Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / base / power / main.c
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35
36 #include "../base.h"
37 #include "power.h"
38
39 typedef int (*pm_callback_t)(struct device *);
40
41 /*
42  * The entries in the dpm_list list are in a depth first order, simply
43  * because children are guaranteed to be discovered after parents, and
44  * are inserted at the back of the list on discovery.
45  *
46  * Since device_pm_add() may be called with a device lock held,
47  * we must never try to acquire a device lock while holding
48  * dpm_list_mutex.
49  */
50
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
56
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
60
61 static int async_error;
62
63 static char *pm_verb(int event)
64 {
65         switch (event) {
66         case PM_EVENT_SUSPEND:
67                 return "suspend";
68         case PM_EVENT_RESUME:
69                 return "resume";
70         case PM_EVENT_FREEZE:
71                 return "freeze";
72         case PM_EVENT_QUIESCE:
73                 return "quiesce";
74         case PM_EVENT_HIBERNATE:
75                 return "hibernate";
76         case PM_EVENT_THAW:
77                 return "thaw";
78         case PM_EVENT_RESTORE:
79                 return "restore";
80         case PM_EVENT_RECOVER:
81                 return "recover";
82         default:
83                 return "(unknown PM event)";
84         }
85 }
86
87 /**
88  * device_pm_sleep_init - Initialize system suspend-related device fields.
89  * @dev: Device object being initialized.
90  */
91 void device_pm_sleep_init(struct device *dev)
92 {
93         dev->power.is_prepared = false;
94         dev->power.is_suspended = false;
95         dev->power.is_noirq_suspended = false;
96         dev->power.is_late_suspended = false;
97         init_completion(&dev->power.completion);
98         complete_all(&dev->power.completion);
99         dev->power.wakeup = NULL;
100         INIT_LIST_HEAD(&dev->power.entry);
101 }
102
103 /**
104  * device_pm_lock - Lock the list of active devices used by the PM core.
105  */
106 void device_pm_lock(void)
107 {
108         mutex_lock(&dpm_list_mtx);
109 }
110
111 /**
112  * device_pm_unlock - Unlock the list of active devices used by the PM core.
113  */
114 void device_pm_unlock(void)
115 {
116         mutex_unlock(&dpm_list_mtx);
117 }
118
119 /**
120  * device_pm_add - Add a device to the PM core's list of active devices.
121  * @dev: Device to add to the list.
122  */
123 void device_pm_add(struct device *dev)
124 {
125         pr_debug("PM: Adding info for %s:%s\n",
126                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127         mutex_lock(&dpm_list_mtx);
128         if (dev->parent && dev->parent->power.is_prepared)
129                 dev_warn(dev, "parent %s should not be sleeping\n",
130                         dev_name(dev->parent));
131         list_add_tail(&dev->power.entry, &dpm_list);
132         mutex_unlock(&dpm_list_mtx);
133 }
134
135 /**
136  * device_pm_remove - Remove a device from the PM core's list of active devices.
137  * @dev: Device to be removed from the list.
138  */
139 void device_pm_remove(struct device *dev)
140 {
141         pr_debug("PM: Removing info for %s:%s\n",
142                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143         complete_all(&dev->power.completion);
144         mutex_lock(&dpm_list_mtx);
145         list_del_init(&dev->power.entry);
146         mutex_unlock(&dpm_list_mtx);
147         device_wakeup_disable(dev);
148         pm_runtime_remove(dev);
149 }
150
151 /**
152  * device_pm_move_before - Move device in the PM core's list of active devices.
153  * @deva: Device to move in dpm_list.
154  * @devb: Device @deva should come before.
155  */
156 void device_pm_move_before(struct device *deva, struct device *devb)
157 {
158         pr_debug("PM: Moving %s:%s before %s:%s\n",
159                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161         /* Delete deva from dpm_list and reinsert before devb. */
162         list_move_tail(&deva->power.entry, &devb->power.entry);
163 }
164
165 /**
166  * device_pm_move_after - Move device in the PM core's list of active devices.
167  * @deva: Device to move in dpm_list.
168  * @devb: Device @deva should come after.
169  */
170 void device_pm_move_after(struct device *deva, struct device *devb)
171 {
172         pr_debug("PM: Moving %s:%s after %s:%s\n",
173                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175         /* Delete deva from dpm_list and reinsert after devb. */
176         list_move(&deva->power.entry, &devb->power.entry);
177 }
178
179 /**
180  * device_pm_move_last - Move device to end of the PM core's list of devices.
181  * @dev: Device to move in dpm_list.
182  */
183 void device_pm_move_last(struct device *dev)
184 {
185         pr_debug("PM: Moving %s:%s to end of list\n",
186                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187         list_move_tail(&dev->power.entry, &dpm_list);
188 }
189
190 static ktime_t initcall_debug_start(struct device *dev)
191 {
192         ktime_t calltime = ktime_set(0, 0);
193
194         if (pm_print_times_enabled) {
195                 pr_info("calling  %s+ @ %i, parent: %s\n",
196                         dev_name(dev), task_pid_nr(current),
197                         dev->parent ? dev_name(dev->parent) : "none");
198                 calltime = ktime_get();
199         }
200
201         return calltime;
202 }
203
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205                                   int error, pm_message_t state, char *info)
206 {
207         ktime_t rettime;
208         s64 nsecs;
209
210         rettime = ktime_get();
211         nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212
213         if (pm_print_times_enabled) {
214                 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215                         error, (unsigned long long)nsecs >> 10);
216         }
217 }
218
219 /**
220  * dpm_wait - Wait for a PM operation to complete.
221  * @dev: Device to wait for.
222  * @async: If unset, wait only if the device's power.async_suspend flag is set.
223  */
224 static void dpm_wait(struct device *dev, bool async)
225 {
226         if (!dev)
227                 return;
228
229         if (async || (pm_async_enabled && dev->power.async_suspend))
230                 wait_for_completion(&dev->power.completion);
231 }
232
233 static int dpm_wait_fn(struct device *dev, void *async_ptr)
234 {
235         dpm_wait(dev, *((bool *)async_ptr));
236         return 0;
237 }
238
239 static void dpm_wait_for_children(struct device *dev, bool async)
240 {
241        device_for_each_child(dev, &async, dpm_wait_fn);
242 }
243
244 /**
245  * pm_op - Return the PM operation appropriate for given PM event.
246  * @ops: PM operations to choose from.
247  * @state: PM transition of the system being carried out.
248  */
249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
250 {
251         switch (state.event) {
252 #ifdef CONFIG_SUSPEND
253         case PM_EVENT_SUSPEND:
254                 return ops->suspend;
255         case PM_EVENT_RESUME:
256                 return ops->resume;
257 #endif /* CONFIG_SUSPEND */
258 #ifdef CONFIG_HIBERNATE_CALLBACKS
259         case PM_EVENT_FREEZE:
260         case PM_EVENT_QUIESCE:
261                 return ops->freeze;
262         case PM_EVENT_HIBERNATE:
263                 return ops->poweroff;
264         case PM_EVENT_THAW:
265         case PM_EVENT_RECOVER:
266                 return ops->thaw;
267                 break;
268         case PM_EVENT_RESTORE:
269                 return ops->restore;
270 #endif /* CONFIG_HIBERNATE_CALLBACKS */
271         }
272
273         return NULL;
274 }
275
276 /**
277  * pm_late_early_op - Return the PM operation appropriate for given PM event.
278  * @ops: PM operations to choose from.
279  * @state: PM transition of the system being carried out.
280  *
281  * Runtime PM is disabled for @dev while this function is being executed.
282  */
283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
284                                       pm_message_t state)
285 {
286         switch (state.event) {
287 #ifdef CONFIG_SUSPEND
288         case PM_EVENT_SUSPEND:
289                 return ops->suspend_late;
290         case PM_EVENT_RESUME:
291                 return ops->resume_early;
292 #endif /* CONFIG_SUSPEND */
293 #ifdef CONFIG_HIBERNATE_CALLBACKS
294         case PM_EVENT_FREEZE:
295         case PM_EVENT_QUIESCE:
296                 return ops->freeze_late;
297         case PM_EVENT_HIBERNATE:
298                 return ops->poweroff_late;
299         case PM_EVENT_THAW:
300         case PM_EVENT_RECOVER:
301                 return ops->thaw_early;
302         case PM_EVENT_RESTORE:
303                 return ops->restore_early;
304 #endif /* CONFIG_HIBERNATE_CALLBACKS */
305         }
306
307         return NULL;
308 }
309
310 /**
311  * pm_noirq_op - Return the PM operation appropriate for given PM event.
312  * @ops: PM operations to choose from.
313  * @state: PM transition of the system being carried out.
314  *
315  * The driver of @dev will not receive interrupts while this function is being
316  * executed.
317  */
318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
319 {
320         switch (state.event) {
321 #ifdef CONFIG_SUSPEND
322         case PM_EVENT_SUSPEND:
323                 return ops->suspend_noirq;
324         case PM_EVENT_RESUME:
325                 return ops->resume_noirq;
326 #endif /* CONFIG_SUSPEND */
327 #ifdef CONFIG_HIBERNATE_CALLBACKS
328         case PM_EVENT_FREEZE:
329         case PM_EVENT_QUIESCE:
330                 return ops->freeze_noirq;
331         case PM_EVENT_HIBERNATE:
332                 return ops->poweroff_noirq;
333         case PM_EVENT_THAW:
334         case PM_EVENT_RECOVER:
335                 return ops->thaw_noirq;
336         case PM_EVENT_RESTORE:
337                 return ops->restore_noirq;
338 #endif /* CONFIG_HIBERNATE_CALLBACKS */
339         }
340
341         return NULL;
342 }
343
344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
345 {
346         dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
347                 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
348                 ", may wakeup" : "");
349 }
350
351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
352                         int error)
353 {
354         printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355                 dev_name(dev), pm_verb(state.event), info, error);
356 }
357
358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
359 {
360         ktime_t calltime;
361         u64 usecs64;
362         int usecs;
363
364         calltime = ktime_get();
365         usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
366         do_div(usecs64, NSEC_PER_USEC);
367         usecs = usecs64;
368         if (usecs == 0)
369                 usecs = 1;
370         pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
371                 info ?: "", info ? " " : "", pm_verb(state.event),
372                 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
373 }
374
375 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
376                             pm_message_t state, char *info)
377 {
378         ktime_t calltime;
379         int error;
380
381         if (!cb)
382                 return 0;
383
384         calltime = initcall_debug_start(dev);
385
386         pm_dev_dbg(dev, state, info);
387         trace_device_pm_callback_start(dev, info, state.event);
388         error = cb(dev);
389         trace_device_pm_callback_end(dev, error);
390         suspend_report_result(cb, error);
391
392         initcall_debug_report(dev, calltime, error, state, info);
393
394         return error;
395 }
396
397 #ifdef CONFIG_DPM_WATCHDOG
398 struct dpm_watchdog {
399         struct device           *dev;
400         struct task_struct      *tsk;
401         struct timer_list       timer;
402 };
403
404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
405         struct dpm_watchdog wd
406
407 /**
408  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
409  * @data: Watchdog object address.
410  *
411  * Called when a driver has timed out suspending or resuming.
412  * There's not much we can do here to recover so panic() to
413  * capture a crash-dump in pstore.
414  */
415 static void dpm_watchdog_handler(unsigned long data)
416 {
417         struct dpm_watchdog *wd = (void *)data;
418
419         dev_emerg(wd->dev, "**** DPM device timeout ****\n");
420         show_stack(wd->tsk, NULL);
421         panic("%s %s: unrecoverable failure\n",
422                 dev_driver_string(wd->dev), dev_name(wd->dev));
423 }
424
425 /**
426  * dpm_watchdog_set - Enable pm watchdog for given device.
427  * @wd: Watchdog. Must be allocated on the stack.
428  * @dev: Device to handle.
429  */
430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
431 {
432         struct timer_list *timer = &wd->timer;
433
434         wd->dev = dev;
435         wd->tsk = current;
436
437         init_timer_on_stack(timer);
438         /* use same timeout value for both suspend and resume */
439         timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
440         timer->function = dpm_watchdog_handler;
441         timer->data = (unsigned long)wd;
442         add_timer(timer);
443 }
444
445 /**
446  * dpm_watchdog_clear - Disable suspend/resume watchdog.
447  * @wd: Watchdog to disable.
448  */
449 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
450 {
451         struct timer_list *timer = &wd->timer;
452
453         del_timer_sync(timer);
454         destroy_timer_on_stack(timer);
455 }
456 #else
457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
458 #define dpm_watchdog_set(x, y)
459 #define dpm_watchdog_clear(x)
460 #endif
461
462 /*------------------------- Resume routines -------------------------*/
463
464 /**
465  * device_resume_noirq - Execute an "early resume" callback for given device.
466  * @dev: Device to handle.
467  * @state: PM transition of the system being carried out.
468  * @async: If true, the device is being resumed asynchronously.
469  *
470  * The driver of @dev will not receive interrupts while this function is being
471  * executed.
472  */
473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474 {
475         pm_callback_t callback = NULL;
476         char *info = NULL;
477         int error = 0;
478
479         TRACE_DEVICE(dev);
480         TRACE_RESUME(0);
481
482         if (dev->power.syscore || dev->power.direct_complete)
483                 goto Out;
484
485         if (!dev->power.is_noirq_suspended)
486                 goto Out;
487
488         dpm_wait(dev->parent, async);
489
490         if (dev->pm_domain) {
491                 info = "noirq power domain ";
492                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
493         } else if (dev->type && dev->type->pm) {
494                 info = "noirq type ";
495                 callback = pm_noirq_op(dev->type->pm, state);
496         } else if (dev->class && dev->class->pm) {
497                 info = "noirq class ";
498                 callback = pm_noirq_op(dev->class->pm, state);
499         } else if (dev->bus && dev->bus->pm) {
500                 info = "noirq bus ";
501                 callback = pm_noirq_op(dev->bus->pm, state);
502         }
503
504         if (!callback && dev->driver && dev->driver->pm) {
505                 info = "noirq driver ";
506                 callback = pm_noirq_op(dev->driver->pm, state);
507         }
508
509         error = dpm_run_callback(callback, dev, state, info);
510         dev->power.is_noirq_suspended = false;
511
512  Out:
513         complete_all(&dev->power.completion);
514         TRACE_RESUME(error);
515         return error;
516 }
517
518 static bool is_async(struct device *dev)
519 {
520         return dev->power.async_suspend && pm_async_enabled
521                 && !pm_trace_is_enabled();
522 }
523
524 static void async_resume_noirq(void *data, async_cookie_t cookie)
525 {
526         struct device *dev = (struct device *)data;
527         int error;
528
529         error = device_resume_noirq(dev, pm_transition, true);
530         if (error)
531                 pm_dev_err(dev, pm_transition, " async", error);
532
533         put_device(dev);
534 }
535
536 /**
537  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538  * @state: PM transition of the system being carried out.
539  *
540  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541  * enable device drivers to receive interrupts.
542  */
543 void dpm_resume_noirq(pm_message_t state)
544 {
545         struct device *dev;
546         ktime_t starttime = ktime_get();
547
548         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
549         mutex_lock(&dpm_list_mtx);
550         pm_transition = state;
551
552         /*
553          * Advanced the async threads upfront,
554          * in case the starting of async threads is
555          * delayed by non-async resuming devices.
556          */
557         list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
558                 reinit_completion(&dev->power.completion);
559                 if (is_async(dev)) {
560                         get_device(dev);
561                         async_schedule(async_resume_noirq, dev);
562                 }
563         }
564
565         while (!list_empty(&dpm_noirq_list)) {
566                 dev = to_device(dpm_noirq_list.next);
567                 get_device(dev);
568                 list_move_tail(&dev->power.entry, &dpm_late_early_list);
569                 mutex_unlock(&dpm_list_mtx);
570
571                 if (!is_async(dev)) {
572                         int error;
573
574                         error = device_resume_noirq(dev, state, false);
575                         if (error) {
576                                 suspend_stats.failed_resume_noirq++;
577                                 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
578                                 dpm_save_failed_dev(dev_name(dev));
579                                 pm_dev_err(dev, state, " noirq", error);
580                         }
581                 }
582
583                 mutex_lock(&dpm_list_mtx);
584                 put_device(dev);
585         }
586         mutex_unlock(&dpm_list_mtx);
587         async_synchronize_full();
588         dpm_show_time(starttime, state, "noirq");
589         resume_device_irqs();
590         cpuidle_resume();
591         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
592 }
593
594 /**
595  * device_resume_early - Execute an "early resume" callback for given device.
596  * @dev: Device to handle.
597  * @state: PM transition of the system being carried out.
598  * @async: If true, the device is being resumed asynchronously.
599  *
600  * Runtime PM is disabled for @dev while this function is being executed.
601  */
602 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
603 {
604         pm_callback_t callback = NULL;
605         char *info = NULL;
606         int error = 0;
607
608         TRACE_DEVICE(dev);
609         TRACE_RESUME(0);
610
611         if (dev->power.syscore || dev->power.direct_complete)
612                 goto Out;
613
614         if (!dev->power.is_late_suspended)
615                 goto Out;
616
617         dpm_wait(dev->parent, async);
618
619         if (dev->pm_domain) {
620                 info = "early power domain ";
621                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
622         } else if (dev->type && dev->type->pm) {
623                 info = "early type ";
624                 callback = pm_late_early_op(dev->type->pm, state);
625         } else if (dev->class && dev->class->pm) {
626                 info = "early class ";
627                 callback = pm_late_early_op(dev->class->pm, state);
628         } else if (dev->bus && dev->bus->pm) {
629                 info = "early bus ";
630                 callback = pm_late_early_op(dev->bus->pm, state);
631         }
632
633         if (!callback && dev->driver && dev->driver->pm) {
634                 info = "early driver ";
635                 callback = pm_late_early_op(dev->driver->pm, state);
636         }
637
638         error = dpm_run_callback(callback, dev, state, info);
639         dev->power.is_late_suspended = false;
640
641  Out:
642         TRACE_RESUME(error);
643
644         pm_runtime_enable(dev);
645         complete_all(&dev->power.completion);
646         return error;
647 }
648
649 static void async_resume_early(void *data, async_cookie_t cookie)
650 {
651         struct device *dev = (struct device *)data;
652         int error;
653
654         error = device_resume_early(dev, pm_transition, true);
655         if (error)
656                 pm_dev_err(dev, pm_transition, " async", error);
657
658         put_device(dev);
659 }
660
661 /**
662  * dpm_resume_early - Execute "early resume" callbacks for all devices.
663  * @state: PM transition of the system being carried out.
664  */
665 void dpm_resume_early(pm_message_t state)
666 {
667         struct device *dev;
668         ktime_t starttime = ktime_get();
669
670         trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
671         mutex_lock(&dpm_list_mtx);
672         pm_transition = state;
673
674         /*
675          * Advanced the async threads upfront,
676          * in case the starting of async threads is
677          * delayed by non-async resuming devices.
678          */
679         list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
680                 reinit_completion(&dev->power.completion);
681                 if (is_async(dev)) {
682                         get_device(dev);
683                         async_schedule(async_resume_early, dev);
684                 }
685         }
686
687         while (!list_empty(&dpm_late_early_list)) {
688                 dev = to_device(dpm_late_early_list.next);
689                 get_device(dev);
690                 list_move_tail(&dev->power.entry, &dpm_suspended_list);
691                 mutex_unlock(&dpm_list_mtx);
692
693                 if (!is_async(dev)) {
694                         int error;
695
696                         error = device_resume_early(dev, state, false);
697                         if (error) {
698                                 suspend_stats.failed_resume_early++;
699                                 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
700                                 dpm_save_failed_dev(dev_name(dev));
701                                 pm_dev_err(dev, state, " early", error);
702                         }
703                 }
704                 mutex_lock(&dpm_list_mtx);
705                 put_device(dev);
706         }
707         mutex_unlock(&dpm_list_mtx);
708         async_synchronize_full();
709         dpm_show_time(starttime, state, "early");
710         trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
711 }
712
713 /**
714  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
715  * @state: PM transition of the system being carried out.
716  */
717 void dpm_resume_start(pm_message_t state)
718 {
719         dpm_resume_noirq(state);
720         dpm_resume_early(state);
721 }
722 EXPORT_SYMBOL_GPL(dpm_resume_start);
723
724 /**
725  * device_resume - Execute "resume" callbacks for given device.
726  * @dev: Device to handle.
727  * @state: PM transition of the system being carried out.
728  * @async: If true, the device is being resumed asynchronously.
729  */
730 static int device_resume(struct device *dev, pm_message_t state, bool async)
731 {
732         pm_callback_t callback = NULL;
733         char *info = NULL;
734         int error = 0;
735         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
736
737         TRACE_DEVICE(dev);
738         TRACE_RESUME(0);
739
740         if (dev->power.syscore)
741                 goto Complete;
742
743         if (dev->power.direct_complete) {
744                 /* Match the pm_runtime_disable() in __device_suspend(). */
745                 pm_runtime_enable(dev);
746                 goto Complete;
747         }
748
749         dpm_wait(dev->parent, async);
750         dpm_watchdog_set(&wd, dev);
751         device_lock(dev);
752
753         /*
754          * This is a fib.  But we'll allow new children to be added below
755          * a resumed device, even if the device hasn't been completed yet.
756          */
757         dev->power.is_prepared = false;
758
759         if (!dev->power.is_suspended)
760                 goto Unlock;
761
762         if (dev->pm_domain) {
763                 info = "power domain ";
764                 callback = pm_op(&dev->pm_domain->ops, state);
765                 goto Driver;
766         }
767
768         if (dev->type && dev->type->pm) {
769                 info = "type ";
770                 callback = pm_op(dev->type->pm, state);
771                 goto Driver;
772         }
773
774         if (dev->class) {
775                 if (dev->class->pm) {
776                         info = "class ";
777                         callback = pm_op(dev->class->pm, state);
778                         goto Driver;
779                 } else if (dev->class->resume) {
780                         info = "legacy class ";
781                         callback = dev->class->resume;
782                         goto End;
783                 }
784         }
785
786         if (dev->bus) {
787                 if (dev->bus->pm) {
788                         info = "bus ";
789                         callback = pm_op(dev->bus->pm, state);
790                 } else if (dev->bus->resume) {
791                         info = "legacy bus ";
792                         callback = dev->bus->resume;
793                         goto End;
794                 }
795         }
796
797  Driver:
798         if (!callback && dev->driver && dev->driver->pm) {
799                 info = "driver ";
800                 callback = pm_op(dev->driver->pm, state);
801         }
802
803  End:
804         error = dpm_run_callback(callback, dev, state, info);
805         dev->power.is_suspended = false;
806
807  Unlock:
808         device_unlock(dev);
809         dpm_watchdog_clear(&wd);
810
811  Complete:
812         complete_all(&dev->power.completion);
813
814         TRACE_RESUME(error);
815
816         return error;
817 }
818
819 static void async_resume(void *data, async_cookie_t cookie)
820 {
821         struct device *dev = (struct device *)data;
822         int error;
823
824         error = device_resume(dev, pm_transition, true);
825         if (error)
826                 pm_dev_err(dev, pm_transition, " async", error);
827         put_device(dev);
828 }
829
830 /**
831  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
832  * @state: PM transition of the system being carried out.
833  *
834  * Execute the appropriate "resume" callback for all devices whose status
835  * indicates that they are suspended.
836  */
837 void dpm_resume(pm_message_t state)
838 {
839         struct device *dev;
840         ktime_t starttime = ktime_get();
841
842         trace_suspend_resume(TPS("dpm_resume"), state.event, true);
843         might_sleep();
844
845         mutex_lock(&dpm_list_mtx);
846         pm_transition = state;
847         async_error = 0;
848
849         list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
850                 reinit_completion(&dev->power.completion);
851                 if (is_async(dev)) {
852                         get_device(dev);
853                         async_schedule(async_resume, dev);
854                 }
855         }
856
857         while (!list_empty(&dpm_suspended_list)) {
858                 dev = to_device(dpm_suspended_list.next);
859                 get_device(dev);
860                 if (!is_async(dev)) {
861                         int error;
862
863                         mutex_unlock(&dpm_list_mtx);
864
865                         error = device_resume(dev, state, false);
866                         if (error) {
867                                 suspend_stats.failed_resume++;
868                                 dpm_save_failed_step(SUSPEND_RESUME);
869                                 dpm_save_failed_dev(dev_name(dev));
870                                 pm_dev_err(dev, state, "", error);
871                         }
872
873                         mutex_lock(&dpm_list_mtx);
874                 }
875                 if (!list_empty(&dev->power.entry))
876                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
877                 put_device(dev);
878         }
879         mutex_unlock(&dpm_list_mtx);
880         async_synchronize_full();
881         dpm_show_time(starttime, state, NULL);
882
883         cpufreq_resume();
884         trace_suspend_resume(TPS("dpm_resume"), state.event, false);
885 }
886
887 /**
888  * device_complete - Complete a PM transition for given device.
889  * @dev: Device to handle.
890  * @state: PM transition of the system being carried out.
891  */
892 static void device_complete(struct device *dev, pm_message_t state)
893 {
894         void (*callback)(struct device *) = NULL;
895         char *info = NULL;
896
897         if (dev->power.syscore)
898                 return;
899
900         device_lock(dev);
901
902         if (dev->pm_domain) {
903                 info = "completing power domain ";
904                 callback = dev->pm_domain->ops.complete;
905         } else if (dev->type && dev->type->pm) {
906                 info = "completing type ";
907                 callback = dev->type->pm->complete;
908         } else if (dev->class && dev->class->pm) {
909                 info = "completing class ";
910                 callback = dev->class->pm->complete;
911         } else if (dev->bus && dev->bus->pm) {
912                 info = "completing bus ";
913                 callback = dev->bus->pm->complete;
914         }
915
916         if (!callback && dev->driver && dev->driver->pm) {
917                 info = "completing driver ";
918                 callback = dev->driver->pm->complete;
919         }
920
921         if (callback) {
922                 pm_dev_dbg(dev, state, info);
923                 trace_device_pm_callback_start(dev, info, state.event);
924                 callback(dev);
925                 trace_device_pm_callback_end(dev, 0);
926         }
927
928         device_unlock(dev);
929
930         pm_runtime_put(dev);
931 }
932
933 /**
934  * dpm_complete - Complete a PM transition for all non-sysdev devices.
935  * @state: PM transition of the system being carried out.
936  *
937  * Execute the ->complete() callbacks for all devices whose PM status is not
938  * DPM_ON (this allows new devices to be registered).
939  */
940 void dpm_complete(pm_message_t state)
941 {
942         struct list_head list;
943
944         trace_suspend_resume(TPS("dpm_complete"), state.event, true);
945         might_sleep();
946
947         INIT_LIST_HEAD(&list);
948         mutex_lock(&dpm_list_mtx);
949         while (!list_empty(&dpm_prepared_list)) {
950                 struct device *dev = to_device(dpm_prepared_list.prev);
951
952                 get_device(dev);
953                 dev->power.is_prepared = false;
954                 list_move(&dev->power.entry, &list);
955                 mutex_unlock(&dpm_list_mtx);
956
957                 device_complete(dev, state);
958
959                 mutex_lock(&dpm_list_mtx);
960                 put_device(dev);
961         }
962         list_splice(&list, &dpm_list);
963         mutex_unlock(&dpm_list_mtx);
964         trace_suspend_resume(TPS("dpm_complete"), state.event, false);
965 }
966
967 /**
968  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
969  * @state: PM transition of the system being carried out.
970  *
971  * Execute "resume" callbacks for all devices and complete the PM transition of
972  * the system.
973  */
974 void dpm_resume_end(pm_message_t state)
975 {
976         dpm_resume(state);
977         dpm_complete(state);
978 }
979 EXPORT_SYMBOL_GPL(dpm_resume_end);
980
981
982 /*------------------------- Suspend routines -------------------------*/
983
984 /**
985  * resume_event - Return a "resume" message for given "suspend" sleep state.
986  * @sleep_state: PM message representing a sleep state.
987  *
988  * Return a PM message representing the resume event corresponding to given
989  * sleep state.
990  */
991 static pm_message_t resume_event(pm_message_t sleep_state)
992 {
993         switch (sleep_state.event) {
994         case PM_EVENT_SUSPEND:
995                 return PMSG_RESUME;
996         case PM_EVENT_FREEZE:
997         case PM_EVENT_QUIESCE:
998                 return PMSG_RECOVER;
999         case PM_EVENT_HIBERNATE:
1000                 return PMSG_RESTORE;
1001         }
1002         return PMSG_ON;
1003 }
1004
1005 /**
1006  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1007  * @dev: Device to handle.
1008  * @state: PM transition of the system being carried out.
1009  * @async: If true, the device is being suspended asynchronously.
1010  *
1011  * The driver of @dev will not receive interrupts while this function is being
1012  * executed.
1013  */
1014 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1015 {
1016         pm_callback_t callback = NULL;
1017         char *info = NULL;
1018         int error = 0;
1019
1020         TRACE_DEVICE(dev);
1021         TRACE_SUSPEND(0);
1022
1023         if (async_error)
1024                 goto Complete;
1025
1026         if (pm_wakeup_pending()) {
1027                 async_error = -EBUSY;
1028                 goto Complete;
1029         }
1030
1031         if (dev->power.syscore || dev->power.direct_complete)
1032                 goto Complete;
1033
1034         dpm_wait_for_children(dev, async);
1035
1036         if (dev->pm_domain) {
1037                 info = "noirq power domain ";
1038                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1039         } else if (dev->type && dev->type->pm) {
1040                 info = "noirq type ";
1041                 callback = pm_noirq_op(dev->type->pm, state);
1042         } else if (dev->class && dev->class->pm) {
1043                 info = "noirq class ";
1044                 callback = pm_noirq_op(dev->class->pm, state);
1045         } else if (dev->bus && dev->bus->pm) {
1046                 info = "noirq bus ";
1047                 callback = pm_noirq_op(dev->bus->pm, state);
1048         }
1049
1050         if (!callback && dev->driver && dev->driver->pm) {
1051                 info = "noirq driver ";
1052                 callback = pm_noirq_op(dev->driver->pm, state);
1053         }
1054
1055         error = dpm_run_callback(callback, dev, state, info);
1056         if (!error)
1057                 dev->power.is_noirq_suspended = true;
1058         else
1059                 async_error = error;
1060
1061 Complete:
1062         complete_all(&dev->power.completion);
1063         TRACE_SUSPEND(error);
1064         return error;
1065 }
1066
1067 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1068 {
1069         struct device *dev = (struct device *)data;
1070         int error;
1071
1072         error = __device_suspend_noirq(dev, pm_transition, true);
1073         if (error) {
1074                 dpm_save_failed_dev(dev_name(dev));
1075                 pm_dev_err(dev, pm_transition, " async", error);
1076         }
1077
1078         put_device(dev);
1079 }
1080
1081 static int device_suspend_noirq(struct device *dev)
1082 {
1083         reinit_completion(&dev->power.completion);
1084
1085         if (is_async(dev)) {
1086                 get_device(dev);
1087                 async_schedule(async_suspend_noirq, dev);
1088                 return 0;
1089         }
1090         return __device_suspend_noirq(dev, pm_transition, false);
1091 }
1092
1093 /**
1094  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1095  * @state: PM transition of the system being carried out.
1096  *
1097  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1098  * handlers for all non-sysdev devices.
1099  */
1100 int dpm_suspend_noirq(pm_message_t state)
1101 {
1102         ktime_t starttime = ktime_get();
1103         int error = 0;
1104
1105         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1106         cpuidle_pause();
1107         suspend_device_irqs();
1108         mutex_lock(&dpm_list_mtx);
1109         pm_transition = state;
1110         async_error = 0;
1111
1112         while (!list_empty(&dpm_late_early_list)) {
1113                 struct device *dev = to_device(dpm_late_early_list.prev);
1114
1115                 get_device(dev);
1116                 mutex_unlock(&dpm_list_mtx);
1117
1118                 error = device_suspend_noirq(dev);
1119
1120                 mutex_lock(&dpm_list_mtx);
1121                 if (error) {
1122                         pm_dev_err(dev, state, " noirq", error);
1123                         dpm_save_failed_dev(dev_name(dev));
1124                         put_device(dev);
1125                         break;
1126                 }
1127                 if (!list_empty(&dev->power.entry))
1128                         list_move(&dev->power.entry, &dpm_noirq_list);
1129                 put_device(dev);
1130
1131                 if (async_error)
1132                         break;
1133         }
1134         mutex_unlock(&dpm_list_mtx);
1135         async_synchronize_full();
1136         if (!error)
1137                 error = async_error;
1138
1139         if (error) {
1140                 suspend_stats.failed_suspend_noirq++;
1141                 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1142                 dpm_resume_noirq(resume_event(state));
1143         } else {
1144                 dpm_show_time(starttime, state, "noirq");
1145         }
1146         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1147         return error;
1148 }
1149
1150 /**
1151  * device_suspend_late - Execute a "late suspend" callback for given device.
1152  * @dev: Device to handle.
1153  * @state: PM transition of the system being carried out.
1154  * @async: If true, the device is being suspended asynchronously.
1155  *
1156  * Runtime PM is disabled for @dev while this function is being executed.
1157  */
1158 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1159 {
1160         pm_callback_t callback = NULL;
1161         char *info = NULL;
1162         int error = 0;
1163
1164         TRACE_DEVICE(dev);
1165         TRACE_SUSPEND(0);
1166
1167         __pm_runtime_disable(dev, false);
1168
1169         if (async_error)
1170                 goto Complete;
1171
1172         if (pm_wakeup_pending()) {
1173                 async_error = -EBUSY;
1174                 goto Complete;
1175         }
1176
1177         if (dev->power.syscore || dev->power.direct_complete)
1178                 goto Complete;
1179
1180         dpm_wait_for_children(dev, async);
1181
1182         if (dev->pm_domain) {
1183                 info = "late power domain ";
1184                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1185         } else if (dev->type && dev->type->pm) {
1186                 info = "late type ";
1187                 callback = pm_late_early_op(dev->type->pm, state);
1188         } else if (dev->class && dev->class->pm) {
1189                 info = "late class ";
1190                 callback = pm_late_early_op(dev->class->pm, state);
1191         } else if (dev->bus && dev->bus->pm) {
1192                 info = "late bus ";
1193                 callback = pm_late_early_op(dev->bus->pm, state);
1194         }
1195
1196         if (!callback && dev->driver && dev->driver->pm) {
1197                 info = "late driver ";
1198                 callback = pm_late_early_op(dev->driver->pm, state);
1199         }
1200
1201         error = dpm_run_callback(callback, dev, state, info);
1202         if (!error)
1203                 dev->power.is_late_suspended = true;
1204         else
1205                 async_error = error;
1206
1207 Complete:
1208         TRACE_SUSPEND(error);
1209         complete_all(&dev->power.completion);
1210         return error;
1211 }
1212
1213 static void async_suspend_late(void *data, async_cookie_t cookie)
1214 {
1215         struct device *dev = (struct device *)data;
1216         int error;
1217
1218         error = __device_suspend_late(dev, pm_transition, true);
1219         if (error) {
1220                 dpm_save_failed_dev(dev_name(dev));
1221                 pm_dev_err(dev, pm_transition, " async", error);
1222         }
1223         put_device(dev);
1224 }
1225
1226 static int device_suspend_late(struct device *dev)
1227 {
1228         reinit_completion(&dev->power.completion);
1229
1230         if (is_async(dev)) {
1231                 get_device(dev);
1232                 async_schedule(async_suspend_late, dev);
1233                 return 0;
1234         }
1235
1236         return __device_suspend_late(dev, pm_transition, false);
1237 }
1238
1239 /**
1240  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1241  * @state: PM transition of the system being carried out.
1242  */
1243 int dpm_suspend_late(pm_message_t state)
1244 {
1245         ktime_t starttime = ktime_get();
1246         int error = 0;
1247
1248         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1249         mutex_lock(&dpm_list_mtx);
1250         pm_transition = state;
1251         async_error = 0;
1252
1253         while (!list_empty(&dpm_suspended_list)) {
1254                 struct device *dev = to_device(dpm_suspended_list.prev);
1255
1256                 get_device(dev);
1257                 mutex_unlock(&dpm_list_mtx);
1258
1259                 error = device_suspend_late(dev);
1260
1261                 mutex_lock(&dpm_list_mtx);
1262                 if (error) {
1263                         pm_dev_err(dev, state, " late", error);
1264                         dpm_save_failed_dev(dev_name(dev));
1265                         put_device(dev);
1266                         break;
1267                 }
1268                 if (!list_empty(&dev->power.entry))
1269                         list_move(&dev->power.entry, &dpm_late_early_list);
1270                 put_device(dev);
1271
1272                 if (async_error)
1273                         break;
1274         }
1275         mutex_unlock(&dpm_list_mtx);
1276         async_synchronize_full();
1277         if (!error)
1278                 error = async_error;
1279         if (error) {
1280                 suspend_stats.failed_suspend_late++;
1281                 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1282                 dpm_resume_early(resume_event(state));
1283         } else {
1284                 dpm_show_time(starttime, state, "late");
1285         }
1286         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1287         return error;
1288 }
1289
1290 /**
1291  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1292  * @state: PM transition of the system being carried out.
1293  */
1294 int dpm_suspend_end(pm_message_t state)
1295 {
1296         int error = dpm_suspend_late(state);
1297         if (error)
1298                 return error;
1299
1300         error = dpm_suspend_noirq(state);
1301         if (error) {
1302                 dpm_resume_early(resume_event(state));
1303                 return error;
1304         }
1305
1306         return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1309
1310 /**
1311  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1312  * @dev: Device to suspend.
1313  * @state: PM transition of the system being carried out.
1314  * @cb: Suspend callback to execute.
1315  * @info: string description of caller.
1316  */
1317 static int legacy_suspend(struct device *dev, pm_message_t state,
1318                           int (*cb)(struct device *dev, pm_message_t state),
1319                           char *info)
1320 {
1321         int error;
1322         ktime_t calltime;
1323
1324         calltime = initcall_debug_start(dev);
1325
1326         trace_device_pm_callback_start(dev, info, state.event);
1327         error = cb(dev, state);
1328         trace_device_pm_callback_end(dev, error);
1329         suspend_report_result(cb, error);
1330
1331         initcall_debug_report(dev, calltime, error, state, info);
1332
1333         return error;
1334 }
1335
1336 /**
1337  * device_suspend - Execute "suspend" callbacks for given device.
1338  * @dev: Device to handle.
1339  * @state: PM transition of the system being carried out.
1340  * @async: If true, the device is being suspended asynchronously.
1341  */
1342 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1343 {
1344         pm_callback_t callback = NULL;
1345         char *info = NULL;
1346         int error = 0;
1347         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1348
1349         TRACE_DEVICE(dev);
1350         TRACE_SUSPEND(0);
1351
1352         dpm_wait_for_children(dev, async);
1353
1354         if (async_error)
1355                 goto Complete;
1356
1357         /*
1358          * If a device configured to wake up the system from sleep states
1359          * has been suspended at run time and there's a resume request pending
1360          * for it, this is equivalent to the device signaling wakeup, so the
1361          * system suspend operation should be aborted.
1362          */
1363         if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1364                 pm_wakeup_event(dev, 0);
1365
1366         if (pm_wakeup_pending()) {
1367                 async_error = -EBUSY;
1368                 goto Complete;
1369         }
1370
1371         if (dev->power.syscore)
1372                 goto Complete;
1373
1374         if (dev->power.direct_complete) {
1375                 if (pm_runtime_status_suspended(dev)) {
1376                         pm_runtime_disable(dev);
1377                         if (pm_runtime_suspended_if_enabled(dev))
1378                                 goto Complete;
1379
1380                         pm_runtime_enable(dev);
1381                 }
1382                 dev->power.direct_complete = false;
1383         }
1384
1385         dpm_watchdog_set(&wd, dev);
1386         device_lock(dev);
1387
1388         if (dev->pm_domain) {
1389                 info = "power domain ";
1390                 callback = pm_op(&dev->pm_domain->ops, state);
1391                 goto Run;
1392         }
1393
1394         if (dev->type && dev->type->pm) {
1395                 info = "type ";
1396                 callback = pm_op(dev->type->pm, state);
1397                 goto Run;
1398         }
1399
1400         if (dev->class) {
1401                 if (dev->class->pm) {
1402                         info = "class ";
1403                         callback = pm_op(dev->class->pm, state);
1404                         goto Run;
1405                 } else if (dev->class->suspend) {
1406                         pm_dev_dbg(dev, state, "legacy class ");
1407                         error = legacy_suspend(dev, state, dev->class->suspend,
1408                                                 "legacy class ");
1409                         goto End;
1410                 }
1411         }
1412
1413         if (dev->bus) {
1414                 if (dev->bus->pm) {
1415                         info = "bus ";
1416                         callback = pm_op(dev->bus->pm, state);
1417                 } else if (dev->bus->suspend) {
1418                         pm_dev_dbg(dev, state, "legacy bus ");
1419                         error = legacy_suspend(dev, state, dev->bus->suspend,
1420                                                 "legacy bus ");
1421                         goto End;
1422                 }
1423         }
1424
1425  Run:
1426         if (!callback && dev->driver && dev->driver->pm) {
1427                 info = "driver ";
1428                 callback = pm_op(dev->driver->pm, state);
1429         }
1430
1431         error = dpm_run_callback(callback, dev, state, info);
1432
1433  End:
1434         if (!error) {
1435                 struct device *parent = dev->parent;
1436
1437                 dev->power.is_suspended = true;
1438                 if (parent) {
1439                         spin_lock_irq(&parent->power.lock);
1440
1441                         dev->parent->power.direct_complete = false;
1442                         if (dev->power.wakeup_path
1443                             && !dev->parent->power.ignore_children)
1444                                 dev->parent->power.wakeup_path = true;
1445
1446                         spin_unlock_irq(&parent->power.lock);
1447                 }
1448         }
1449
1450         device_unlock(dev);
1451         dpm_watchdog_clear(&wd);
1452
1453  Complete:
1454         complete_all(&dev->power.completion);
1455         if (error)
1456                 async_error = error;
1457
1458         TRACE_SUSPEND(error);
1459         return error;
1460 }
1461
1462 static void async_suspend(void *data, async_cookie_t cookie)
1463 {
1464         struct device *dev = (struct device *)data;
1465         int error;
1466
1467         error = __device_suspend(dev, pm_transition, true);
1468         if (error) {
1469                 dpm_save_failed_dev(dev_name(dev));
1470                 pm_dev_err(dev, pm_transition, " async", error);
1471         }
1472
1473         put_device(dev);
1474 }
1475
1476 static int device_suspend(struct device *dev)
1477 {
1478         reinit_completion(&dev->power.completion);
1479
1480         if (is_async(dev)) {
1481                 get_device(dev);
1482                 async_schedule(async_suspend, dev);
1483                 return 0;
1484         }
1485
1486         return __device_suspend(dev, pm_transition, false);
1487 }
1488
1489 /**
1490  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1491  * @state: PM transition of the system being carried out.
1492  */
1493 int dpm_suspend(pm_message_t state)
1494 {
1495         ktime_t starttime = ktime_get();
1496         int error = 0;
1497
1498         trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1499         might_sleep();
1500
1501         cpufreq_suspend();
1502
1503         mutex_lock(&dpm_list_mtx);
1504         pm_transition = state;
1505         async_error = 0;
1506         while (!list_empty(&dpm_prepared_list)) {
1507                 struct device *dev = to_device(dpm_prepared_list.prev);
1508
1509                 get_device(dev);
1510                 mutex_unlock(&dpm_list_mtx);
1511
1512                 error = device_suspend(dev);
1513
1514                 mutex_lock(&dpm_list_mtx);
1515                 if (error) {
1516                         pm_dev_err(dev, state, "", error);
1517                         dpm_save_failed_dev(dev_name(dev));
1518                         put_device(dev);
1519                         break;
1520                 }
1521                 if (!list_empty(&dev->power.entry))
1522                         list_move(&dev->power.entry, &dpm_suspended_list);
1523                 put_device(dev);
1524                 if (async_error)
1525                         break;
1526         }
1527         mutex_unlock(&dpm_list_mtx);
1528         async_synchronize_full();
1529         if (!error)
1530                 error = async_error;
1531         if (error) {
1532                 suspend_stats.failed_suspend++;
1533                 dpm_save_failed_step(SUSPEND_SUSPEND);
1534         } else
1535                 dpm_show_time(starttime, state, NULL);
1536         trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1537         return error;
1538 }
1539
1540 /**
1541  * device_prepare - Prepare a device for system power transition.
1542  * @dev: Device to handle.
1543  * @state: PM transition of the system being carried out.
1544  *
1545  * Execute the ->prepare() callback(s) for given device.  No new children of the
1546  * device may be registered after this function has returned.
1547  */
1548 static int device_prepare(struct device *dev, pm_message_t state)
1549 {
1550         int (*callback)(struct device *) = NULL;
1551         char *info = NULL;
1552         int ret = 0;
1553
1554         if (dev->power.syscore)
1555                 return 0;
1556
1557         /*
1558          * If a device's parent goes into runtime suspend at the wrong time,
1559          * it won't be possible to resume the device.  To prevent this we
1560          * block runtime suspend here, during the prepare phase, and allow
1561          * it again during the complete phase.
1562          */
1563         pm_runtime_get_noresume(dev);
1564
1565         device_lock(dev);
1566
1567         dev->power.wakeup_path = device_may_wakeup(dev);
1568
1569         if (dev->pm_domain) {
1570                 info = "preparing power domain ";
1571                 callback = dev->pm_domain->ops.prepare;
1572         } else if (dev->type && dev->type->pm) {
1573                 info = "preparing type ";
1574                 callback = dev->type->pm->prepare;
1575         } else if (dev->class && dev->class->pm) {
1576                 info = "preparing class ";
1577                 callback = dev->class->pm->prepare;
1578         } else if (dev->bus && dev->bus->pm) {
1579                 info = "preparing bus ";
1580                 callback = dev->bus->pm->prepare;
1581         }
1582
1583         if (!callback && dev->driver && dev->driver->pm) {
1584                 info = "preparing driver ";
1585                 callback = dev->driver->pm->prepare;
1586         }
1587
1588         if (callback) {
1589                 trace_device_pm_callback_start(dev, info, state.event);
1590                 ret = callback(dev);
1591                 trace_device_pm_callback_end(dev, ret);
1592         }
1593
1594         device_unlock(dev);
1595
1596         if (ret < 0) {
1597                 suspend_report_result(callback, ret);
1598                 pm_runtime_put(dev);
1599                 return ret;
1600         }
1601         /*
1602          * A positive return value from ->prepare() means "this device appears
1603          * to be runtime-suspended and its state is fine, so if it really is
1604          * runtime-suspended, you can leave it in that state provided that you
1605          * will do the same thing with all of its descendants".  This only
1606          * applies to suspend transitions, however.
1607          */
1608         spin_lock_irq(&dev->power.lock);
1609         dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1610         spin_unlock_irq(&dev->power.lock);
1611         return 0;
1612 }
1613
1614 /**
1615  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1616  * @state: PM transition of the system being carried out.
1617  *
1618  * Execute the ->prepare() callback(s) for all devices.
1619  */
1620 int dpm_prepare(pm_message_t state)
1621 {
1622         int error = 0;
1623
1624         trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1625         might_sleep();
1626
1627         mutex_lock(&dpm_list_mtx);
1628         while (!list_empty(&dpm_list)) {
1629                 struct device *dev = to_device(dpm_list.next);
1630
1631                 get_device(dev);
1632                 mutex_unlock(&dpm_list_mtx);
1633
1634                 error = device_prepare(dev, state);
1635
1636                 mutex_lock(&dpm_list_mtx);
1637                 if (error) {
1638                         if (error == -EAGAIN) {
1639                                 put_device(dev);
1640                                 error = 0;
1641                                 continue;
1642                         }
1643                         printk(KERN_INFO "PM: Device %s not prepared "
1644                                 "for power transition: code %d\n",
1645                                 dev_name(dev), error);
1646                         put_device(dev);
1647                         break;
1648                 }
1649                 dev->power.is_prepared = true;
1650                 if (!list_empty(&dev->power.entry))
1651                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
1652                 put_device(dev);
1653         }
1654         mutex_unlock(&dpm_list_mtx);
1655         trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1656         return error;
1657 }
1658
1659 /**
1660  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1661  * @state: PM transition of the system being carried out.
1662  *
1663  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1664  * callbacks for them.
1665  */
1666 int dpm_suspend_start(pm_message_t state)
1667 {
1668         int error;
1669
1670         error = dpm_prepare(state);
1671         if (error) {
1672                 suspend_stats.failed_prepare++;
1673                 dpm_save_failed_step(SUSPEND_PREPARE);
1674         } else
1675                 error = dpm_suspend(state);
1676         return error;
1677 }
1678 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1679
1680 void __suspend_report_result(const char *function, void *fn, int ret)
1681 {
1682         if (ret)
1683                 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1684 }
1685 EXPORT_SYMBOL_GPL(__suspend_report_result);
1686
1687 /**
1688  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1689  * @dev: Device to wait for.
1690  * @subordinate: Device that needs to wait for @dev.
1691  */
1692 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1693 {
1694         dpm_wait(dev, subordinate->power.async_suspend);
1695         return async_error;
1696 }
1697 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1698
1699 /**
1700  * dpm_for_each_dev - device iterator.
1701  * @data: data for the callback.
1702  * @fn: function to be called for each device.
1703  *
1704  * Iterate over devices in dpm_list, and call @fn for each device,
1705  * passing it @data.
1706  */
1707 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1708 {
1709         struct device *dev;
1710
1711         if (!fn)
1712                 return;
1713
1714         device_pm_lock();
1715         list_for_each_entry(dev, &dpm_list, power.entry)
1716                 fn(dev, data);
1717         device_pm_unlock();
1718 }
1719 EXPORT_SYMBOL_GPL(dpm_for_each_dev);