Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / x86 / mm / hugetlbpage.c
1 /*
2  * IA-32 Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
5  */
6
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/err.h>
13 #include <linux/sysctl.h>
14 #include <asm/mman.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17 #include <asm/pgalloc.h>
18
19 #if 0   /* This is just for testing */
20 struct page *
21 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
22 {
23         unsigned long start = address;
24         int length = 1;
25         int nr;
26         struct page *page;
27         struct vm_area_struct *vma;
28
29         vma = find_vma(mm, addr);
30         if (!vma || !is_vm_hugetlb_page(vma))
31                 return ERR_PTR(-EINVAL);
32
33         pte = huge_pte_offset(mm, address);
34
35         /* hugetlb should be locked, and hence, prefaulted */
36         WARN_ON(!pte || pte_none(*pte));
37
38         page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
39
40         WARN_ON(!PageHead(page));
41
42         return page;
43 }
44
45 int pmd_huge(pmd_t pmd)
46 {
47         return 0;
48 }
49
50 int pud_huge(pud_t pud)
51 {
52         return 0;
53 }
54
55 #else
56
57 /*
58  * pmd_huge() returns 1 if @pmd is hugetlb related entry, that is normal
59  * hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry.
60  * Otherwise, returns 0.
61  */
62 int pmd_huge(pmd_t pmd)
63 {
64         return !pmd_none(pmd) &&
65                 (pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
66 }
67
68 int pud_huge(pud_t pud)
69 {
70         return !!(pud_val(pud) & _PAGE_PSE);
71 }
72 #endif
73
74 #ifdef CONFIG_HUGETLB_PAGE
75 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
76                 unsigned long addr, unsigned long len,
77                 unsigned long pgoff, unsigned long flags)
78 {
79         struct hstate *h = hstate_file(file);
80         struct vm_unmapped_area_info info;
81
82         info.flags = 0;
83         info.length = len;
84         info.low_limit = current->mm->mmap_legacy_base;
85         info.high_limit = TASK_SIZE;
86         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
87         info.align_offset = 0;
88         return vm_unmapped_area(&info);
89 }
90
91 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
92                 unsigned long addr0, unsigned long len,
93                 unsigned long pgoff, unsigned long flags)
94 {
95         struct hstate *h = hstate_file(file);
96         struct vm_unmapped_area_info info;
97         unsigned long addr;
98
99         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
100         info.length = len;
101         info.low_limit = PAGE_SIZE;
102         info.high_limit = current->mm->mmap_base;
103         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
104         info.align_offset = 0;
105         addr = vm_unmapped_area(&info);
106
107         /*
108          * A failed mmap() very likely causes application failure,
109          * so fall back to the bottom-up function here. This scenario
110          * can happen with large stack limits and large mmap()
111          * allocations.
112          */
113         if (addr & ~PAGE_MASK) {
114                 VM_BUG_ON(addr != -ENOMEM);
115                 info.flags = 0;
116                 info.low_limit = TASK_UNMAPPED_BASE;
117                 info.high_limit = TASK_SIZE;
118                 addr = vm_unmapped_area(&info);
119         }
120
121         return addr;
122 }
123
124 unsigned long
125 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
126                 unsigned long len, unsigned long pgoff, unsigned long flags)
127 {
128         struct hstate *h = hstate_file(file);
129         struct mm_struct *mm = current->mm;
130         struct vm_area_struct *vma;
131
132         if (len & ~huge_page_mask(h))
133                 return -EINVAL;
134         if (len > TASK_SIZE)
135                 return -ENOMEM;
136
137         if (flags & MAP_FIXED) {
138                 if (prepare_hugepage_range(file, addr, len))
139                         return -EINVAL;
140                 return addr;
141         }
142
143         if (addr) {
144                 addr = ALIGN(addr, huge_page_size(h));
145                 vma = find_vma(mm, addr);
146                 if (TASK_SIZE - len >= addr &&
147                     (!vma || addr + len <= vma->vm_start))
148                         return addr;
149         }
150         if (mm->get_unmapped_area == arch_get_unmapped_area)
151                 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
152                                 pgoff, flags);
153         else
154                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
155                                 pgoff, flags);
156 }
157 #endif /* CONFIG_HUGETLB_PAGE */
158
159 #ifdef CONFIG_X86_64
160 static __init int setup_hugepagesz(char *opt)
161 {
162         unsigned long ps = memparse(opt, &opt);
163         if (ps == PMD_SIZE) {
164                 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
165         } else if (ps == PUD_SIZE && cpu_has_gbpages) {
166                 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
167         } else {
168                 printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
169                         ps >> 20);
170                 return 0;
171         }
172         return 1;
173 }
174 __setup("hugepagesz=", setup_hugepagesz);
175
176 #ifdef CONFIG_CMA
177 static __init int gigantic_pages_init(void)
178 {
179         /* With CMA we can allocate gigantic pages at runtime */
180         if (cpu_has_gbpages && !size_to_hstate(1UL << PUD_SHIFT))
181                 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
182         return 0;
183 }
184 arch_initcall(gigantic_pages_init);
185 #endif
186 #endif