Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / ata / pata_octeon_cf.c
1 /*
2  * Driver for the Octeon bootbus compact flash.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2005 - 2012 Cavium Inc.
9  * Copyright (C) 2008 Wind River Systems
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/hrtimer.h>
16 #include <linux/slab.h>
17 #include <linux/irq.h>
18 #include <linux/of.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <scsi/scsi_host.h>
22
23 #include <asm/byteorder.h>
24 #include <asm/octeon/octeon.h>
25
26 /*
27  * The Octeon bootbus compact flash interface is connected in at least
28  * 3 different configurations on various evaluation boards:
29  *
30  * -- 8  bits no irq, no DMA
31  * -- 16 bits no irq, no DMA
32  * -- 16 bits True IDE mode with DMA, but no irq.
33  *
34  * In the last case the DMA engine can generate an interrupt when the
35  * transfer is complete.  For the first two cases only PIO is supported.
36  *
37  */
38
39 #define DRV_NAME        "pata_octeon_cf"
40 #define DRV_VERSION     "2.2"
41
42 /* Poll interval in nS. */
43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000
44
45 #define DMA_CFG 0
46 #define DMA_TIM 0x20
47 #define DMA_INT 0x38
48 #define DMA_INT_EN 0x50
49
50 struct octeon_cf_port {
51         struct hrtimer delayed_finish;
52         struct ata_port *ap;
53         int dma_finished;
54         void            *c0;
55         unsigned int cs0;
56         unsigned int cs1;
57         bool is_true_ide;
58         u64 dma_base;
59 };
60
61 static struct scsi_host_template octeon_cf_sht = {
62         ATA_PIO_SHT(DRV_NAME),
63 };
64
65 static int enable_dma;
66 module_param(enable_dma, int, 0444);
67 MODULE_PARM_DESC(enable_dma,
68                  "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
69
70 /**
71  * Convert nanosecond based time to setting used in the
72  * boot bus timing register, based on timing multiple
73  */
74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
75 {
76         unsigned int val;
77
78         /*
79          * Compute # of eclock periods to get desired duration in
80          * nanoseconds.
81          */
82         val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
83                           1000 * tim_mult);
84
85         return val;
86 }
87
88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
89 {
90         union cvmx_mio_boot_reg_cfgx reg_cfg;
91         unsigned int tim_mult;
92
93         switch (multiplier) {
94         case 8:
95                 tim_mult = 3;
96                 break;
97         case 4:
98                 tim_mult = 0;
99                 break;
100         case 2:
101                 tim_mult = 2;
102                 break;
103         default:
104                 tim_mult = 1;
105                 break;
106         }
107
108         reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
109         reg_cfg.s.dmack = 0;    /* Don't assert DMACK on access */
110         reg_cfg.s.tim_mult = tim_mult;  /* Timing mutiplier */
111         reg_cfg.s.rd_dly = 0;   /* Sample on falling edge of BOOT_OE */
112         reg_cfg.s.sam = 0;      /* Don't combine write and output enable */
113         reg_cfg.s.we_ext = 0;   /* No write enable extension */
114         reg_cfg.s.oe_ext = 0;   /* No read enable extension */
115         reg_cfg.s.en = 1;       /* Enable this region */
116         reg_cfg.s.orbit = 0;    /* Don't combine with previous region */
117         reg_cfg.s.ale = 0;      /* Don't do address multiplexing */
118         cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
119 }
120
121 /**
122  * Called after libata determines the needed PIO mode. This
123  * function programs the Octeon bootbus regions to support the
124  * timing requirements of the PIO mode.
125  *
126  * @ap:     ATA port information
127  * @dev:    ATA device
128  */
129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
130 {
131         struct octeon_cf_port *cf_port = ap->private_data;
132         union cvmx_mio_boot_reg_timx reg_tim;
133         int T;
134         struct ata_timing timing;
135
136         unsigned int div;
137         int use_iordy;
138         int trh;
139         int pause;
140         /* These names are timing parameters from the ATA spec */
141         int t1;
142         int t2;
143         int t2i;
144
145         /*
146          * A divisor value of four will overflow the timing fields at
147          * clock rates greater than 800MHz
148          */
149         if (octeon_get_io_clock_rate() <= 800000000)
150                 div = 4;
151         else
152                 div = 8;
153         T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
154
155         if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
156                 BUG();
157
158         t1 = timing.setup;
159         if (t1)
160                 t1--;
161         t2 = timing.active;
162         if (t2)
163                 t2--;
164         t2i = timing.act8b;
165         if (t2i)
166                 t2i--;
167
168         trh = ns_to_tim_reg(div, 20);
169         if (trh)
170                 trh--;
171
172         pause = (int)timing.cycle - (int)timing.active -
173                 (int)timing.setup - trh;
174         if (pause < 0)
175                 pause = 0;
176         if (pause)
177                 pause--;
178
179         octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
180         if (cf_port->is_true_ide)
181                 /* True IDE mode, program both chip selects.  */
182                 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
183
184
185         use_iordy = ata_pio_need_iordy(dev);
186
187         reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
188         /* Disable page mode */
189         reg_tim.s.pagem = 0;
190         /* Enable dynamic timing */
191         reg_tim.s.waitm = use_iordy;
192         /* Pages are disabled */
193         reg_tim.s.pages = 0;
194         /* We don't use multiplexed address mode */
195         reg_tim.s.ale = 0;
196         /* Not used */
197         reg_tim.s.page = 0;
198         /* Time after IORDY to coninue to assert the data */
199         reg_tim.s.wait = 0;
200         /* Time to wait to complete the cycle. */
201         reg_tim.s.pause = pause;
202         /* How long to hold after a write to de-assert CE. */
203         reg_tim.s.wr_hld = trh;
204         /* How long to wait after a read to de-assert CE. */
205         reg_tim.s.rd_hld = trh;
206         /* How long write enable is asserted */
207         reg_tim.s.we = t2;
208         /* How long read enable is asserted */
209         reg_tim.s.oe = t2;
210         /* Time after CE that read/write starts */
211         reg_tim.s.ce = ns_to_tim_reg(div, 5);
212         /* Time before CE that address is valid */
213         reg_tim.s.adr = 0;
214
215         /* Program the bootbus region timing for the data port chip select. */
216         cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
217         if (cf_port->is_true_ide)
218                 /* True IDE mode, program both chip selects.  */
219                 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
220                                reg_tim.u64);
221 }
222
223 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
224 {
225         struct octeon_cf_port *cf_port = ap->private_data;
226         union cvmx_mio_boot_pin_defs pin_defs;
227         union cvmx_mio_boot_dma_timx dma_tim;
228         unsigned int oe_a;
229         unsigned int oe_n;
230         unsigned int dma_ackh;
231         unsigned int dma_arq;
232         unsigned int pause;
233         unsigned int T0, Tkr, Td;
234         unsigned int tim_mult;
235         int c;
236
237         const struct ata_timing *timing;
238
239         timing = ata_timing_find_mode(dev->dma_mode);
240         T0      = timing->cycle;
241         Td      = timing->active;
242         Tkr     = timing->recover;
243         dma_ackh = timing->dmack_hold;
244
245         dma_tim.u64 = 0;
246         /* dma_tim.s.tim_mult = 0 --> 4x */
247         tim_mult = 4;
248
249         /* not spec'ed, value in eclocks, not affected by tim_mult */
250         dma_arq = 8;
251         pause = 25 - dma_arq * 1000 /
252                 (octeon_get_io_clock_rate() / 1000000); /* Tz */
253
254         oe_a = Td;
255         /* Tkr from cf spec, lengthened to meet T0 */
256         oe_n = max(T0 - oe_a, Tkr);
257
258         pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
259
260         /* DMA channel number. */
261         c = (cf_port->dma_base & 8) >> 3;
262
263         /* Invert the polarity if the default is 0*/
264         dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
265
266         dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
267         dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
268
269         /*
270          * This is tI, C.F. spec. says 0, but Sony CF card requires
271          * more, we use 20 nS.
272          */
273         dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
274         dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
275
276         dma_tim.s.dmarq = dma_arq;
277         dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
278
279         dma_tim.s.rd_dly = 0;   /* Sample right on edge */
280
281         /*  writes only */
282         dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
283         dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
284
285         pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
286                  ns_to_tim_reg(tim_mult, 60));
287         pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
288                  dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
289                  dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
290
291         cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
292 }
293
294 /**
295  * Handle an 8 bit I/O request.
296  *
297  * @dev:        Device to access
298  * @buffer:     Data buffer
299  * @buflen:     Length of the buffer.
300  * @rw:         True to write.
301  */
302 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
303                                          unsigned char *buffer,
304                                          unsigned int buflen,
305                                          int rw)
306 {
307         struct ata_port *ap             = dev->link->ap;
308         void __iomem *data_addr         = ap->ioaddr.data_addr;
309         unsigned long words;
310         int count;
311
312         words = buflen;
313         if (rw) {
314                 count = 16;
315                 while (words--) {
316                         iowrite8(*buffer, data_addr);
317                         buffer++;
318                         /*
319                          * Every 16 writes do a read so the bootbus
320                          * FIFO doesn't fill up.
321                          */
322                         if (--count == 0) {
323                                 ioread8(ap->ioaddr.altstatus_addr);
324                                 count = 16;
325                         }
326                 }
327         } else {
328                 ioread8_rep(data_addr, buffer, words);
329         }
330         return buflen;
331 }
332
333 /**
334  * Handle a 16 bit I/O request.
335  *
336  * @dev:        Device to access
337  * @buffer:     Data buffer
338  * @buflen:     Length of the buffer.
339  * @rw:         True to write.
340  */
341 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
342                                           unsigned char *buffer,
343                                           unsigned int buflen,
344                                           int rw)
345 {
346         struct ata_port *ap             = dev->link->ap;
347         void __iomem *data_addr         = ap->ioaddr.data_addr;
348         unsigned long words;
349         int count;
350
351         words = buflen / 2;
352         if (rw) {
353                 count = 16;
354                 while (words--) {
355                         iowrite16(*(uint16_t *)buffer, data_addr);
356                         buffer += sizeof(uint16_t);
357                         /*
358                          * Every 16 writes do a read so the bootbus
359                          * FIFO doesn't fill up.
360                          */
361                         if (--count == 0) {
362                                 ioread8(ap->ioaddr.altstatus_addr);
363                                 count = 16;
364                         }
365                 }
366         } else {
367                 while (words--) {
368                         *(uint16_t *)buffer = ioread16(data_addr);
369                         buffer += sizeof(uint16_t);
370                 }
371         }
372         /* Transfer trailing 1 byte, if any. */
373         if (unlikely(buflen & 0x01)) {
374                 __le16 align_buf[1] = { 0 };
375
376                 if (rw == READ) {
377                         align_buf[0] = cpu_to_le16(ioread16(data_addr));
378                         memcpy(buffer, align_buf, 1);
379                 } else {
380                         memcpy(align_buf, buffer, 1);
381                         iowrite16(le16_to_cpu(align_buf[0]), data_addr);
382                 }
383                 words++;
384         }
385         return buflen;
386 }
387
388 /**
389  * Read the taskfile for 16bit non-True IDE only.
390  */
391 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
392 {
393         u16 blob;
394         /* The base of the registers is at ioaddr.data_addr. */
395         void __iomem *base = ap->ioaddr.data_addr;
396
397         blob = __raw_readw(base + 0xc);
398         tf->feature = blob >> 8;
399
400         blob = __raw_readw(base + 2);
401         tf->nsect = blob & 0xff;
402         tf->lbal = blob >> 8;
403
404         blob = __raw_readw(base + 4);
405         tf->lbam = blob & 0xff;
406         tf->lbah = blob >> 8;
407
408         blob = __raw_readw(base + 6);
409         tf->device = blob & 0xff;
410         tf->command = blob >> 8;
411
412         if (tf->flags & ATA_TFLAG_LBA48) {
413                 if (likely(ap->ioaddr.ctl_addr)) {
414                         iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
415
416                         blob = __raw_readw(base + 0xc);
417                         tf->hob_feature = blob >> 8;
418
419                         blob = __raw_readw(base + 2);
420                         tf->hob_nsect = blob & 0xff;
421                         tf->hob_lbal = blob >> 8;
422
423                         blob = __raw_readw(base + 4);
424                         tf->hob_lbam = blob & 0xff;
425                         tf->hob_lbah = blob >> 8;
426
427                         iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
428                         ap->last_ctl = tf->ctl;
429                 } else {
430                         WARN_ON(1);
431                 }
432         }
433 }
434
435 static u8 octeon_cf_check_status16(struct ata_port *ap)
436 {
437         u16 blob;
438         void __iomem *base = ap->ioaddr.data_addr;
439
440         blob = __raw_readw(base + 6);
441         return blob >> 8;
442 }
443
444 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
445                                  unsigned long deadline)
446 {
447         struct ata_port *ap = link->ap;
448         void __iomem *base = ap->ioaddr.data_addr;
449         int rc;
450         u8 err;
451
452         DPRINTK("about to softreset\n");
453         __raw_writew(ap->ctl, base + 0xe);
454         udelay(20);
455         __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
456         udelay(20);
457         __raw_writew(ap->ctl, base + 0xe);
458
459         rc = ata_sff_wait_after_reset(link, 1, deadline);
460         if (rc) {
461                 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
462                 return rc;
463         }
464
465         /* determine by signature whether we have ATA or ATAPI devices */
466         classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
467         DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
468         return 0;
469 }
470
471 /**
472  * Load the taskfile for 16bit non-True IDE only.  The device_addr is
473  * not loaded, we do this as part of octeon_cf_exec_command16.
474  */
475 static void octeon_cf_tf_load16(struct ata_port *ap,
476                                 const struct ata_taskfile *tf)
477 {
478         unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
479         /* The base of the registers is at ioaddr.data_addr. */
480         void __iomem *base = ap->ioaddr.data_addr;
481
482         if (tf->ctl != ap->last_ctl) {
483                 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
484                 ap->last_ctl = tf->ctl;
485                 ata_wait_idle(ap);
486         }
487         if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
488                 __raw_writew(tf->hob_feature << 8, base + 0xc);
489                 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
490                 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
491                 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
492                         tf->hob_feature,
493                         tf->hob_nsect,
494                         tf->hob_lbal,
495                         tf->hob_lbam,
496                         tf->hob_lbah);
497         }
498         if (is_addr) {
499                 __raw_writew(tf->feature << 8, base + 0xc);
500                 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
501                 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
502                 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
503                         tf->feature,
504                         tf->nsect,
505                         tf->lbal,
506                         tf->lbam,
507                         tf->lbah);
508         }
509         ata_wait_idle(ap);
510 }
511
512
513 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
514 {
515 /*  There is only one device, do nothing. */
516         return;
517 }
518
519 /*
520  * Issue ATA command to host controller.  The device_addr is also sent
521  * as it must be written in a combined write with the command.
522  */
523 static void octeon_cf_exec_command16(struct ata_port *ap,
524                                 const struct ata_taskfile *tf)
525 {
526         /* The base of the registers is at ioaddr.data_addr. */
527         void __iomem *base = ap->ioaddr.data_addr;
528         u16 blob;
529
530         if (tf->flags & ATA_TFLAG_DEVICE) {
531                 VPRINTK("device 0x%X\n", tf->device);
532                 blob = tf->device;
533         } else {
534                 blob = 0;
535         }
536
537         DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
538         blob |= (tf->command << 8);
539         __raw_writew(blob, base + 6);
540
541
542         ata_wait_idle(ap);
543 }
544
545 static void octeon_cf_ata_port_noaction(struct ata_port *ap)
546 {
547 }
548
549 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
550 {
551         struct ata_port *ap = qc->ap;
552         struct octeon_cf_port *cf_port;
553
554         cf_port = ap->private_data;
555         DPRINTK("ENTER\n");
556         /* issue r/w command */
557         qc->cursg = qc->sg;
558         cf_port->dma_finished = 0;
559         ap->ops->sff_exec_command(ap, &qc->tf);
560         DPRINTK("EXIT\n");
561 }
562
563 /**
564  * Start a DMA transfer that was already setup
565  *
566  * @qc:     Information about the DMA
567  */
568 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
569 {
570         struct octeon_cf_port *cf_port = qc->ap->private_data;
571         union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
572         union cvmx_mio_boot_dma_intx mio_boot_dma_int;
573         struct scatterlist *sg;
574
575         VPRINTK("%d scatterlists\n", qc->n_elem);
576
577         /* Get the scatter list entry we need to DMA into */
578         sg = qc->cursg;
579         BUG_ON(!sg);
580
581         /*
582          * Clear the DMA complete status.
583          */
584         mio_boot_dma_int.u64 = 0;
585         mio_boot_dma_int.s.done = 1;
586         cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
587
588         /* Enable the interrupt.  */
589         cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
590
591         /* Set the direction of the DMA */
592         mio_boot_dma_cfg.u64 = 0;
593 #ifdef __LITTLE_ENDIAN
594         mio_boot_dma_cfg.s.endian = 1;
595 #endif
596         mio_boot_dma_cfg.s.en = 1;
597         mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
598
599         /*
600          * Don't stop the DMA if the device deasserts DMARQ. Many
601          * compact flashes deassert DMARQ for a short time between
602          * sectors. Instead of stopping and restarting the DMA, we'll
603          * let the hardware do it. If the DMA is really stopped early
604          * due to an error condition, a later timeout will force us to
605          * stop.
606          */
607         mio_boot_dma_cfg.s.clr = 0;
608
609         /* Size is specified in 16bit words and minus one notation */
610         mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
611
612         /* We need to swap the high and low bytes of every 16 bits */
613         mio_boot_dma_cfg.s.swap8 = 1;
614
615         mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
616
617         VPRINTK("%s %d bytes address=%p\n",
618                 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
619                 (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
620
621         cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
622 }
623
624 /**
625  *
626  *      LOCKING:
627  *      spin_lock_irqsave(host lock)
628  *
629  */
630 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
631                                         struct ata_queued_cmd *qc)
632 {
633         struct ata_eh_info *ehi = &ap->link.eh_info;
634         struct octeon_cf_port *cf_port = ap->private_data;
635         union cvmx_mio_boot_dma_cfgx dma_cfg;
636         union cvmx_mio_boot_dma_intx dma_int;
637         u8 status;
638
639         VPRINTK("ata%u: protocol %d task_state %d\n",
640                 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
641
642
643         if (ap->hsm_task_state != HSM_ST_LAST)
644                 return 0;
645
646         dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
647         if (dma_cfg.s.size != 0xfffff) {
648                 /* Error, the transfer was not complete.  */
649                 qc->err_mask |= AC_ERR_HOST_BUS;
650                 ap->hsm_task_state = HSM_ST_ERR;
651         }
652
653         /* Stop and clear the dma engine.  */
654         dma_cfg.u64 = 0;
655         dma_cfg.s.size = -1;
656         cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
657
658         /* Disable the interrupt.  */
659         dma_int.u64 = 0;
660         cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
661
662         /* Clear the DMA complete status */
663         dma_int.s.done = 1;
664         cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
665
666         status = ap->ops->sff_check_status(ap);
667
668         ata_sff_hsm_move(ap, qc, status, 0);
669
670         if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
671                 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
672
673         return 1;
674 }
675
676 /*
677  * Check if any queued commands have more DMAs, if so start the next
678  * transfer, else do end of transfer handling.
679  */
680 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
681 {
682         struct ata_host *host = dev_instance;
683         struct octeon_cf_port *cf_port;
684         int i;
685         unsigned int handled = 0;
686         unsigned long flags;
687
688         spin_lock_irqsave(&host->lock, flags);
689
690         DPRINTK("ENTER\n");
691         for (i = 0; i < host->n_ports; i++) {
692                 u8 status;
693                 struct ata_port *ap;
694                 struct ata_queued_cmd *qc;
695                 union cvmx_mio_boot_dma_intx dma_int;
696                 union cvmx_mio_boot_dma_cfgx dma_cfg;
697
698                 ap = host->ports[i];
699                 cf_port = ap->private_data;
700
701                 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
702                 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
703
704                 qc = ata_qc_from_tag(ap, ap->link.active_tag);
705
706                 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
707                         continue;
708
709                 if (dma_int.s.done && !dma_cfg.s.en) {
710                         if (!sg_is_last(qc->cursg)) {
711                                 qc->cursg = sg_next(qc->cursg);
712                                 handled = 1;
713                                 octeon_cf_dma_start(qc);
714                                 continue;
715                         } else {
716                                 cf_port->dma_finished = 1;
717                         }
718                 }
719                 if (!cf_port->dma_finished)
720                         continue;
721                 status = ioread8(ap->ioaddr.altstatus_addr);
722                 if (status & (ATA_BUSY | ATA_DRQ)) {
723                         /*
724                          * We are busy, try to handle it later.  This
725                          * is the DMA finished interrupt, and it could
726                          * take a little while for the card to be
727                          * ready for more commands.
728                          */
729                         /* Clear DMA irq. */
730                         dma_int.u64 = 0;
731                         dma_int.s.done = 1;
732                         cvmx_write_csr(cf_port->dma_base + DMA_INT,
733                                        dma_int.u64);
734                         hrtimer_start_range_ns(&cf_port->delayed_finish,
735                                                ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
736                                                OCTEON_CF_BUSY_POLL_INTERVAL / 5,
737                                                HRTIMER_MODE_REL);
738                         handled = 1;
739                 } else {
740                         handled |= octeon_cf_dma_finished(ap, qc);
741                 }
742         }
743         spin_unlock_irqrestore(&host->lock, flags);
744         DPRINTK("EXIT\n");
745         return IRQ_RETVAL(handled);
746 }
747
748 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
749 {
750         struct octeon_cf_port *cf_port = container_of(hrt,
751                                                       struct octeon_cf_port,
752                                                       delayed_finish);
753         struct ata_port *ap = cf_port->ap;
754         struct ata_host *host = ap->host;
755         struct ata_queued_cmd *qc;
756         unsigned long flags;
757         u8 status;
758         enum hrtimer_restart rv = HRTIMER_NORESTART;
759
760         spin_lock_irqsave(&host->lock, flags);
761
762         /*
763          * If the port is not waiting for completion, it must have
764          * handled it previously.  The hsm_task_state is
765          * protected by host->lock.
766          */
767         if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
768                 goto out;
769
770         status = ioread8(ap->ioaddr.altstatus_addr);
771         if (status & (ATA_BUSY | ATA_DRQ)) {
772                 /* Still busy, try again. */
773                 hrtimer_forward_now(hrt,
774                                     ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
775                 rv = HRTIMER_RESTART;
776                 goto out;
777         }
778         qc = ata_qc_from_tag(ap, ap->link.active_tag);
779         if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
780                 octeon_cf_dma_finished(ap, qc);
781 out:
782         spin_unlock_irqrestore(&host->lock, flags);
783         return rv;
784 }
785
786 static void octeon_cf_dev_config(struct ata_device *dev)
787 {
788         /*
789          * A maximum of 2^20 - 1 16 bit transfers are possible with
790          * the bootbus DMA.  So we need to throttle max_sectors to
791          * (2^12 - 1 == 4095) to assure that this can never happen.
792          */
793         dev->max_sectors = min(dev->max_sectors, 4095U);
794 }
795
796 /*
797  * We don't do ATAPI DMA so return 0.
798  */
799 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
800 {
801         return 0;
802 }
803
804 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
805 {
806         struct ata_port *ap = qc->ap;
807
808         switch (qc->tf.protocol) {
809         case ATA_PROT_DMA:
810                 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
811
812                 ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
813                 octeon_cf_dma_setup(qc);            /* set up dma */
814                 octeon_cf_dma_start(qc);            /* initiate dma */
815                 ap->hsm_task_state = HSM_ST_LAST;
816                 break;
817
818         case ATAPI_PROT_DMA:
819                 dev_err(ap->dev, "Error, ATAPI not supported\n");
820                 BUG();
821
822         default:
823                 return ata_sff_qc_issue(qc);
824         }
825
826         return 0;
827 }
828
829 static struct ata_port_operations octeon_cf_ops = {
830         .inherits               = &ata_sff_port_ops,
831         .check_atapi_dma        = octeon_cf_check_atapi_dma,
832         .qc_prep                = ata_noop_qc_prep,
833         .qc_issue               = octeon_cf_qc_issue,
834         .sff_dev_select         = octeon_cf_dev_select,
835         .sff_irq_on             = octeon_cf_ata_port_noaction,
836         .sff_irq_clear          = octeon_cf_ata_port_noaction,
837         .cable_detect           = ata_cable_40wire,
838         .set_piomode            = octeon_cf_set_piomode,
839         .set_dmamode            = octeon_cf_set_dmamode,
840         .dev_config             = octeon_cf_dev_config,
841 };
842
843 static int octeon_cf_probe(struct platform_device *pdev)
844 {
845         struct resource *res_cs0, *res_cs1;
846
847         bool is_16bit;
848         const __be32 *cs_num;
849         struct property *reg_prop;
850         int n_addr, n_size, reg_len;
851         struct device_node *node;
852         const void *prop;
853         void __iomem *cs0;
854         void __iomem *cs1 = NULL;
855         struct ata_host *host;
856         struct ata_port *ap;
857         int irq = 0;
858         irq_handler_t irq_handler = NULL;
859         void __iomem *base;
860         struct octeon_cf_port *cf_port;
861         int rv = -ENOMEM;
862
863
864         node = pdev->dev.of_node;
865         if (node == NULL)
866                 return -EINVAL;
867
868         cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
869         if (!cf_port)
870                 return -ENOMEM;
871
872         cf_port->is_true_ide = (of_find_property(node, "cavium,true-ide", NULL) != NULL);
873
874         prop = of_get_property(node, "cavium,bus-width", NULL);
875         if (prop)
876                 is_16bit = (be32_to_cpup(prop) == 16);
877         else
878                 is_16bit = false;
879
880         n_addr = of_n_addr_cells(node);
881         n_size = of_n_size_cells(node);
882
883         reg_prop = of_find_property(node, "reg", &reg_len);
884         if (!reg_prop || reg_len < sizeof(__be32))
885                 return -EINVAL;
886
887         cs_num = reg_prop->value;
888         cf_port->cs0 = be32_to_cpup(cs_num);
889
890         if (cf_port->is_true_ide) {
891                 struct device_node *dma_node;
892                 dma_node = of_parse_phandle(node,
893                                             "cavium,dma-engine-handle", 0);
894                 if (dma_node) {
895                         struct platform_device *dma_dev;
896                         dma_dev = of_find_device_by_node(dma_node);
897                         if (dma_dev) {
898                                 struct resource *res_dma;
899                                 int i;
900                                 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
901                                 if (!res_dma) {
902                                         of_node_put(dma_node);
903                                         return -EINVAL;
904                                 }
905                                 cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start,
906                                                                          resource_size(res_dma));
907                                 if (!cf_port->dma_base) {
908                                         of_node_put(dma_node);
909                                         return -EINVAL;
910                                 }
911
912                                 irq_handler = octeon_cf_interrupt;
913                                 i = platform_get_irq(dma_dev, 0);
914                                 if (i > 0)
915                                         irq = i;
916                         }
917                         of_node_put(dma_node);
918                 }
919                 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
920                 if (!res_cs1)
921                         return -EINVAL;
922
923                 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
924                                            resource_size(res_cs1));
925                 if (!cs1)
926                         return rv;
927
928                 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
929                         return -EINVAL;
930
931                 cs_num += n_addr + n_size;
932                 cf_port->cs1 = be32_to_cpup(cs_num);
933         }
934
935         res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
936         if (!res_cs0)
937                 return -EINVAL;
938
939         cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
940                                    resource_size(res_cs0));
941         if (!cs0)
942                 return rv;
943
944         /* allocate host */
945         host = ata_host_alloc(&pdev->dev, 1);
946         if (!host)
947                 return rv;
948
949         ap = host->ports[0];
950         ap->private_data = cf_port;
951         pdev->dev.platform_data = cf_port;
952         cf_port->ap = ap;
953         ap->ops = &octeon_cf_ops;
954         ap->pio_mask = ATA_PIO6;
955         ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
956
957         if (!is_16bit) {
958                 base = cs0 + 0x800;
959                 ap->ioaddr.cmd_addr     = base;
960                 ata_sff_std_ports(&ap->ioaddr);
961
962                 ap->ioaddr.altstatus_addr = base + 0xe;
963                 ap->ioaddr.ctl_addr     = base + 0xe;
964                 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
965         } else if (cf_port->is_true_ide) {
966                 base = cs0;
967                 ap->ioaddr.cmd_addr     = base + (ATA_REG_CMD << 1) + 1;
968                 ap->ioaddr.data_addr    = base + (ATA_REG_DATA << 1);
969                 ap->ioaddr.error_addr   = base + (ATA_REG_ERR << 1) + 1;
970                 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
971                 ap->ioaddr.nsect_addr   = base + (ATA_REG_NSECT << 1) + 1;
972                 ap->ioaddr.lbal_addr    = base + (ATA_REG_LBAL << 1) + 1;
973                 ap->ioaddr.lbam_addr    = base + (ATA_REG_LBAM << 1) + 1;
974                 ap->ioaddr.lbah_addr    = base + (ATA_REG_LBAH << 1) + 1;
975                 ap->ioaddr.device_addr  = base + (ATA_REG_DEVICE << 1) + 1;
976                 ap->ioaddr.status_addr  = base + (ATA_REG_STATUS << 1) + 1;
977                 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
978                 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
979                 ap->ioaddr.ctl_addr     = cs1 + (6 << 1) + 1;
980                 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
981
982                 ap->mwdma_mask  = enable_dma ? ATA_MWDMA4 : 0;
983
984                 /* True IDE mode needs a timer to poll for not-busy.  */
985                 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
986                              HRTIMER_MODE_REL);
987                 cf_port->delayed_finish.function = octeon_cf_delayed_finish;
988         } else {
989                 /* 16 bit but not True IDE */
990                 base = cs0 + 0x800;
991                 octeon_cf_ops.sff_data_xfer     = octeon_cf_data_xfer16;
992                 octeon_cf_ops.softreset         = octeon_cf_softreset16;
993                 octeon_cf_ops.sff_check_status  = octeon_cf_check_status16;
994                 octeon_cf_ops.sff_tf_read       = octeon_cf_tf_read16;
995                 octeon_cf_ops.sff_tf_load       = octeon_cf_tf_load16;
996                 octeon_cf_ops.sff_exec_command  = octeon_cf_exec_command16;
997
998                 ap->ioaddr.data_addr    = base + ATA_REG_DATA;
999                 ap->ioaddr.nsect_addr   = base + ATA_REG_NSECT;
1000                 ap->ioaddr.lbal_addr    = base + ATA_REG_LBAL;
1001                 ap->ioaddr.ctl_addr     = base + 0xe;
1002                 ap->ioaddr.altstatus_addr = base + 0xe;
1003         }
1004         cf_port->c0 = ap->ioaddr.ctl_addr;
1005
1006         rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1007         if (rv)
1008                 return rv;
1009
1010         ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
1011
1012         dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
1013                  is_16bit ? 16 : 8,
1014                  cf_port->is_true_ide ? ", True IDE" : "");
1015
1016         return ata_host_activate(host, irq, irq_handler,
1017                                  IRQF_SHARED, &octeon_cf_sht);
1018 }
1019
1020 static void octeon_cf_shutdown(struct device *dev)
1021 {
1022         union cvmx_mio_boot_dma_cfgx dma_cfg;
1023         union cvmx_mio_boot_dma_intx dma_int;
1024
1025         struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1026
1027         if (cf_port->dma_base) {
1028                 /* Stop and clear the dma engine.  */
1029                 dma_cfg.u64 = 0;
1030                 dma_cfg.s.size = -1;
1031                 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
1032
1033                 /* Disable the interrupt.  */
1034                 dma_int.u64 = 0;
1035                 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
1036
1037                 /* Clear the DMA complete status */
1038                 dma_int.s.done = 1;
1039                 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1040
1041                 __raw_writeb(0, cf_port->c0);
1042                 udelay(20);
1043                 __raw_writeb(ATA_SRST, cf_port->c0);
1044                 udelay(20);
1045                 __raw_writeb(0, cf_port->c0);
1046                 mdelay(100);
1047         }
1048 }
1049
1050 static struct of_device_id octeon_cf_match[] = {
1051         {
1052                 .compatible = "cavium,ebt3000-compact-flash",
1053         },
1054         {},
1055 };
1056 MODULE_DEVICE_TABLE(of, octeon_cf_match);
1057
1058 static struct platform_driver octeon_cf_driver = {
1059         .probe          = octeon_cf_probe,
1060         .driver         = {
1061                 .name   = DRV_NAME,
1062                 .of_match_table = octeon_cf_match,
1063                 .shutdown = octeon_cf_shutdown
1064         },
1065 };
1066
1067 static int __init octeon_cf_init(void)
1068 {
1069         return platform_driver_register(&octeon_cf_driver);
1070 }
1071
1072
1073 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1074 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1075 MODULE_LICENSE("GPL");
1076 MODULE_VERSION(DRV_VERSION);
1077 MODULE_ALIAS("platform:" DRV_NAME);
1078
1079 module_init(octeon_cf_init);