
4650         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4651         if (ret < 0) {
4652                 snap_name = ERR_PTR(ret);
4653                 goto out;
4654         }
4655
4656         p = reply_buf;
4657         end = reply_buf + ret;
4658         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4659         if (IS_ERR(snap_name))
4660                 goto out;
4661
4662         dout("  snap_id 0x%016llx snap_name = %s\n",
4663                 (unsigned long long)snap_id, snap_name);
4664 out:
4665         kfree(reply_buf);
4666
4667         return snap_name;
4668 }
4669
4670 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4671 {
4672         bool first_time = rbd_dev->header.object_prefix == NULL;
4673         int ret;
4674
4675         ret = rbd_dev_v2_image_size(rbd_dev);
4676         if (ret)
4677                 return ret;
4678
4679         if (first_time) {
4680                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4681                 if (ret)
4682                         return ret;
4683         }
4684
4685         ret = rbd_dev_v2_snap_context(rbd_dev);
4686         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4687
4688         return ret;
4689 }
4690
4691 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4692 {
4693         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4694
4695         if (rbd_dev->image_format == 1)
4696                 return rbd_dev_v1_header_info(rbd_dev);
4697
4698         return rbd_dev_v2_header_info(rbd_dev);
4699 }
4700
4701 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4702 {
4703         struct device *dev;
4704         int ret;
4705
4706         dev = &rbd_dev->dev;
4707         dev->bus = &rbd_bus_type;
4708         dev->type = &rbd_device_type;
4709         dev->parent = &rbd_root_dev;
4710         dev->release = rbd_dev_device_release;
4711         dev_set_name(dev, "%d", rbd_dev->dev_id);
4712         ret = device_register(dev);
4713
4714         return ret;
4715 }
4716
4717 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4718 {
4719         device_unregister(&rbd_dev->dev);
4720 }
4721
4722 /*
4723  * Get a unique rbd identifier for the given new rbd_dev, and add
4724  * the rbd_dev to the global list.
4725  */
4726 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4727 {
4728         int new_dev_id;
4729
4730         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4731                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4732                                     GFP_KERNEL);
4733         if (new_dev_id < 0)
4734                 return new_dev_id;
4735
4736         rbd_dev->dev_id = new_dev_id;
4737
4738         spin_lock(&rbd_dev_list_lock);
4739         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4740         spin_unlock(&rbd_dev_list_lock);
4741
4742         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4743
4744         return 0;
4745 }
4746
4747 /*
4748  * Remove an rbd_dev from the global list, and record that its
4749  * identifier is no longer in use.
4750  */
4751 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4752 {
4753         spin_lock(&rbd_dev_list_lock);
4754         list_del_init(&rbd_dev->node);
4755         spin_unlock(&rbd_dev_list_lock);
4756
4757         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4758
4759         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4760 }
4761
4762 /*
4763  * Skips over white space at *buf, and updates *buf to point to the
4764  * first found non-space character (if any). Returns the length of
4765  * the token (string of non-white space characters) found.  Note
4766  * that *buf must be terminated with '\0'.
4767  */
4768 static inline size_t next_token(const char **buf)
4769 {
4770         /*
4771         * These are the characters that produce nonzero for
4772         * isspace() in the "C" and "POSIX" locales.
4773         */
4774         const char *spaces = " \f\n\r\t\v";
4775
4776         *buf += strspn(*buf, spaces);   /* Find start of token */
4777
4778         return strcspn(*buf, spaces);   /* Return token length */
4779 }
4780
4781 /*
4782  * Finds the next token in *buf, dynamically allocates a buffer big
4783  * enough to hold a copy of it, and copies the token into the new
4784  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4785  * that a duplicate buffer is created even for a zero-length token.
4786  *
4787  * Returns a pointer to the newly-allocated duplicate, or a null
4788  * pointer if memory for the duplicate was not available.  If
4789  * the lenp argument is a non-null pointer, the length of the token
4790  * (not including the '\0') is returned in *lenp.
4791  *
4792  * If successful, the *buf pointer will be updated to point beyond
4793  * the end of the found token.
4794  *
4795  * Note: uses GFP_KERNEL for allocation.
4796  */
4797 static inline char *dup_token(const char **buf, size_t *lenp)
4798 {
4799         char *dup;
4800         size_t len;
4801
4802         len = next_token(buf);
4803         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4804         if (!dup)
4805                 return NULL;
4806         *(dup + len) = '\0';
4807         *buf += len;
4808
4809         if (lenp)
4810                 *lenp = len;
4811
4812         return dup;
4813 }
4814
4815 /*
4816  * Parse the options provided for an "rbd add" (i.e., rbd image
4817  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4818  * and the data written is passed here via a NUL-terminated buffer.
4819  * Returns 0 if successful or an error code otherwise.
4820  *
4821  * The information extracted from these options is recorded in
4822  * the other parameters which return dynamically-allocated
4823  * structures:
4824  *  ceph_opts
4825  *      The address of a pointer that will refer to a ceph options
4826  *      structure.  Caller must release the returned pointer using
4827  *      ceph_destroy_options() when it is no longer needed.
4828  *  rbd_opts
4829  *      Address of an rbd options pointer.  Fully initialized by
4830  *      this function; caller must release with kfree().
4831  *  spec
4832  *      Address of an rbd image specification pointer.  Fully
4833  *      initialized by this function based on parsed options.
4834  *      Caller must release with rbd_spec_put().
4835  *
4836  * The options passed take this form:
4837  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4838  * where:
4839  *  <mon_addrs>
4840  *      A comma-separated list of one or more monitor addresses.
4841  *      A monitor address is an ip address, optionally followed
4842  *      by a port number (separated by a colon).
4843  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4844  *  <options>
4845  *      A comma-separated list of ceph and/or rbd options.
4846  *  <pool_name>
4847  *      The name of the rados pool containing the rbd image.
4848  *  <image_name>
4849  *      The name of the image in that pool to map.
4850  *  <snap_id>
4851  *      An optional snapshot id.  If provided, the mapping will
4852  *      present data from the image at the time that snapshot was
4853  *      created.  The image head is used if no snapshot id is
4854  *      provided.  Snapshot mappings are always read-only.
4855  */
4856 static int rbd_add_parse_args(const char *buf,
4857                                 struct ceph_options **ceph_opts,
4858                                 struct rbd_options **opts,
4859                                 struct rbd_spec **rbd_spec)
4860 {
4861         size_t len;
4862         char *options;
4863         const char *mon_addrs;
4864         char *snap_name;
4865         size_t mon_addrs_size;
4866         struct rbd_spec *spec = NULL;
4867         struct rbd_options *rbd_opts = NULL;
4868         struct ceph_options *copts;
4869         int ret;
4870
4871         /* The first four tokens are required */
4872
4873         len = next_token(&buf);
4874         if (!len) {
4875                 rbd_warn(NULL, "no monitor address(es) provided");
4876                 return -EINVAL;
4877         }
4878         mon_addrs = buf;
4879         mon_addrs_size = len + 1;
4880         buf += len;
4881
4882         ret = -EINVAL;
4883         options = dup_token(&buf, NULL);
4884         if (!options)
4885                 return -ENOMEM;
4886         if (!*options) {
4887                 rbd_warn(NULL, "no options provided");
4888                 goto out_err;
4889         }
4890
4891         spec = rbd_spec_alloc();
4892         if (!spec)
4893                 goto out_mem;
4894
4895         spec->pool_name = dup_token(&buf, NULL);
4896         if (!spec->pool_name)
4897                 goto out_mem;
4898         if (!*spec->pool_name) {
4899                 rbd_warn(NULL, "no pool name provided");
4900                 goto out_err;
4901         }
4902
4903         spec->image_name = dup_token(&buf, NULL);
4904         if (!spec->image_name)
4905                 goto out_mem;
4906         if (!*spec->image_name) {
4907                 rbd_warn(NULL, "no image name provided");
4908                 goto out_err;
4909         }
4910
4911         /*
4912          * Snapshot name is optional; default is to use "-"
4913          * (indicating the head/no snapshot).
4914          */
4915         len = next_token(&buf);
4916         if (!len) {
4917                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4918                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4919         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4920                 ret = -ENAMETOOLONG;
4921                 goto out_err;
4922         }
4923         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4924         if (!snap_name)
4925                 goto out_mem;
4926         *(snap_name + len) = '\0';
4927         spec->snap_name = snap_name;
4928
4929         /* Initialize all rbd options to the defaults */
4930
4931         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4932         if (!rbd_opts)
4933                 goto out_mem;
4934
4935         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4936
4937         copts = ceph_parse_options(options, mon_addrs,
4938                                         mon_addrs + mon_addrs_size - 1,
4939                                         parse_rbd_opts_token, rbd_opts);
4940         if (IS_ERR(copts)) {
4941                 ret = PTR_ERR(copts);
4942                 goto out_err;
4943         }
4944         kfree(options);
4945
4946         *ceph_opts = copts;
4947         *opts = rbd_opts;
4948         *rbd_spec = spec;
4949
4950         return 0;
4951 out_mem:
4952         ret = -ENOMEM;
4953 out_err:
4954         kfree(rbd_opts);
4955         rbd_spec_put(spec);
4956         kfree(options);
4957
4958         return ret;
4959 }
4960
4961 /*
4962  * Return pool id (>= 0) or a negative error code.
4963  */
4964 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4965 {
4966         u64 newest_epoch;
4967         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4968         int tries = 0;
4969         int ret;
4970
4971 again:
4972         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4973         if (ret == -ENOENT && tries++ < 1) {
4974                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4975                                                &newest_epoch);
4976                 if (ret < 0)
4977                         return ret;
4978
4979                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4980                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4981                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4982                                                      newest_epoch, timeout);
4983                         goto again;
4984                 } else {
4985                         /* the osdmap we have is new enough */
4986                         return -ENOENT;
4987                 }
4988         }
4989
4990         return ret;
4991 }
4992
4993 /*
4994  * An rbd format 2 image has a unique identifier, distinct from the
4995  * name given to it by the user.  Internally, that identifier is
4996  * what's used to specify the names of objects related to the image.
4997  *
4998  * A special "rbd id" object is used to map an rbd image name to its
4999  * id.  If that object doesn't exist, then there is no v2 rbd image
5000  * with the supplied name.
5001  *
5002  * This function will record the given rbd_dev's image_id field if
5003  * it can be determined, and in that case will return 0.  If any
5004  * errors occur a negative errno will be returned and the rbd_dev's
5005  * image_id field will be unchanged (and should be NULL).
5006  */
5007 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5008 {
5009         int ret;
5010         size_t size;
5011         char *object_name;
5012         void *response;
5013         char *image_id;
5014
5015         /*
5016          * When probing a parent image, the image id is already
5017          * known (and the image name likely is not).  There's no
5018          * need to fetch the image id again in this case.  We
5019          * do still need to set the image format though.
5020          */
5021         if (rbd_dev->spec->image_id) {
5022                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5023
5024                 return 0;
5025         }
5026
5027         /*
5028          * First, see if the format 2 image id file exists, and if
5029          * so, get the image's persistent id from it.
5030          */
5031         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5032         object_name = kmalloc(size, GFP_NOIO);
5033         if (!object_name)
5034                 return -ENOMEM;
5035         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5036         dout("rbd id object name is %s\n", object_name);
5037
5038         /* Response will be an encoded string, which includes a length */
5039
5040         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5041         response = kzalloc(size, GFP_NOIO);
5042         if (!response) {
5043                 ret = -ENOMEM;
5044                 goto out;
5045         }
5046
5047         /* If it doesn't exist we'll assume it's a format 1 image */
5048
5049         ret = rbd_obj_method_sync(rbd_dev, object_name,
5050                                 "rbd", "get_id", NULL, 0,
5051                                 response, RBD_IMAGE_ID_LEN_MAX);
5052         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5053         if (ret == -ENOENT) {
5054                 image_id = kstrdup("", GFP_KERNEL);
5055                 ret = image_id ? 0 : -ENOMEM;
5056                 if (!ret)
5057                         rbd_dev->image_format = 1;
5058         } else if (ret >= 0) {
5059                 void *p = response;
5060
5061                 image_id = ceph_extract_encoded_string(&p, p + ret,
5062                                                 NULL, GFP_NOIO);
5063                 ret = PTR_ERR_OR_ZERO(image_id);
5064                 if (!ret)
5065                         rbd_dev->image_format = 2;
5066         }
5067
5068         if (!ret) {
5069                 rbd_dev->spec->image_id = image_id;
5070                 dout("image_id is %s\n", image_id);
5071         }
5072 out:
5073         kfree(response);
5074         kfree(object_name);
5075
5076         return ret;
5077 }
5078
5079 /*
5080  * Undo whatever state changes are made by v1 or v2 header info
5081  * call.
5082  */
5083 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5084 {
5085         struct rbd_image_header *header;
5086
5087         rbd_dev_parent_put(rbd_dev);
5088
5089         /* Free dynamic fields from the header, then zero it out */
5090
5091         header = &rbd_dev->header;
5092         ceph_put_snap_context(header->snapc);
5093         kfree(header->snap_sizes);
5094         kfree(header->snap_names);
5095         kfree(header->object_prefix);
5096         memset(header, 0, sizeof (*header));
5097 }
5098
5099 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5100 {
5101         int ret;
5102
5103         ret = rbd_dev_v2_object_prefix(rbd_dev);
5104         if (ret)
5105                 goto out_err;
5106
5107         /*
5108          * Get the and check features for the image.  Currently the
5109          * features are assumed to never change.
5110          */
5111         ret = rbd_dev_v2_features(rbd_dev);
5112         if (ret)
5113                 goto out_err;
5114
5115         /* If the image supports fancy striping, get its parameters */
5116
5117         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5118                 ret = rbd_dev_v2_striping_info(rbd_dev);
5119                 if (ret < 0)
5120                         goto out_err;
5121         }
5122         /* No support for crypto and compression type format 2 images */
5123
5124         return 0;
5125 out_err:
5126         rbd_dev->header.features = 0;
5127         kfree(rbd_dev->header.object_prefix);
5128         rbd_dev->header.object_prefix = NULL;
5129
5130         return ret;
5131 }
5132
5133 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5134 {
5135         struct rbd_device *parent = NULL;
5136         struct rbd_spec *parent_spec;
5137         struct rbd_client *rbdc;
5138         int ret;
5139
5140         if (!rbd_dev->parent_spec)
5141                 return 0;
5142         /*
5143          * We need to pass a reference to the client and the parent
5144          * spec when creating the parent rbd_dev.  Images related by
5145          * parent/child relationships always share both.
5146          */
5147         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5148         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5149
5150         ret = -ENOMEM;
5151         parent = rbd_dev_create(rbdc, parent_spec);
5152         if (!parent)
5153                 goto out_err;
5154
5155         ret = rbd_dev_image_probe(parent, false);
5156         if (ret < 0)
5157                 goto out_err;
5158         rbd_dev->parent = parent;
5159         atomic_set(&rbd_dev->parent_ref, 1);
5160
5161         return 0;
5162 out_err:
5163         if (parent) {
5164                 rbd_dev_unparent(rbd_dev);
5165                 kfree(rbd_dev->header_name);
5166                 rbd_dev_destroy(parent);
5167         } else {
5168                 rbd_put_client(rbdc);
5169                 rbd_spec_put(parent_spec);
5170         }
5171
5172         return ret;
5173 }
5174
5175 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5176 {
5177         int ret;
5178
5179         /* Get an id and fill in device name. */
5180
5181         ret = rbd_dev_id_get(rbd_dev);
5182         if (ret)
5183                 return ret;
5184
5185         BUILD_BUG_ON(DEV_NAME_LEN
5186                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5187         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5188
5189         /* Record our major and minor device numbers. */
5190
5191         if (!single_major) {
5192                 ret = register_blkdev(0, rbd_dev->name);
5193                 if (ret < 0)
5194                         goto err_out_id;
5195
5196                 rbd_dev->major = ret;
5197                 rbd_dev->minor = 0;
5198         } else {
5199                 rbd_dev->major = rbd_major;
5200                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5201         }
5202
5203         /* Set up the blkdev mapping. */
5204
5205         ret = rbd_init_disk(rbd_dev);
5206         if (ret)
5207                 goto err_out_blkdev;
5208
5209         ret = rbd_dev_mapping_set(rbd_dev);
5210         if (ret)
5211                 goto err_out_disk;
5212
5213         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5214         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5215
5216         ret = rbd_bus_add_dev(rbd_dev);
5217         if (ret)
5218                 goto err_out_mapping;
5219
5220         /* Everything's ready.  Announce the disk to the world. */
5221
5222         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5223         add_disk(rbd_dev->disk);
5224
5225         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5226                 (unsigned long long) rbd_dev->mapping.size);
5227
5228         return ret;
5229
5230 err_out_mapping:
5231         rbd_dev_mapping_clear(rbd_dev);
5232 err_out_disk:
5233         rbd_free_disk(rbd_dev);
5234 err_out_blkdev:
5235         if (!single_major)
5236                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5237 err_out_id:
5238         rbd_dev_id_put(rbd_dev);
5239         rbd_dev_mapping_clear(rbd_dev);
5240
5241         return ret;
5242 }
5243
5244 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5245 {
5246         struct rbd_spec *spec = rbd_dev->spec;
5247         size_t size;
5248
5249         /* Record the header object name for this rbd image. */
5250
5251         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5252
5253         if (rbd_dev->image_format == 1)
5254                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5255         else
5256                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5257
5258         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5259         if (!rbd_dev->header_name)
5260                 return -ENOMEM;
5261
5262         if (rbd_dev->image_format == 1)
5263                 sprintf(rbd_dev->header_name, "%s%s",
5264                         spec->image_name, RBD_SUFFIX);
5265         else
5266                 sprintf(rbd_dev->header_name, "%s%s",
5267                         RBD_HEADER_PREFIX, spec->image_id);
5268         return 0;
5269 }
5270
5271 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5272 {
5273         rbd_dev_unprobe(rbd_dev);
5274         kfree(rbd_dev->header_name);
5275         rbd_dev->header_name = NULL;
5276         rbd_dev->image_format = 0;
5277         kfree(rbd_dev->spec->image_id);
5278         rbd_dev->spec->image_id = NULL;
5279
5280         rbd_dev_destroy(rbd_dev);
5281 }
5282
5283 /*
5284  * Probe for the existence of the header object for the given rbd
5285  * device.  If this image is the one being mapped (i.e., not a
5286  * parent), initiate a watch on its header object before using that
5287  * object to get detailed information about the rbd image.
5288  */
5289 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5290 {
5291         int ret;
5292
5293         /*
5294          * Get the id from the image id object.  Unless there's an
5295          * error, rbd_dev->spec->image_id will be filled in with
5296          * a dynamically-allocated string, and rbd_dev->image_format
5297          * will be set to either 1 or 2.
5298          */
5299         ret = rbd_dev_image_id(rbd_dev);
5300         if (ret)
5301                 return ret;
5302
5303         ret = rbd_dev_header_name(rbd_dev);
5304         if (ret)
5305                 goto err_out_format;
5306
5307         if (mapping) {
5308                 ret = rbd_dev_header_watch_sync(rbd_dev);
5309                 if (ret) {
5310                         if (ret == -ENOENT)
5311                                 pr_info("image %s/%s does not exist\n",
5312                                         rbd_dev->spec->pool_name,
5313                                         rbd_dev->spec->image_name);
5314                         goto out_header_name;
5315                 }
5316         }
5317
5318         ret = rbd_dev_header_info(rbd_dev);
5319         if (ret)
5320                 goto err_out_watch;
5321
5322         /*
5323          * If this image is the one being mapped, we have pool name and
5324          * id, image name and id, and snap name - need to fill snap id.
5325          * Otherwise this is a parent image, identified by pool, image
5326          * and snap ids - need to fill in names for those ids.
5327          */
5328         if (mapping)
5329                 ret = rbd_spec_fill_snap_id(rbd_dev);
5330         else
5331                 ret = rbd_spec_fill_names(rbd_dev);
5332         if (ret) {
5333                 if (ret == -ENOENT)
5334                         pr_info("snap %s/%s@%s does not exist\n",
5335                                 rbd_dev->spec->pool_name,
5336                                 rbd_dev->spec->image_name,
5337                                 rbd_dev->spec->snap_name);
5338                 goto err_out_probe;
5339         }
5340
5341         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5342                 ret = rbd_dev_v2_parent_info(rbd_dev);
5343                 if (ret)
5344                         goto err_out_probe;
5345
5346                 /*
5347                  * Need to warn users if this image is the one being
5348                  * mapped and has a parent.
5349                  */
5350                 if (mapping && rbd_dev->parent_spec)
5351                         rbd_warn(rbd_dev,
5352                                  "WARNING: kernel layering is EXPERIMENTAL!");
5353         }
5354
5355         ret = rbd_dev_probe_parent(rbd_dev);
5356         if (ret)
5357                 goto err_out_probe;
5358
5359         dout("discovered format %u image, header name is %s\n",
5360                 rbd_dev->image_format, rbd_dev->header_name);
5361         return 0;
5362
5363 err_out_probe:
5364         rbd_dev_unprobe(rbd_dev);
5365 err_out_watch:
5366         if (mapping)
5367                 rbd_dev_header_unwatch_sync(rbd_dev);
5368 out_header_name:
5369         kfree(rbd_dev->header_name);
5370         rbd_dev->header_name = NULL;
5371 err_out_format:
5372         rbd_dev->image_format = 0;
5373         kfree(rbd_dev->spec->image_id);
5374         rbd_dev->spec->image_id = NULL;
5375         return ret;
5376 }
5377
5378 static ssize_t do_rbd_add(struct bus_type *bus,
5379                           const char *buf,
5380                           size_t count)
5381 {
5382         struct rbd_device *rbd_dev = NULL;
5383         struct ceph_options *ceph_opts = NULL;
5384         struct rbd_options *rbd_opts = NULL;
5385         struct rbd_spec *spec = NULL;
5386         struct rbd_client *rbdc;
5387         bool read_only;
5388         int rc = -ENOMEM;
5389
5390         if (!try_module_get(THIS_MODULE))
5391                 return -ENODEV;
5392
5393         /* parse add command */
5394         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5395         if (rc < 0)
5396                 goto err_out_module;
5397         read_only = rbd_opts->read_only;
5398         kfree(rbd_opts);
5399         rbd_opts = NULL;        /* done with this */
5400
5401         rbdc = rbd_get_client(ceph_opts);
5402         if (IS_ERR(rbdc)) {
5403                 rc = PTR_ERR(rbdc);
5404                 goto err_out_args;
5405         }
5406
5407         /* pick the pool */
5408         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5409         if (rc < 0) {
5410                 if (rc == -ENOENT)
5411                         pr_info("pool %s does not exist\n", spec->pool_name);
5412                 goto err_out_client;
5413         }
5414         spec->pool_id = (u64)rc;
5415
5416         /* The ceph file layout needs to fit pool id in 32 bits */
5417
5418         if (spec->pool_id > (u64)U32_MAX) {
5419                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5420                                 (unsigned long long)spec->pool_id, U32_MAX);
5421                 rc = -EIO;
5422                 goto err_out_client;
5423         }
5424
5425         rbd_dev = rbd_dev_create(rbdc, spec);
5426         if (!rbd_dev)
5427                 goto err_out_client;
5428         rbdc = NULL;            /* rbd_dev now owns this */
5429         spec = NULL;            /* rbd_dev now owns this */
5430
5431         rc = rbd_dev_image_probe(rbd_dev, true);
5432         if (rc < 0)
5433                 goto err_out_rbd_dev;
5434
5435         /* If we are mapping a snapshot it must be marked read-only */
5436
5437         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5438                 read_only = true;
5439         rbd_dev->mapping.read_only = read_only;
5440
5441         rc = rbd_dev_device_setup(rbd_dev);
5442         if (rc) {
5443                 /*
5444                  * rbd_dev_header_unwatch_sync() can't be moved into
5445                  * rbd_dev_image_release() without refactoring, see
5446                  * commit 1f3ef78861ac.
5447                  */
5448                 rbd_dev_header_unwatch_sync(rbd_dev);
5449                 rbd_dev_image_release(rbd_dev);
5450                 goto err_out_module;
5451         }
5452
5453         return count;
5454
5455 err_out_rbd_dev:
5456         rbd_dev_destroy(rbd_dev);
5457 err_out_client:
5458         rbd_put_client(rbdc);
5459 err_out_args:
5460         rbd_spec_put(spec);
5461 err_out_module:
5462         module_put(THIS_MODULE);
5463
5464         dout("Error adding device %s\n", buf);
5465
5466         return (ssize_t)rc;
5467 }
5468
5469 static ssize_t rbd_add(struct bus_type *bus,
5470                        const char *buf,
5471                        size_t count)
5472 {
5473         if (single_major)
5474                 return -EINVAL;
5475
5476         return do_rbd_add(bus, buf, count);
5477 }
5478
5479 static ssize_t rbd_add_single_major(struct bus_type *bus,
5480                                     const char *buf,
5481                                     size_t count)
5482 {
5483         return do_rbd_add(bus, buf, count);
5484 }
5485
5486 static void rbd_dev_device_release(struct device *dev)
5487 {
5488         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5489
5490         rbd_free_disk(rbd_dev);
5491         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5492         rbd_dev_mapping_clear(rbd_dev);
5493         if (!single_major)
5494                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5495         rbd_dev_id_put(rbd_dev);
5496         rbd_dev_mapping_clear(rbd_dev);
5497 }
5498
5499 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5500 {
5501         while (rbd_dev->parent) {
5502                 struct rbd_device *first = rbd_dev;
5503                 struct rbd_device *second = first->parent;
5504                 struct rbd_device *third;
5505
5506                 /*
5507                  * Follow to the parent with no grandparent and
5508                  * remove it.
5509                  */
5510                 while (second && (third = second->parent)) {
5511                         first = second;
5512                         second = third;
5513                 }
5514                 rbd_assert(second);
5515                 rbd_dev_image_release(second);
5516                 first->parent = NULL;
5517                 first->parent_overlap = 0;
5518
5519                 rbd_assert(first->parent_spec);
5520                 rbd_spec_put(first->parent_spec);
5521                 first->parent_spec = NULL;
5522         }
5523 }
5524
5525 static ssize_t do_rbd_remove(struct bus_type *bus,
5526                              const char *buf,
5527                              size_t count)
5528 {
5529         struct rbd_device *rbd_dev = NULL;
5530         struct list_head *tmp;
5531         int dev_id;
5532         unsigned long ul;
5533         bool already = false;
5534         int ret;
5535
5536         ret = kstrtoul(buf, 10, &ul);
5537         if (ret)
5538                 return ret;
5539
5540         /* convert to int; abort if we lost anything in the conversion */
5541         dev_id = (int)ul;
5542         if (dev_id != ul)
5543                 return -EINVAL;
5544
5545         ret = -ENOENT;
5546         spin_lock(&rbd_dev_list_lock);
5547         list_for_each(tmp, &rbd_dev_list) {
5548                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5549                 if (rbd_dev->dev_id == dev_id) {
5550                         ret = 0;
5551                         break;
5552                 }
5553         }
5554         if (!ret) {
5555                 spin_lock_irq(&rbd_dev->lock);
5556                 if (rbd_dev->open_count)
5557                         ret = -EBUSY;
5558                 else
5559                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5560                                                         &rbd_dev->flags);
5561                 spin_unlock_irq(&rbd_dev->lock);
5562         }
5563         spin_unlock(&rbd_dev_list_lock);
5564         if (ret < 0 || already)
5565                 return ret;
5566
5567         rbd_dev_header_unwatch_sync(rbd_dev);
5568         /*
5569          * flush remaining watch callbacks - these must be complete
5570          * before the osd_client is shutdown
5571          */
5572         dout("%s: flushing notifies", __func__);
5573         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5574
5575         /*
5576          * Don't free anything from rbd_dev->disk until after all
5577          * notifies are completely processed. Otherwise
5578          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5579          * in a potential use after free of rbd_dev->disk or rbd_dev.
5580          */
5581         rbd_bus_del_dev(rbd_dev);
5582         rbd_dev_image_release(rbd_dev);
5583         module_put(THIS_MODULE);
5584
5585         return count;
5586 }
5587
5588 static ssize_t rbd_remove(struct bus_type *bus,
5589                           const char *buf,
5590                           size_t count)
5591 {
5592         if (single_major)
5593                 return -EINVAL;
5594
5595         return do_rbd_remove(bus, buf, count);
5596 }
5597
5598 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5599                                        const char *buf,
5600                                        size_t count)
5601 {
5602         return do_rbd_remove(bus, buf, count);
5603 }
5604
5605 /*
5606  * create control files in sysfs
5607  * /sys/bus/rbd/...
5608  */
5609 static int rbd_sysfs_init(void)
5610 {
5611         int ret;
5612
5613         ret = device_register(&rbd_root_dev);
5614         if (ret < 0)
5615                 return ret;
5616
5617         ret = bus_register(&rbd_bus_type);
5618         if (ret < 0)
5619                 device_unregister(&rbd_root_dev);
5620
5621         return ret;
5622 }
5623
5624 static void rbd_sysfs_cleanup(void)
5625 {
5626         bus_unregister(&rbd_bus_type);
5627         device_unregister(&rbd_root_dev);
5628 }
5629
5630 static int rbd_slab_init(void)
5631 {
5632         rbd_assert(!rbd_img_request_cache);
5633         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5634                                         sizeof (struct rbd_img_request),
5635                                         __alignof__(struct rbd_img_request),
5636                                         0, NULL);
5637         if (!rbd_img_request_cache)
5638                 return -ENOMEM;
5639
5640         rbd_assert(!rbd_obj_request_cache);
5641         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5642                                         sizeof (struct rbd_obj_request),
5643                                         __alignof__(struct rbd_obj_request),
5644                                         0, NULL);
5645         if (!rbd_obj_request_cache)
5646                 goto out_err;
5647
5648         rbd_assert(!rbd_segment_name_cache);
5649         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5650                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5651         if (rbd_segment_name_cache)
5652                 return 0;
5653 out_err:
5654         if (rbd_obj_request_cache) {
5655                 kmem_cache_destroy(rbd_obj_request_cache);
5656                 rbd_obj_request_cache = NULL;
5657         }
5658
5659         kmem_cache_destroy(rbd_img_request_cache);
5660         rbd_img_request_cache = NULL;
5661
5662         return -ENOMEM;
5663 }
5664
5665 static void rbd_slab_exit(void)
5666 {
5667         rbd_assert(rbd_segment_name_cache);
5668         kmem_cache_destroy(rbd_segment_name_cache);
5669         rbd_segment_name_cache = NULL;
5670
5671         rbd_assert(rbd_obj_request_cache);
5672         kmem_cache_destroy(rbd_obj_request_cache);
5673         rbd_obj_request_cache = NULL;
5674
5675         rbd_assert(rbd_img_request_cache);
5676         kmem_cache_destroy(rbd_img_request_cache);
5677         rbd_img_request_cache = NULL;
5678 }
5679
5680 static int __init rbd_init(void)
5681 {
5682         int rc;
5683
5684         if (!libceph_compatible(NULL)) {
5685                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5686                 return -EINVAL;
5687         }
5688
5689         rc = rbd_slab_init();
5690         if (rc)
5691                 return rc;
5692
5693         /*
5694          * The number of active work items is limited by the number of
5695          * rbd devices * queue depth, so leave @max_active at default.
5696          */
5697         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5698         if (!rbd_wq) {
5699                 rc = -ENOMEM;
5700                 goto err_out_slab;
5701         }
5702
5703         if (single_major) {
5704                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5705                 if (rbd_major < 0) {
5706                         rc = rbd_major;
5707                         goto err_out_wq;
5708                 }
5709         }
5710
5711         rc = rbd_sysfs_init();
5712         if (rc)
5713                 goto err_out_blkdev;
5714
5715         if (single_major)
5716                 pr_info("loaded (major %d)\n", rbd_major);
5717         else
5718                 pr_info("loaded\n");
5719
5720         return 0;
5721
5722 err_out_blkdev:
5723         if (single_major)
5724                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5725 err_out_wq:
5726         destroy_workqueue(rbd_wq);
5727 err_out_slab:
5728         rbd_slab_exit();
5729         return rc;
5730 }
5731
5732 static void __exit rbd_exit(void)
5733 {
5734         ida_destroy(&rbd_dev_id_ida);
5735         rbd_sysfs_cleanup();
5736         if (single_major)
5737                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5738         destroy_workqueue(rbd_wq);
5739         rbd_slab_exit();
5740 }
5741
5742 module_init(rbd_init);
5743 module_exit(rbd_exit);
5744
5745 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5746 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5747 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5748 /* following authorship retained from original osdblk.c */
5749 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5750
5751 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5752 MODULE_LICENSE("GPL");