These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM                8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99                                                 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110                                                 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                             * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123                         | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
163              shadow_walk_okay(&(_walker)) &&                            \
164                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
165              __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183         shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT         2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
198
199 #define MMIO_GEN_SHIFT                  20
200 #define MMIO_GEN_LOW_SHIFT              10
201 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206         u64 mask;
207
208         WARN_ON(gen & ~MMIO_GEN_MASK);
209
210         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212         return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217         unsigned int gen;
218
219         spte &= ~shadow_mmio_mask;
220
221         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223         return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232                            unsigned access)
233 {
234         unsigned int gen = kvm_current_mmio_generation(vcpu);
235         u64 mask = generation_mmio_spte_mask(gen);
236
237         access &= ACC_WRITE_MASK | ACC_USER_MASK;
238         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240         trace_mark_mmio_spte(sptep, gfn, access, gen);
241         mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252         return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258         return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262                           pfn_t pfn, unsigned access)
263 {
264         if (unlikely(is_noslot_pfn(pfn))) {
265                 mark_mmio_spte(vcpu, sptep, gfn, access);
266                 return true;
267         }
268
269         return false;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274         unsigned int kvm_gen, spte_gen;
275
276         kvm_gen = kvm_current_mmio_generation(vcpu);
277         spte_gen = get_mmio_spte_generation(spte);
278
279         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280         return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286         shadow_user_mask = user_mask;
287         shadow_accessed_mask = accessed_mask;
288         shadow_dirty_mask = dirty_mask;
289         shadow_nx_mask = nx_mask;
290         shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296         return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311         return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316         return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321         if (level == PT_PAGE_TABLE_LEVEL)
322                 return 1;
323         if (is_large_pte(pte))
324                 return 1;
325         return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337         return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362         struct {
363                 u32 spte_low;
364                 u32 spte_high;
365         };
366         u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
372
373         if (is_shadow_present_pte(spte))
374                 return;
375
376         /* Ensure the spte is completely set before we increase the count */
377         smp_wmb();
378         sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383         union split_spte *ssptep, sspte;
384
385         ssptep = (union split_spte *)sptep;
386         sspte = (union split_spte)spte;
387
388         ssptep->spte_high = sspte.spte_high;
389
390         /*
391          * If we map the spte from nonpresent to present, We should store
392          * the high bits firstly, then set present bit, so cpu can not
393          * fetch this spte while we are setting the spte.
394          */
395         smp_wmb();
396
397         ssptep->spte_low = sspte.spte_low;
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402         union split_spte *ssptep, sspte;
403
404         ssptep = (union split_spte *)sptep;
405         sspte = (union split_spte)spte;
406
407         ssptep->spte_low = sspte.spte_low;
408
409         /*
410          * If we map the spte from present to nonpresent, we should clear
411          * present bit firstly to avoid vcpu fetch the old high bits.
412          */
413         smp_wmb();
414
415         ssptep->spte_high = sspte.spte_high;
416         count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421         union split_spte *ssptep, sspte, orig;
422
423         ssptep = (union split_spte *)sptep;
424         sspte = (union split_spte)spte;
425
426         /* xchg acts as a barrier before the setting of the high bits */
427         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428         orig.spte_high = ssptep->spte_high;
429         ssptep->spte_high = sspte.spte_high;
430         count_spte_clear(sptep, spte);
431
432         return orig.spte;
433 }
434
435 /*
436  * The idea using the light way get the spte on x86_32 guest is from
437  * gup_get_pte(arch/x86/mm/gup.c).
438  *
439  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440  * coalesces them and we are running out of the MMU lock.  Therefore
441  * we need to protect against in-progress updates of the spte.
442  *
443  * Reading the spte while an update is in progress may get the old value
444  * for the high part of the spte.  The race is fine for a present->non-present
445  * change (because the high part of the spte is ignored for non-present spte),
446  * but for a present->present change we must reread the spte.
447  *
448  * All such changes are done in two steps (present->non-present and
449  * non-present->present), hence it is enough to count the number of
450  * present->non-present updates: if it changed while reading the spte,
451  * we might have hit the race.  This is done using clear_spte_count.
452  */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
456         union split_spte spte, *orig = (union split_spte *)sptep;
457         int count;
458
459 retry:
460         count = sp->clear_spte_count;
461         smp_rmb();
462
463         spte.spte_low = orig->spte_low;
464         smp_rmb();
465
466         spte.spte_high = orig->spte_high;
467         smp_rmb();
468
469         if (unlikely(spte.spte_low != orig->spte_low ||
470               count != sp->clear_spte_count))
471                 goto retry;
472
473         return spte.spte;
474 }
475 #endif
476
477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482
483 static bool spte_has_volatile_bits(u64 spte)
484 {
485         /*
486          * Always atomicly update spte if it can be updated
487          * out of mmu-lock, it can ensure dirty bit is not lost,
488          * also, it can help us to get a stable is_writable_pte()
489          * to ensure tlb flush is not missed.
490          */
491         if (spte_is_locklessly_modifiable(spte))
492                 return true;
493
494         if (!shadow_accessed_mask)
495                 return false;
496
497         if (!is_shadow_present_pte(spte))
498                 return false;
499
500         if ((spte & shadow_accessed_mask) &&
501               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502                 return false;
503
504         return true;
505 }
506
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509         return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514         return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516
517 /* Rules for using mmu_spte_set:
518  * Set the sptep from nonpresent to present.
519  * Note: the sptep being assigned *must* be either not present
520  * or in a state where the hardware will not attempt to update
521  * the spte.
522  */
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525         WARN_ON(is_shadow_present_pte(*sptep));
526         __set_spte(sptep, new_spte);
527 }
528
529 /* Rules for using mmu_spte_update:
530  * Update the state bits, it means the mapped pfn is not changged.
531  *
532  * Whenever we overwrite a writable spte with a read-only one we
533  * should flush remote TLBs. Otherwise rmap_write_protect
534  * will find a read-only spte, even though the writable spte
535  * might be cached on a CPU's TLB, the return value indicates this
536  * case.
537  */
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540         u64 old_spte = *sptep;
541         bool ret = false;
542
543         WARN_ON(!is_rmap_spte(new_spte));
544
545         if (!is_shadow_present_pte(old_spte)) {
546                 mmu_spte_set(sptep, new_spte);
547                 return ret;
548         }
549
550         if (!spte_has_volatile_bits(old_spte))
551                 __update_clear_spte_fast(sptep, new_spte);
552         else
553                 old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555         /*
556          * For the spte updated out of mmu-lock is safe, since
557          * we always atomicly update it, see the comments in
558          * spte_has_volatile_bits().
559          */
560         if (spte_is_locklessly_modifiable(old_spte) &&
561               !is_writable_pte(new_spte))
562                 ret = true;
563
564         if (!shadow_accessed_mask)
565                 return ret;
566
567         /*
568          * Flush TLB when accessed/dirty bits are changed in the page tables,
569          * to guarantee consistency between TLB and page tables.
570          */
571         if (spte_is_bit_changed(old_spte, new_spte,
572                                 shadow_accessed_mask | shadow_dirty_mask))
573                 ret = true;
574
575         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
580         return ret;
581 }
582
583 /*
584  * Rules for using mmu_spte_clear_track_bits:
585  * It sets the sptep from present to nonpresent, and track the
586  * state bits, it is used to clear the last level sptep.
587  */
588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590         pfn_t pfn;
591         u64 old_spte = *sptep;
592
593         if (!spte_has_volatile_bits(old_spte))
594                 __update_clear_spte_fast(sptep, 0ull);
595         else
596                 old_spte = __update_clear_spte_slow(sptep, 0ull);
597
598         if (!is_rmap_spte(old_spte))
599                 return 0;
600
601         pfn = spte_to_pfn(old_spte);
602
603         /*
604          * KVM does not hold the refcount of the page used by
605          * kvm mmu, before reclaiming the page, we should
606          * unmap it from mmu first.
607          */
608         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609
610         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611                 kvm_set_pfn_accessed(pfn);
612         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613                 kvm_set_pfn_dirty(pfn);
614         return 1;
615 }
616
617 /*
618  * Rules for using mmu_spte_clear_no_track:
619  * Directly clear spte without caring the state bits of sptep,
620  * it is used to set the upper level spte.
621  */
622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624         __update_clear_spte_fast(sptep, 0ull);
625 }
626
627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629         return __get_spte_lockless(sptep);
630 }
631
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634         /*
635          * Prevent page table teardown by making any free-er wait during
636          * kvm_flush_remote_tlbs() IPI to all active vcpus.
637          */
638         local_irq_disable();
639         vcpu->mode = READING_SHADOW_PAGE_TABLES;
640         /*
641          * Make sure a following spte read is not reordered ahead of the write
642          * to vcpu->mode.
643          */
644         smp_mb();
645 }
646
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649         /*
650          * Make sure the write to vcpu->mode is not reordered in front of
651          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
652          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653          */
654         smp_mb();
655         vcpu->mode = OUTSIDE_GUEST_MODE;
656         local_irq_enable();
657 }
658
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660                                   struct kmem_cache *base_cache, int min)
661 {
662         void *obj;
663
664         if (cache->nobjs >= min)
665                 return 0;
666         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668                 if (!obj)
669                         return -ENOMEM;
670                 cache->objects[cache->nobjs++] = obj;
671         }
672         return 0;
673 }
674
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677         return cache->nobjs;
678 }
679
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681                                   struct kmem_cache *cache)
682 {
683         while (mc->nobjs)
684                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688                                        int min)
689 {
690         void *page;
691
692         if (cache->nobjs >= min)
693                 return 0;
694         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695                 page = (void *)__get_free_page(GFP_KERNEL);
696                 if (!page)
697                         return -ENOMEM;
698                 cache->objects[cache->nobjs++] = page;
699         }
700         return 0;
701 }
702
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705         while (mc->nobjs)
706                 free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708
709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711         int r;
712
713         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715         if (r)
716                 goto out;
717         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718         if (r)
719                 goto out;
720         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721                                    mmu_page_header_cache, 4);
722 out:
723         return r;
724 }
725
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729                                 pte_list_desc_cache);
730         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732                                 mmu_page_header_cache);
733 }
734
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737         void *p;
738
739         BUG_ON(!mc->nobjs);
740         p = mc->objects[--mc->nobjs];
741         return p;
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756         if (!sp->role.direct)
757                 return sp->gfns[index];
758
759         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764         if (sp->role.direct)
765                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766         else
767                 sp->gfns[index] = gfn;
768 }
769
770 /*
771  * Return the pointer to the large page information for a given gfn,
772  * handling slots that are not large page aligned.
773  */
774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775                                               struct kvm_memory_slot *slot,
776                                               int level)
777 {
778         unsigned long idx;
779
780         idx = gfn_to_index(gfn, slot->base_gfn, level);
781         return &slot->arch.lpage_info[level - 2][idx];
782 }
783
784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
785 {
786         struct kvm_memslots *slots;
787         struct kvm_memory_slot *slot;
788         struct kvm_lpage_info *linfo;
789         gfn_t gfn;
790         int i;
791
792         gfn = sp->gfn;
793         slots = kvm_memslots_for_spte_role(kvm, sp->role);
794         slot = __gfn_to_memslot(slots, gfn);
795         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796                 linfo = lpage_info_slot(gfn, slot, i);
797                 linfo->write_count += 1;
798         }
799         kvm->arch.indirect_shadow_pages++;
800 }
801
802 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804         struct kvm_memslots *slots;
805         struct kvm_memory_slot *slot;
806         struct kvm_lpage_info *linfo;
807         gfn_t gfn;
808         int i;
809
810         gfn = sp->gfn;
811         slots = kvm_memslots_for_spte_role(kvm, sp->role);
812         slot = __gfn_to_memslot(slots, gfn);
813         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814                 linfo = lpage_info_slot(gfn, slot, i);
815                 linfo->write_count -= 1;
816                 WARN_ON(linfo->write_count < 0);
817         }
818         kvm->arch.indirect_shadow_pages--;
819 }
820
821 static int __has_wrprotected_page(gfn_t gfn, int level,
822                                   struct kvm_memory_slot *slot)
823 {
824         struct kvm_lpage_info *linfo;
825
826         if (slot) {
827                 linfo = lpage_info_slot(gfn, slot, level);
828                 return linfo->write_count;
829         }
830
831         return 1;
832 }
833
834 static int has_wrprotected_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
835 {
836         struct kvm_memory_slot *slot;
837
838         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
839         return __has_wrprotected_page(gfn, level, slot);
840 }
841
842 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
843 {
844         unsigned long page_size;
845         int i, ret = 0;
846
847         page_size = kvm_host_page_size(kvm, gfn);
848
849         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
850                 if (page_size >= KVM_HPAGE_SIZE(i))
851                         ret = i;
852                 else
853                         break;
854         }
855
856         return ret;
857 }
858
859 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
860                                           bool no_dirty_log)
861 {
862         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
863                 return false;
864         if (no_dirty_log && slot->dirty_bitmap)
865                 return false;
866
867         return true;
868 }
869
870 static struct kvm_memory_slot *
871 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
872                             bool no_dirty_log)
873 {
874         struct kvm_memory_slot *slot;
875
876         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
877         if (!memslot_valid_for_gpte(slot, no_dirty_log))
878                 slot = NULL;
879
880         return slot;
881 }
882
883 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
884                          bool *force_pt_level)
885 {
886         int host_level, level, max_level;
887         struct kvm_memory_slot *slot;
888
889         if (unlikely(*force_pt_level))
890                 return PT_PAGE_TABLE_LEVEL;
891
892         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
893         *force_pt_level = !memslot_valid_for_gpte(slot, true);
894         if (unlikely(*force_pt_level))
895                 return PT_PAGE_TABLE_LEVEL;
896
897         host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899         if (host_level == PT_PAGE_TABLE_LEVEL)
900                 return host_level;
901
902         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903
904         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905                 if (__has_wrprotected_page(large_gfn, level, slot))
906                         break;
907
908         return level - 1;
909 }
910
911 /*
912  * Pte mapping structures:
913  *
914  * If pte_list bit zero is zero, then pte_list point to the spte.
915  *
916  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917  * pte_list_desc containing more mappings.
918  *
919  * Returns the number of pte entries before the spte was added or zero if
920  * the spte was not added.
921  *
922  */
923 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924                         unsigned long *pte_list)
925 {
926         struct pte_list_desc *desc;
927         int i, count = 0;
928
929         if (!*pte_list) {
930                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931                 *pte_list = (unsigned long)spte;
932         } else if (!(*pte_list & 1)) {
933                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934                 desc = mmu_alloc_pte_list_desc(vcpu);
935                 desc->sptes[0] = (u64 *)*pte_list;
936                 desc->sptes[1] = spte;
937                 *pte_list = (unsigned long)desc | 1;
938                 ++count;
939         } else {
940                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
943                         desc = desc->more;
944                         count += PTE_LIST_EXT;
945                 }
946                 if (desc->sptes[PTE_LIST_EXT-1]) {
947                         desc->more = mmu_alloc_pte_list_desc(vcpu);
948                         desc = desc->more;
949                 }
950                 for (i = 0; desc->sptes[i]; ++i)
951                         ++count;
952                 desc->sptes[i] = spte;
953         }
954         return count;
955 }
956
957 static void
958 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959                            int i, struct pte_list_desc *prev_desc)
960 {
961         int j;
962
963         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964                 ;
965         desc->sptes[i] = desc->sptes[j];
966         desc->sptes[j] = NULL;
967         if (j != 0)
968                 return;
969         if (!prev_desc && !desc->more)
970                 *pte_list = (unsigned long)desc->sptes[0];
971         else
972                 if (prev_desc)
973                         prev_desc->more = desc->more;
974                 else
975                         *pte_list = (unsigned long)desc->more | 1;
976         mmu_free_pte_list_desc(desc);
977 }
978
979 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980 {
981         struct pte_list_desc *desc;
982         struct pte_list_desc *prev_desc;
983         int i;
984
985         if (!*pte_list) {
986                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987                 BUG();
988         } else if (!(*pte_list & 1)) {
989                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
990                 if ((u64 *)*pte_list != spte) {
991                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
992                         BUG();
993                 }
994                 *pte_list = 0;
995         } else {
996                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
997                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
998                 prev_desc = NULL;
999                 while (desc) {
1000                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1001                                 if (desc->sptes[i] == spte) {
1002                                         pte_list_desc_remove_entry(pte_list,
1003                                                                desc, i,
1004                                                                prev_desc);
1005                                         return;
1006                                 }
1007                         prev_desc = desc;
1008                         desc = desc->more;
1009                 }
1010                 pr_err("pte_list_remove: %p many->many\n", spte);
1011                 BUG();
1012         }
1013 }
1014
1015 typedef void (*pte_list_walk_fn) (u64 *spte);
1016 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017 {
1018         struct pte_list_desc *desc;
1019         int i;
1020
1021         if (!*pte_list)
1022                 return;
1023
1024         if (!(*pte_list & 1))
1025                 return fn((u64 *)*pte_list);
1026
1027         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028         while (desc) {
1029                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030                         fn(desc->sptes[i]);
1031                 desc = desc->more;
1032         }
1033 }
1034
1035 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1036                                     struct kvm_memory_slot *slot)
1037 {
1038         unsigned long idx;
1039
1040         idx = gfn_to_index(gfn, slot->base_gfn, level);
1041         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042 }
1043
1044 /*
1045  * Take gfn and return the reverse mapping to it.
1046  */
1047 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1048 {
1049         struct kvm_memslots *slots;
1050         struct kvm_memory_slot *slot;
1051
1052         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1053         slot = __gfn_to_memslot(slots, gfn);
1054         return __gfn_to_rmap(gfn, sp->role.level, slot);
1055 }
1056
1057 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1058 {
1059         struct kvm_mmu_memory_cache *cache;
1060
1061         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1062         return mmu_memory_cache_free_objects(cache);
1063 }
1064
1065 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1066 {
1067         struct kvm_mmu_page *sp;
1068         unsigned long *rmapp;
1069
1070         sp = page_header(__pa(spte));
1071         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1072         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1073         return pte_list_add(vcpu, spte, rmapp);
1074 }
1075
1076 static void rmap_remove(struct kvm *kvm, u64 *spte)
1077 {
1078         struct kvm_mmu_page *sp;
1079         gfn_t gfn;
1080         unsigned long *rmapp;
1081
1082         sp = page_header(__pa(spte));
1083         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1084         rmapp = gfn_to_rmap(kvm, gfn, sp);
1085         pte_list_remove(spte, rmapp);
1086 }
1087
1088 /*
1089  * Used by the following functions to iterate through the sptes linked by a
1090  * rmap.  All fields are private and not assumed to be used outside.
1091  */
1092 struct rmap_iterator {
1093         /* private fields */
1094         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1095         int pos;                        /* index of the sptep */
1096 };
1097
1098 /*
1099  * Iteration must be started by this function.  This should also be used after
1100  * removing/dropping sptes from the rmap link because in such cases the
1101  * information in the itererator may not be valid.
1102  *
1103  * Returns sptep if found, NULL otherwise.
1104  */
1105 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1106 {
1107         if (!rmap)
1108                 return NULL;
1109
1110         if (!(rmap & 1)) {
1111                 iter->desc = NULL;
1112                 return (u64 *)rmap;
1113         }
1114
1115         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1116         iter->pos = 0;
1117         return iter->desc->sptes[iter->pos];
1118 }
1119
1120 /*
1121  * Must be used with a valid iterator: e.g. after rmap_get_first().
1122  *
1123  * Returns sptep if found, NULL otherwise.
1124  */
1125 static u64 *rmap_get_next(struct rmap_iterator *iter)
1126 {
1127         if (iter->desc) {
1128                 if (iter->pos < PTE_LIST_EXT - 1) {
1129                         u64 *sptep;
1130
1131                         ++iter->pos;
1132                         sptep = iter->desc->sptes[iter->pos];
1133                         if (sptep)
1134                                 return sptep;
1135                 }
1136
1137                 iter->desc = iter->desc->more;
1138
1139                 if (iter->desc) {
1140                         iter->pos = 0;
1141                         /* desc->sptes[0] cannot be NULL */
1142                         return iter->desc->sptes[iter->pos];
1143                 }
1144         }
1145
1146         return NULL;
1147 }
1148
1149 #define for_each_rmap_spte(_rmap_, _iter_, _spte_)                          \
1150            for (_spte_ = rmap_get_first(*_rmap_, _iter_);                   \
1151                 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
1152                         _spte_ = rmap_get_next(_iter_))
1153
1154 static void drop_spte(struct kvm *kvm, u64 *sptep)
1155 {
1156         if (mmu_spte_clear_track_bits(sptep))
1157                 rmap_remove(kvm, sptep);
1158 }
1159
1160
1161 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1162 {
1163         if (is_large_pte(*sptep)) {
1164                 WARN_ON(page_header(__pa(sptep))->role.level ==
1165                         PT_PAGE_TABLE_LEVEL);
1166                 drop_spte(kvm, sptep);
1167                 --kvm->stat.lpages;
1168                 return true;
1169         }
1170
1171         return false;
1172 }
1173
1174 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1175 {
1176         if (__drop_large_spte(vcpu->kvm, sptep))
1177                 kvm_flush_remote_tlbs(vcpu->kvm);
1178 }
1179
1180 /*
1181  * Write-protect on the specified @sptep, @pt_protect indicates whether
1182  * spte write-protection is caused by protecting shadow page table.
1183  *
1184  * Note: write protection is difference between dirty logging and spte
1185  * protection:
1186  * - for dirty logging, the spte can be set to writable at anytime if
1187  *   its dirty bitmap is properly set.
1188  * - for spte protection, the spte can be writable only after unsync-ing
1189  *   shadow page.
1190  *
1191  * Return true if tlb need be flushed.
1192  */
1193 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1194 {
1195         u64 spte = *sptep;
1196
1197         if (!is_writable_pte(spte) &&
1198               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1199                 return false;
1200
1201         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1202
1203         if (pt_protect)
1204                 spte &= ~SPTE_MMU_WRITEABLE;
1205         spte = spte & ~PT_WRITABLE_MASK;
1206
1207         return mmu_spte_update(sptep, spte);
1208 }
1209
1210 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1211                                  bool pt_protect)
1212 {
1213         u64 *sptep;
1214         struct rmap_iterator iter;
1215         bool flush = false;
1216
1217         for_each_rmap_spte(rmapp, &iter, sptep)
1218                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1219
1220         return flush;
1221 }
1222
1223 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1224 {
1225         u64 spte = *sptep;
1226
1227         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1228
1229         spte &= ~shadow_dirty_mask;
1230
1231         return mmu_spte_update(sptep, spte);
1232 }
1233
1234 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1235 {
1236         u64 *sptep;
1237         struct rmap_iterator iter;
1238         bool flush = false;
1239
1240         for_each_rmap_spte(rmapp, &iter, sptep)
1241                 flush |= spte_clear_dirty(kvm, sptep);
1242
1243         return flush;
1244 }
1245
1246 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1247 {
1248         u64 spte = *sptep;
1249
1250         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1251
1252         spte |= shadow_dirty_mask;
1253
1254         return mmu_spte_update(sptep, spte);
1255 }
1256
1257 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1258 {
1259         u64 *sptep;
1260         struct rmap_iterator iter;
1261         bool flush = false;
1262
1263         for_each_rmap_spte(rmapp, &iter, sptep)
1264                 flush |= spte_set_dirty(kvm, sptep);
1265
1266         return flush;
1267 }
1268
1269 /**
1270  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1271  * @kvm: kvm instance
1272  * @slot: slot to protect
1273  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274  * @mask: indicates which pages we should protect
1275  *
1276  * Used when we do not need to care about huge page mappings: e.g. during dirty
1277  * logging we do not have any such mappings.
1278  */
1279 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1280                                      struct kvm_memory_slot *slot,
1281                                      gfn_t gfn_offset, unsigned long mask)
1282 {
1283         unsigned long *rmapp;
1284
1285         while (mask) {
1286                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1287                                       PT_PAGE_TABLE_LEVEL, slot);
1288                 __rmap_write_protect(kvm, rmapp, false);
1289
1290                 /* clear the first set bit */
1291                 mask &= mask - 1;
1292         }
1293 }
1294
1295 /**
1296  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1297  * @kvm: kvm instance
1298  * @slot: slot to clear D-bit
1299  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1300  * @mask: indicates which pages we should clear D-bit
1301  *
1302  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1303  */
1304 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1305                                      struct kvm_memory_slot *slot,
1306                                      gfn_t gfn_offset, unsigned long mask)
1307 {
1308         unsigned long *rmapp;
1309
1310         while (mask) {
1311                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1312                                       PT_PAGE_TABLE_LEVEL, slot);
1313                 __rmap_clear_dirty(kvm, rmapp);
1314
1315                 /* clear the first set bit */
1316                 mask &= mask - 1;
1317         }
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1320
1321 /**
1322  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1323  * PT level pages.
1324  *
1325  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1326  * enable dirty logging for them.
1327  *
1328  * Used when we do not need to care about huge page mappings: e.g. during dirty
1329  * logging we do not have any such mappings.
1330  */
1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1332                                 struct kvm_memory_slot *slot,
1333                                 gfn_t gfn_offset, unsigned long mask)
1334 {
1335         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1336                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1337                                 mask);
1338         else
1339                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340 }
1341
1342 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1343 {
1344         struct kvm_memory_slot *slot;
1345         unsigned long *rmapp;
1346         int i;
1347         bool write_protected = false;
1348
1349         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1350
1351         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1352                 rmapp = __gfn_to_rmap(gfn, i, slot);
1353                 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1354         }
1355
1356         return write_protected;
1357 }
1358
1359 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1360 {
1361         u64 *sptep;
1362         struct rmap_iterator iter;
1363         bool flush = false;
1364
1365         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1366                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1367                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1368
1369                 drop_spte(kvm, sptep);
1370                 flush = true;
1371         }
1372
1373         return flush;
1374 }
1375
1376 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1377                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1378                            unsigned long data)
1379 {
1380         return kvm_zap_rmapp(kvm, rmapp);
1381 }
1382
1383 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1384                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1385                              unsigned long data)
1386 {
1387         u64 *sptep;
1388         struct rmap_iterator iter;
1389         int need_flush = 0;
1390         u64 new_spte;
1391         pte_t *ptep = (pte_t *)data;
1392         pfn_t new_pfn;
1393
1394         WARN_ON(pte_huge(*ptep));
1395         new_pfn = pte_pfn(*ptep);
1396
1397 restart:
1398         for_each_rmap_spte(rmapp, &iter, sptep) {
1399                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1400                              sptep, *sptep, gfn, level);
1401
1402                 need_flush = 1;
1403
1404                 if (pte_write(*ptep)) {
1405                         drop_spte(kvm, sptep);
1406                         goto restart;
1407                 } else {
1408                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1409                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1410
1411                         new_spte &= ~PT_WRITABLE_MASK;
1412                         new_spte &= ~SPTE_HOST_WRITEABLE;
1413                         new_spte &= ~shadow_accessed_mask;
1414
1415                         mmu_spte_clear_track_bits(sptep);
1416                         mmu_spte_set(sptep, new_spte);
1417                 }
1418         }
1419
1420         if (need_flush)
1421                 kvm_flush_remote_tlbs(kvm);
1422
1423         return 0;
1424 }
1425
1426 struct slot_rmap_walk_iterator {
1427         /* input fields. */
1428         struct kvm_memory_slot *slot;
1429         gfn_t start_gfn;
1430         gfn_t end_gfn;
1431         int start_level;
1432         int end_level;
1433
1434         /* output fields. */
1435         gfn_t gfn;
1436         unsigned long *rmap;
1437         int level;
1438
1439         /* private field. */
1440         unsigned long *end_rmap;
1441 };
1442
1443 static void
1444 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1445 {
1446         iterator->level = level;
1447         iterator->gfn = iterator->start_gfn;
1448         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1449         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1450                                            iterator->slot);
1451 }
1452
1453 static void
1454 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1455                     struct kvm_memory_slot *slot, int start_level,
1456                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1457 {
1458         iterator->slot = slot;
1459         iterator->start_level = start_level;
1460         iterator->end_level = end_level;
1461         iterator->start_gfn = start_gfn;
1462         iterator->end_gfn = end_gfn;
1463
1464         rmap_walk_init_level(iterator, iterator->start_level);
1465 }
1466
1467 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1468 {
1469         return !!iterator->rmap;
1470 }
1471
1472 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1473 {
1474         if (++iterator->rmap <= iterator->end_rmap) {
1475                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1476                 return;
1477         }
1478
1479         if (++iterator->level > iterator->end_level) {
1480                 iterator->rmap = NULL;
1481                 return;
1482         }
1483
1484         rmap_walk_init_level(iterator, iterator->level);
1485 }
1486
1487 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1488            _start_gfn, _end_gfn, _iter_)                                \
1489         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1490                                  _end_level_, _start_gfn, _end_gfn);    \
1491              slot_rmap_walk_okay(_iter_);                               \
1492              slot_rmap_walk_next(_iter_))
1493
1494 static int kvm_handle_hva_range(struct kvm *kvm,
1495                                 unsigned long start,
1496                                 unsigned long end,
1497                                 unsigned long data,
1498                                 int (*handler)(struct kvm *kvm,
1499                                                unsigned long *rmapp,
1500                                                struct kvm_memory_slot *slot,
1501                                                gfn_t gfn,
1502                                                int level,
1503                                                unsigned long data))
1504 {
1505         struct kvm_memslots *slots;
1506         struct kvm_memory_slot *memslot;
1507         struct slot_rmap_walk_iterator iterator;
1508         int ret = 0;
1509         int i;
1510
1511         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1512                 slots = __kvm_memslots(kvm, i);
1513                 kvm_for_each_memslot(memslot, slots) {
1514                         unsigned long hva_start, hva_end;
1515                         gfn_t gfn_start, gfn_end;
1516
1517                         hva_start = max(start, memslot->userspace_addr);
1518                         hva_end = min(end, memslot->userspace_addr +
1519                                       (memslot->npages << PAGE_SHIFT));
1520                         if (hva_start >= hva_end)
1521                                 continue;
1522                         /*
1523                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1524                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1525                          */
1526                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1527                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1528
1529                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1530                                                  PT_MAX_HUGEPAGE_LEVEL,
1531                                                  gfn_start, gfn_end - 1,
1532                                                  &iterator)
1533                                 ret |= handler(kvm, iterator.rmap, memslot,
1534                                                iterator.gfn, iterator.level, data);
1535                 }
1536         }
1537
1538         return ret;
1539 }
1540
1541 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1542                           unsigned long data,
1543                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1544                                          struct kvm_memory_slot *slot,
1545                                          gfn_t gfn, int level,
1546                                          unsigned long data))
1547 {
1548         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1549 }
1550
1551 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1552 {
1553         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1554 }
1555
1556 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1557 {
1558         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1559 }
1560
1561 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1562 {
1563         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1564 }
1565
1566 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1567                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1568                          unsigned long data)
1569 {
1570         u64 *sptep;
1571         struct rmap_iterator uninitialized_var(iter);
1572         int young = 0;
1573
1574         BUG_ON(!shadow_accessed_mask);
1575
1576         for_each_rmap_spte(rmapp, &iter, sptep)
1577                 if (*sptep & shadow_accessed_mask) {
1578                         young = 1;
1579                         clear_bit((ffs(shadow_accessed_mask) - 1),
1580                                  (unsigned long *)sptep);
1581                 }
1582
1583         trace_kvm_age_page(gfn, level, slot, young);
1584         return young;
1585 }
1586
1587 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1588                               struct kvm_memory_slot *slot, gfn_t gfn,
1589                               int level, unsigned long data)
1590 {
1591         u64 *sptep;
1592         struct rmap_iterator iter;
1593         int young = 0;
1594
1595         /*
1596          * If there's no access bit in the secondary pte set by the
1597          * hardware it's up to gup-fast/gup to set the access bit in
1598          * the primary pte or in the page structure.
1599          */
1600         if (!shadow_accessed_mask)
1601                 goto out;
1602
1603         for_each_rmap_spte(rmapp, &iter, sptep)
1604                 if (*sptep & shadow_accessed_mask) {
1605                         young = 1;
1606                         break;
1607                 }
1608 out:
1609         return young;
1610 }
1611
1612 #define RMAP_RECYCLE_THRESHOLD 1000
1613
1614 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1615 {
1616         unsigned long *rmapp;
1617         struct kvm_mmu_page *sp;
1618
1619         sp = page_header(__pa(spte));
1620
1621         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1622
1623         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1624         kvm_flush_remote_tlbs(vcpu->kvm);
1625 }
1626
1627 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1628 {
1629         /*
1630          * In case of absence of EPT Access and Dirty Bits supports,
1631          * emulate the accessed bit for EPT, by checking if this page has
1632          * an EPT mapping, and clearing it if it does. On the next access,
1633          * a new EPT mapping will be established.
1634          * This has some overhead, but not as much as the cost of swapping
1635          * out actively used pages or breaking up actively used hugepages.
1636          */
1637         if (!shadow_accessed_mask) {
1638                 /*
1639                  * We are holding the kvm->mmu_lock, and we are blowing up
1640                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1641                  * This is correct as long as we don't decouple the mmu_lock
1642                  * protected regions (like invalidate_range_start|end does).
1643                  */
1644                 kvm->mmu_notifier_seq++;
1645                 return kvm_handle_hva_range(kvm, start, end, 0,
1646                                             kvm_unmap_rmapp);
1647         }
1648
1649         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1650 }
1651
1652 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1653 {
1654         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1655 }
1656
1657 #ifdef MMU_DEBUG
1658 static int is_empty_shadow_page(u64 *spt)
1659 {
1660         u64 *pos;
1661         u64 *end;
1662
1663         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1664                 if (is_shadow_present_pte(*pos)) {
1665                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1666                                pos, *pos);
1667                         return 0;
1668                 }
1669         return 1;
1670 }
1671 #endif
1672
1673 /*
1674  * This value is the sum of all of the kvm instances's
1675  * kvm->arch.n_used_mmu_pages values.  We need a global,
1676  * aggregate version in order to make the slab shrinker
1677  * faster
1678  */
1679 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1680 {
1681         kvm->arch.n_used_mmu_pages += nr;
1682         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1683 }
1684
1685 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1686 {
1687         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1688         hlist_del(&sp->hash_link);
1689         list_del(&sp->link);
1690         free_page((unsigned long)sp->spt);
1691         if (!sp->role.direct)
1692                 free_page((unsigned long)sp->gfns);
1693         kmem_cache_free(mmu_page_header_cache, sp);
1694 }
1695
1696 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1697 {
1698         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1699 }
1700
1701 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1702                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1703 {
1704         if (!parent_pte)
1705                 return;
1706
1707         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1708 }
1709
1710 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1711                                        u64 *parent_pte)
1712 {
1713         pte_list_remove(parent_pte, &sp->parent_ptes);
1714 }
1715
1716 static void drop_parent_pte(struct kvm_mmu_page *sp,
1717                             u64 *parent_pte)
1718 {
1719         mmu_page_remove_parent_pte(sp, parent_pte);
1720         mmu_spte_clear_no_track(parent_pte);
1721 }
1722
1723 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1724                                                u64 *parent_pte, int direct)
1725 {
1726         struct kvm_mmu_page *sp;
1727
1728         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1729         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1730         if (!direct)
1731                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1732         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1733
1734         /*
1735          * The active_mmu_pages list is the FIFO list, do not move the
1736          * page until it is zapped. kvm_zap_obsolete_pages depends on
1737          * this feature. See the comments in kvm_zap_obsolete_pages().
1738          */
1739         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1740         sp->parent_ptes = 0;
1741         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1742         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1743         return sp;
1744 }
1745
1746 static void mark_unsync(u64 *spte);
1747 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1748 {
1749         pte_list_walk(&sp->parent_ptes, mark_unsync);
1750 }
1751
1752 static void mark_unsync(u64 *spte)
1753 {
1754         struct kvm_mmu_page *sp;
1755         unsigned int index;
1756
1757         sp = page_header(__pa(spte));
1758         index = spte - sp->spt;
1759         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1760                 return;
1761         if (sp->unsync_children++)
1762                 return;
1763         kvm_mmu_mark_parents_unsync(sp);
1764 }
1765
1766 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1767                                struct kvm_mmu_page *sp)
1768 {
1769         return 1;
1770 }
1771
1772 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1773 {
1774 }
1775
1776 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1777                                  struct kvm_mmu_page *sp, u64 *spte,
1778                                  const void *pte)
1779 {
1780         WARN_ON(1);
1781 }
1782
1783 #define KVM_PAGE_ARRAY_NR 16
1784
1785 struct kvm_mmu_pages {
1786         struct mmu_page_and_offset {
1787                 struct kvm_mmu_page *sp;
1788                 unsigned int idx;
1789         } page[KVM_PAGE_ARRAY_NR];
1790         unsigned int nr;
1791 };
1792
1793 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1794                          int idx)
1795 {
1796         int i;
1797
1798         if (sp->unsync)
1799                 for (i=0; i < pvec->nr; i++)
1800                         if (pvec->page[i].sp == sp)
1801                                 return 0;
1802
1803         pvec->page[pvec->nr].sp = sp;
1804         pvec->page[pvec->nr].idx = idx;
1805         pvec->nr++;
1806         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1807 }
1808
1809 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1810                            struct kvm_mmu_pages *pvec)
1811 {
1812         int i, ret, nr_unsync_leaf = 0;
1813
1814         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1815                 struct kvm_mmu_page *child;
1816                 u64 ent = sp->spt[i];
1817
1818                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1819                         goto clear_child_bitmap;
1820
1821                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1822
1823                 if (child->unsync_children) {
1824                         if (mmu_pages_add(pvec, child, i))
1825                                 return -ENOSPC;
1826
1827                         ret = __mmu_unsync_walk(child, pvec);
1828                         if (!ret)
1829                                 goto clear_child_bitmap;
1830                         else if (ret > 0)
1831                                 nr_unsync_leaf += ret;
1832                         else
1833                                 return ret;
1834                 } else if (child->unsync) {
1835                         nr_unsync_leaf++;
1836                         if (mmu_pages_add(pvec, child, i))
1837                                 return -ENOSPC;
1838                 } else
1839                          goto clear_child_bitmap;
1840
1841                 continue;
1842
1843 clear_child_bitmap:
1844                 __clear_bit(i, sp->unsync_child_bitmap);
1845                 sp->unsync_children--;
1846                 WARN_ON((int)sp->unsync_children < 0);
1847         }
1848
1849
1850         return nr_unsync_leaf;
1851 }
1852
1853 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1854                            struct kvm_mmu_pages *pvec)
1855 {
1856         if (!sp->unsync_children)
1857                 return 0;
1858
1859         mmu_pages_add(pvec, sp, 0);
1860         return __mmu_unsync_walk(sp, pvec);
1861 }
1862
1863 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1864 {
1865         WARN_ON(!sp->unsync);
1866         trace_kvm_mmu_sync_page(sp);
1867         sp->unsync = 0;
1868         --kvm->stat.mmu_unsync;
1869 }
1870
1871 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1872                                     struct list_head *invalid_list);
1873 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1874                                     struct list_head *invalid_list);
1875
1876 /*
1877  * NOTE: we should pay more attention on the zapped-obsolete page
1878  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1879  * since it has been deleted from active_mmu_pages but still can be found
1880  * at hast list.
1881  *
1882  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1883  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1884  * all the obsolete pages.
1885  */
1886 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1887         hlist_for_each_entry(_sp,                                       \
1888           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1889                 if ((_sp)->gfn != (_gfn)) {} else
1890
1891 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1892         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1893                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1894
1895 /* @sp->gfn should be write-protected at the call site */
1896 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1897                            struct list_head *invalid_list, bool clear_unsync)
1898 {
1899         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1900                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1901                 return 1;
1902         }
1903
1904         if (clear_unsync)
1905                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1906
1907         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1908                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1909                 return 1;
1910         }
1911
1912         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1913         return 0;
1914 }
1915
1916 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1917                                    struct kvm_mmu_page *sp)
1918 {
1919         LIST_HEAD(invalid_list);
1920         int ret;
1921
1922         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1923         if (ret)
1924                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1925
1926         return ret;
1927 }
1928
1929 #ifdef CONFIG_KVM_MMU_AUDIT
1930 #include "mmu_audit.c"
1931 #else
1932 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1933 static void mmu_audit_disable(void) { }
1934 #endif
1935
1936 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1937                          struct list_head *invalid_list)
1938 {
1939         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1940 }
1941
1942 /* @gfn should be write-protected at the call site */
1943 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1944 {
1945         struct kvm_mmu_page *s;
1946         LIST_HEAD(invalid_list);
1947         bool flush = false;
1948
1949         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1950                 if (!s->unsync)
1951                         continue;
1952
1953                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1954                 kvm_unlink_unsync_page(vcpu->kvm, s);
1955                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1956                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1957                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1958                         continue;
1959                 }
1960                 flush = true;
1961         }
1962
1963         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1964         if (flush)
1965                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1966 }
1967
1968 struct mmu_page_path {
1969         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1970         unsigned int idx[PT64_ROOT_LEVEL-1];
1971 };
1972
1973 #define for_each_sp(pvec, sp, parents, i)                       \
1974                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1975                         sp = pvec.page[i].sp;                   \
1976                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1977                         i = mmu_pages_next(&pvec, &parents, i))
1978
1979 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1980                           struct mmu_page_path *parents,
1981                           int i)
1982 {
1983         int n;
1984
1985         for (n = i+1; n < pvec->nr; n++) {
1986                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1987
1988                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1989                         parents->idx[0] = pvec->page[n].idx;
1990                         return n;
1991                 }
1992
1993                 parents->parent[sp->role.level-2] = sp;
1994                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1995         }
1996
1997         return n;
1998 }
1999
2000 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2001 {
2002         struct kvm_mmu_page *sp;
2003         unsigned int level = 0;
2004
2005         do {
2006                 unsigned int idx = parents->idx[level];
2007
2008                 sp = parents->parent[level];
2009                 if (!sp)
2010                         return;
2011
2012                 --sp->unsync_children;
2013                 WARN_ON((int)sp->unsync_children < 0);
2014                 __clear_bit(idx, sp->unsync_child_bitmap);
2015                 level++;
2016         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2017 }
2018
2019 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2020                                struct mmu_page_path *parents,
2021                                struct kvm_mmu_pages *pvec)
2022 {
2023         parents->parent[parent->role.level-1] = NULL;
2024         pvec->nr = 0;
2025 }
2026
2027 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2028                               struct kvm_mmu_page *parent)
2029 {
2030         int i;
2031         struct kvm_mmu_page *sp;
2032         struct mmu_page_path parents;
2033         struct kvm_mmu_pages pages;
2034         LIST_HEAD(invalid_list);
2035
2036         kvm_mmu_pages_init(parent, &parents, &pages);
2037         while (mmu_unsync_walk(parent, &pages)) {
2038                 bool protected = false;
2039
2040                 for_each_sp(pages, sp, parents, i)
2041                         protected |= rmap_write_protect(vcpu, sp->gfn);
2042
2043                 if (protected)
2044                         kvm_flush_remote_tlbs(vcpu->kvm);
2045
2046                 for_each_sp(pages, sp, parents, i) {
2047                         kvm_sync_page(vcpu, sp, &invalid_list);
2048                         mmu_pages_clear_parents(&parents);
2049                 }
2050                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2051                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2052                 kvm_mmu_pages_init(parent, &parents, &pages);
2053         }
2054 }
2055
2056 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2057 {
2058         int i;
2059
2060         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2061                 sp->spt[i] = 0ull;
2062 }
2063
2064 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2065 {
2066         sp->write_flooding_count = 0;
2067 }
2068
2069 static void clear_sp_write_flooding_count(u64 *spte)
2070 {
2071         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2072
2073         __clear_sp_write_flooding_count(sp);
2074 }
2075
2076 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2077 {
2078         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2079 }
2080
2081 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2082                                              gfn_t gfn,
2083                                              gva_t gaddr,
2084                                              unsigned level,
2085                                              int direct,
2086                                              unsigned access,
2087                                              u64 *parent_pte)
2088 {
2089         union kvm_mmu_page_role role;
2090         unsigned quadrant;
2091         struct kvm_mmu_page *sp;
2092         bool need_sync = false;
2093
2094         role = vcpu->arch.mmu.base_role;
2095         role.level = level;
2096         role.direct = direct;
2097         if (role.direct)
2098                 role.cr4_pae = 0;
2099         role.access = access;
2100         if (!vcpu->arch.mmu.direct_map
2101             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2102                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2103                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2104                 role.quadrant = quadrant;
2105         }
2106         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2107                 if (is_obsolete_sp(vcpu->kvm, sp))
2108                         continue;
2109
2110                 if (!need_sync && sp->unsync)
2111                         need_sync = true;
2112
2113                 if (sp->role.word != role.word)
2114                         continue;
2115
2116                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2117                         break;
2118
2119                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2120                 if (sp->unsync_children) {
2121                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2122                         kvm_mmu_mark_parents_unsync(sp);
2123                 } else if (sp->unsync)
2124                         kvm_mmu_mark_parents_unsync(sp);
2125
2126                 __clear_sp_write_flooding_count(sp);
2127                 trace_kvm_mmu_get_page(sp, false);
2128                 return sp;
2129         }
2130         ++vcpu->kvm->stat.mmu_cache_miss;
2131         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2132         if (!sp)
2133                 return sp;
2134         sp->gfn = gfn;
2135         sp->role = role;
2136         hlist_add_head(&sp->hash_link,
2137                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2138         if (!direct) {
2139                 if (rmap_write_protect(vcpu, gfn))
2140                         kvm_flush_remote_tlbs(vcpu->kvm);
2141                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2142                         kvm_sync_pages(vcpu, gfn);
2143
2144                 account_shadowed(vcpu->kvm, sp);
2145         }
2146         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2147         init_shadow_page_table(sp);
2148         trace_kvm_mmu_get_page(sp, true);
2149         return sp;
2150 }
2151
2152 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2153                              struct kvm_vcpu *vcpu, u64 addr)
2154 {
2155         iterator->addr = addr;
2156         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2157         iterator->level = vcpu->arch.mmu.shadow_root_level;
2158
2159         if (iterator->level == PT64_ROOT_LEVEL &&
2160             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2161             !vcpu->arch.mmu.direct_map)
2162                 --iterator->level;
2163
2164         if (iterator->level == PT32E_ROOT_LEVEL) {
2165                 iterator->shadow_addr
2166                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2167                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2168                 --iterator->level;
2169                 if (!iterator->shadow_addr)
2170                         iterator->level = 0;
2171         }
2172 }
2173
2174 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2175 {
2176         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2177                 return false;
2178
2179         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2180         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2181         return true;
2182 }
2183
2184 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2185                                u64 spte)
2186 {
2187         if (is_last_spte(spte, iterator->level)) {
2188                 iterator->level = 0;
2189                 return;
2190         }
2191
2192         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2193         --iterator->level;
2194 }
2195
2196 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2197 {
2198         return __shadow_walk_next(iterator, *iterator->sptep);
2199 }
2200
2201 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2202 {
2203         u64 spte;
2204
2205         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2206                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2207
2208         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2209                shadow_user_mask | shadow_x_mask;
2210
2211         if (accessed)
2212                 spte |= shadow_accessed_mask;
2213
2214         mmu_spte_set(sptep, spte);
2215 }
2216
2217 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2218                                    unsigned direct_access)
2219 {
2220         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2221                 struct kvm_mmu_page *child;
2222
2223                 /*
2224                  * For the direct sp, if the guest pte's dirty bit
2225                  * changed form clean to dirty, it will corrupt the
2226                  * sp's access: allow writable in the read-only sp,
2227                  * so we should update the spte at this point to get
2228                  * a new sp with the correct access.
2229                  */
2230                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2231                 if (child->role.access == direct_access)
2232                         return;
2233
2234                 drop_parent_pte(child, sptep);
2235                 kvm_flush_remote_tlbs(vcpu->kvm);
2236         }
2237 }
2238
2239 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2240                              u64 *spte)
2241 {
2242         u64 pte;
2243         struct kvm_mmu_page *child;
2244
2245         pte = *spte;
2246         if (is_shadow_present_pte(pte)) {
2247                 if (is_last_spte(pte, sp->role.level)) {
2248                         drop_spte(kvm, spte);
2249                         if (is_large_pte(pte))
2250                                 --kvm->stat.lpages;
2251                 } else {
2252                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2253                         drop_parent_pte(child, spte);
2254                 }
2255                 return true;
2256         }
2257
2258         if (is_mmio_spte(pte))
2259                 mmu_spte_clear_no_track(spte);
2260
2261         return false;
2262 }
2263
2264 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2265                                          struct kvm_mmu_page *sp)
2266 {
2267         unsigned i;
2268
2269         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2270                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2271 }
2272
2273 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2274 {
2275         mmu_page_remove_parent_pte(sp, parent_pte);
2276 }
2277
2278 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2279 {
2280         u64 *sptep;
2281         struct rmap_iterator iter;
2282
2283         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2284                 drop_parent_pte(sp, sptep);
2285 }
2286
2287 static int mmu_zap_unsync_children(struct kvm *kvm,
2288                                    struct kvm_mmu_page *parent,
2289                                    struct list_head *invalid_list)
2290 {
2291         int i, zapped = 0;
2292         struct mmu_page_path parents;
2293         struct kvm_mmu_pages pages;
2294
2295         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2296                 return 0;
2297
2298         kvm_mmu_pages_init(parent, &parents, &pages);
2299         while (mmu_unsync_walk(parent, &pages)) {
2300                 struct kvm_mmu_page *sp;
2301
2302                 for_each_sp(pages, sp, parents, i) {
2303                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2304                         mmu_pages_clear_parents(&parents);
2305                         zapped++;
2306                 }
2307                 kvm_mmu_pages_init(parent, &parents, &pages);
2308         }
2309
2310         return zapped;
2311 }
2312
2313 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2314                                     struct list_head *invalid_list)
2315 {
2316         int ret;
2317
2318         trace_kvm_mmu_prepare_zap_page(sp);
2319         ++kvm->stat.mmu_shadow_zapped;
2320         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2321         kvm_mmu_page_unlink_children(kvm, sp);
2322         kvm_mmu_unlink_parents(kvm, sp);
2323
2324         if (!sp->role.invalid && !sp->role.direct)
2325                 unaccount_shadowed(kvm, sp);
2326
2327         if (sp->unsync)
2328                 kvm_unlink_unsync_page(kvm, sp);
2329         if (!sp->root_count) {
2330                 /* Count self */
2331                 ret++;
2332                 list_move(&sp->link, invalid_list);
2333                 kvm_mod_used_mmu_pages(kvm, -1);
2334         } else {
2335                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2336
2337                 /*
2338                  * The obsolete pages can not be used on any vcpus.
2339                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2340                  */
2341                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2342                         kvm_reload_remote_mmus(kvm);
2343         }
2344
2345         sp->role.invalid = 1;
2346         return ret;
2347 }
2348
2349 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2350                                     struct list_head *invalid_list)
2351 {
2352         struct kvm_mmu_page *sp, *nsp;
2353
2354         if (list_empty(invalid_list))
2355                 return;
2356
2357         /*
2358          * wmb: make sure everyone sees our modifications to the page tables
2359          * rmb: make sure we see changes to vcpu->mode
2360          */
2361         smp_mb();
2362
2363         /*
2364          * Wait for all vcpus to exit guest mode and/or lockless shadow
2365          * page table walks.
2366          */
2367         kvm_flush_remote_tlbs(kvm);
2368
2369         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2370                 WARN_ON(!sp->role.invalid || sp->root_count);
2371                 kvm_mmu_free_page(sp);
2372         }
2373 }
2374
2375 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2376                                         struct list_head *invalid_list)
2377 {
2378         struct kvm_mmu_page *sp;
2379
2380         if (list_empty(&kvm->arch.active_mmu_pages))
2381                 return false;
2382
2383         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2384                         struct kvm_mmu_page, link);
2385         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2386
2387         return true;
2388 }
2389
2390 /*
2391  * Changing the number of mmu pages allocated to the vm
2392  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2393  */
2394 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2395 {
2396         LIST_HEAD(invalid_list);
2397
2398         spin_lock(&kvm->mmu_lock);
2399
2400         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2401                 /* Need to free some mmu pages to achieve the goal. */
2402                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2403                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2404                                 break;
2405
2406                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2407                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2408         }
2409
2410         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2411
2412         spin_unlock(&kvm->mmu_lock);
2413 }
2414
2415 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2416 {
2417         struct kvm_mmu_page *sp;
2418         LIST_HEAD(invalid_list);
2419         int r;
2420
2421         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2422         r = 0;
2423         spin_lock(&kvm->mmu_lock);
2424         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2425                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2426                          sp->role.word);
2427                 r = 1;
2428                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2429         }
2430         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431         spin_unlock(&kvm->mmu_lock);
2432
2433         return r;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2436
2437 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2438 {
2439         trace_kvm_mmu_unsync_page(sp);
2440         ++vcpu->kvm->stat.mmu_unsync;
2441         sp->unsync = 1;
2442
2443         kvm_mmu_mark_parents_unsync(sp);
2444 }
2445
2446 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2447 {
2448         struct kvm_mmu_page *s;
2449
2450         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2451                 if (s->unsync)
2452                         continue;
2453                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2454                 __kvm_unsync_page(vcpu, s);
2455         }
2456 }
2457
2458 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2459                                   bool can_unsync)
2460 {
2461         struct kvm_mmu_page *s;
2462         bool need_unsync = false;
2463
2464         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2465                 if (!can_unsync)
2466                         return 1;
2467
2468                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2469                         return 1;
2470
2471                 if (!s->unsync)
2472                         need_unsync = true;
2473         }
2474         if (need_unsync)
2475                 kvm_unsync_pages(vcpu, gfn);
2476         return 0;
2477 }
2478
2479 static bool kvm_is_mmio_pfn(pfn_t pfn)
2480 {
2481         if (pfn_valid(pfn))
2482                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2483
2484         return true;
2485 }
2486
2487 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2488                     unsigned pte_access, int level,
2489                     gfn_t gfn, pfn_t pfn, bool speculative,
2490                     bool can_unsync, bool host_writable)
2491 {
2492         u64 spte;
2493         int ret = 0;
2494
2495         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2496                 return 0;
2497
2498         spte = PT_PRESENT_MASK;
2499         if (!speculative)
2500                 spte |= shadow_accessed_mask;
2501
2502         if (pte_access & ACC_EXEC_MASK)
2503                 spte |= shadow_x_mask;
2504         else
2505                 spte |= shadow_nx_mask;
2506
2507         if (pte_access & ACC_USER_MASK)
2508                 spte |= shadow_user_mask;
2509
2510         if (level > PT_PAGE_TABLE_LEVEL)
2511                 spte |= PT_PAGE_SIZE_MASK;
2512         if (tdp_enabled)
2513                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2514                         kvm_is_mmio_pfn(pfn));
2515
2516         if (host_writable)
2517                 spte |= SPTE_HOST_WRITEABLE;
2518         else
2519                 pte_access &= ~ACC_WRITE_MASK;
2520
2521         spte |= (u64)pfn << PAGE_SHIFT;
2522
2523         if (pte_access & ACC_WRITE_MASK) {
2524
2525                 /*
2526                  * Other vcpu creates new sp in the window between
2527                  * mapping_level() and acquiring mmu-lock. We can
2528                  * allow guest to retry the access, the mapping can
2529                  * be fixed if guest refault.
2530                  */
2531                 if (level > PT_PAGE_TABLE_LEVEL &&
2532                     has_wrprotected_page(vcpu, gfn, level))
2533                         goto done;
2534
2535                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2536
2537                 /*
2538                  * Optimization: for pte sync, if spte was writable the hash
2539                  * lookup is unnecessary (and expensive). Write protection
2540                  * is responsibility of mmu_get_page / kvm_sync_page.
2541                  * Same reasoning can be applied to dirty page accounting.
2542                  */
2543                 if (!can_unsync && is_writable_pte(*sptep))
2544                         goto set_pte;
2545
2546                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2547                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2548                                  __func__, gfn);
2549                         ret = 1;
2550                         pte_access &= ~ACC_WRITE_MASK;
2551                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2552                 }
2553         }
2554
2555         if (pte_access & ACC_WRITE_MASK) {
2556                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2557                 spte |= shadow_dirty_mask;
2558         }
2559
2560 set_pte:
2561         if (mmu_spte_update(sptep, spte))
2562                 kvm_flush_remote_tlbs(vcpu->kvm);
2563 done:
2564         return ret;
2565 }
2566
2567 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2568                          unsigned pte_access, int write_fault, int *emulate,
2569                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2570                          bool host_writable)
2571 {
2572         int was_rmapped = 0;
2573         int rmap_count;
2574
2575         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2576                  *sptep, write_fault, gfn);
2577
2578         if (is_rmap_spte(*sptep)) {
2579                 /*
2580                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2581                  * the parent of the now unreachable PTE.
2582                  */
2583                 if (level > PT_PAGE_TABLE_LEVEL &&
2584                     !is_large_pte(*sptep)) {
2585                         struct kvm_mmu_page *child;
2586                         u64 pte = *sptep;
2587
2588                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2589                         drop_parent_pte(child, sptep);
2590                         kvm_flush_remote_tlbs(vcpu->kvm);
2591                 } else if (pfn != spte_to_pfn(*sptep)) {
2592                         pgprintk("hfn old %llx new %llx\n",
2593                                  spte_to_pfn(*sptep), pfn);
2594                         drop_spte(vcpu->kvm, sptep);
2595                         kvm_flush_remote_tlbs(vcpu->kvm);
2596                 } else
2597                         was_rmapped = 1;
2598         }
2599
2600         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2601               true, host_writable)) {
2602                 if (write_fault)
2603                         *emulate = 1;
2604                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2605         }
2606
2607         if (unlikely(is_mmio_spte(*sptep) && emulate))
2608                 *emulate = 1;
2609
2610         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2611         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2612                  is_large_pte(*sptep)? "2MB" : "4kB",
2613                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2614                  *sptep, sptep);
2615         if (!was_rmapped && is_large_pte(*sptep))
2616                 ++vcpu->kvm->stat.lpages;
2617
2618         if (is_shadow_present_pte(*sptep)) {
2619                 if (!was_rmapped) {
2620                         rmap_count = rmap_add(vcpu, sptep, gfn);
2621                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2622                                 rmap_recycle(vcpu, sptep, gfn);
2623                 }
2624         }
2625
2626         kvm_release_pfn_clean(pfn);
2627 }
2628
2629 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2630                                      bool no_dirty_log)
2631 {
2632         struct kvm_memory_slot *slot;
2633
2634         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2635         if (!slot)
2636                 return KVM_PFN_ERR_FAULT;
2637
2638         return gfn_to_pfn_memslot_atomic(slot, gfn);
2639 }
2640
2641 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2642                                     struct kvm_mmu_page *sp,
2643                                     u64 *start, u64 *end)
2644 {
2645         struct page *pages[PTE_PREFETCH_NUM];
2646         struct kvm_memory_slot *slot;
2647         unsigned access = sp->role.access;
2648         int i, ret;
2649         gfn_t gfn;
2650
2651         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2652         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2653         if (!slot)
2654                 return -1;
2655
2656         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2657         if (ret <= 0)
2658                 return -1;
2659
2660         for (i = 0; i < ret; i++, gfn++, start++)
2661                 mmu_set_spte(vcpu, start, access, 0, NULL,
2662                              sp->role.level, gfn, page_to_pfn(pages[i]),
2663                              true, true);
2664
2665         return 0;
2666 }
2667
2668 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2669                                   struct kvm_mmu_page *sp, u64 *sptep)
2670 {
2671         u64 *spte, *start = NULL;
2672         int i;
2673
2674         WARN_ON(!sp->role.direct);
2675
2676         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2677         spte = sp->spt + i;
2678
2679         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2680                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2681                         if (!start)
2682                                 continue;
2683                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2684                                 break;
2685                         start = NULL;
2686                 } else if (!start)
2687                         start = spte;
2688         }
2689 }
2690
2691 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2692 {
2693         struct kvm_mmu_page *sp;
2694
2695         /*
2696          * Since it's no accessed bit on EPT, it's no way to
2697          * distinguish between actually accessed translations
2698          * and prefetched, so disable pte prefetch if EPT is
2699          * enabled.
2700          */
2701         if (!shadow_accessed_mask)
2702                 return;
2703
2704         sp = page_header(__pa(sptep));
2705         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2706                 return;
2707
2708         __direct_pte_prefetch(vcpu, sp, sptep);
2709 }
2710
2711 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2712                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2713                         bool prefault)
2714 {
2715         struct kvm_shadow_walk_iterator iterator;
2716         struct kvm_mmu_page *sp;
2717         int emulate = 0;
2718         gfn_t pseudo_gfn;
2719
2720         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2721                 return 0;
2722
2723         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2724                 if (iterator.level == level) {
2725                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2726                                      write, &emulate, level, gfn, pfn,
2727                                      prefault, map_writable);
2728                         direct_pte_prefetch(vcpu, iterator.sptep);
2729                         ++vcpu->stat.pf_fixed;
2730                         break;
2731                 }
2732
2733                 drop_large_spte(vcpu, iterator.sptep);
2734                 if (!is_shadow_present_pte(*iterator.sptep)) {
2735                         u64 base_addr = iterator.addr;
2736
2737                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2738                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2739                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2740                                               iterator.level - 1,
2741                                               1, ACC_ALL, iterator.sptep);
2742
2743                         link_shadow_page(iterator.sptep, sp, true);
2744                 }
2745         }
2746         return emulate;
2747 }
2748
2749 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2750 {
2751         siginfo_t info;
2752
2753         info.si_signo   = SIGBUS;
2754         info.si_errno   = 0;
2755         info.si_code    = BUS_MCEERR_AR;
2756         info.si_addr    = (void __user *)address;
2757         info.si_addr_lsb = PAGE_SHIFT;
2758
2759         send_sig_info(SIGBUS, &info, tsk);
2760 }
2761
2762 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2763 {
2764         /*
2765          * Do not cache the mmio info caused by writing the readonly gfn
2766          * into the spte otherwise read access on readonly gfn also can
2767          * caused mmio page fault and treat it as mmio access.
2768          * Return 1 to tell kvm to emulate it.
2769          */
2770         if (pfn == KVM_PFN_ERR_RO_FAULT)
2771                 return 1;
2772
2773         if (pfn == KVM_PFN_ERR_HWPOISON) {
2774                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2775                 return 0;
2776         }
2777
2778         return -EFAULT;
2779 }
2780
2781 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2782                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2783 {
2784         pfn_t pfn = *pfnp;
2785         gfn_t gfn = *gfnp;
2786         int level = *levelp;
2787
2788         /*
2789          * Check if it's a transparent hugepage. If this would be an
2790          * hugetlbfs page, level wouldn't be set to
2791          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2792          * here.
2793          */
2794         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2795             level == PT_PAGE_TABLE_LEVEL &&
2796             PageTransCompound(pfn_to_page(pfn)) &&
2797             !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2798                 unsigned long mask;
2799                 /*
2800                  * mmu_notifier_retry was successful and we hold the
2801                  * mmu_lock here, so the pmd can't become splitting
2802                  * from under us, and in turn
2803                  * __split_huge_page_refcount() can't run from under
2804                  * us and we can safely transfer the refcount from
2805                  * PG_tail to PG_head as we switch the pfn to tail to
2806                  * head.
2807                  */
2808                 *levelp = level = PT_DIRECTORY_LEVEL;
2809                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2810                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2811                 if (pfn & mask) {
2812                         gfn &= ~mask;
2813                         *gfnp = gfn;
2814                         kvm_release_pfn_clean(pfn);
2815                         pfn &= ~mask;
2816                         kvm_get_pfn(pfn);
2817                         *pfnp = pfn;
2818                 }
2819         }
2820 }
2821
2822 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2823                                 pfn_t pfn, unsigned access, int *ret_val)
2824 {
2825         bool ret = true;
2826
2827         /* The pfn is invalid, report the error! */
2828         if (unlikely(is_error_pfn(pfn))) {
2829                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2830                 goto exit;
2831         }
2832
2833         if (unlikely(is_noslot_pfn(pfn)))
2834                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2835
2836         ret = false;
2837 exit:
2838         return ret;
2839 }
2840
2841 static bool page_fault_can_be_fast(u32 error_code)
2842 {
2843         /*
2844          * Do not fix the mmio spte with invalid generation number which
2845          * need to be updated by slow page fault path.
2846          */
2847         if (unlikely(error_code & PFERR_RSVD_MASK))
2848                 return false;
2849
2850         /*
2851          * #PF can be fast only if the shadow page table is present and it
2852          * is caused by write-protect, that means we just need change the
2853          * W bit of the spte which can be done out of mmu-lock.
2854          */
2855         if (!(error_code & PFERR_PRESENT_MASK) ||
2856               !(error_code & PFERR_WRITE_MASK))
2857                 return false;
2858
2859         return true;
2860 }
2861
2862 static bool
2863 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2864                         u64 *sptep, u64 spte)
2865 {
2866         gfn_t gfn;
2867
2868         WARN_ON(!sp->role.direct);
2869
2870         /*
2871          * The gfn of direct spte is stable since it is calculated
2872          * by sp->gfn.
2873          */
2874         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2875
2876         /*
2877          * Theoretically we could also set dirty bit (and flush TLB) here in
2878          * order to eliminate unnecessary PML logging. See comments in
2879          * set_spte. But fast_page_fault is very unlikely to happen with PML
2880          * enabled, so we do not do this. This might result in the same GPA
2881          * to be logged in PML buffer again when the write really happens, and
2882          * eventually to be called by mark_page_dirty twice. But it's also no
2883          * harm. This also avoids the TLB flush needed after setting dirty bit
2884          * so non-PML cases won't be impacted.
2885          *
2886          * Compare with set_spte where instead shadow_dirty_mask is set.
2887          */
2888         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2889                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2890
2891         return true;
2892 }
2893
2894 /*
2895  * Return value:
2896  * - true: let the vcpu to access on the same address again.
2897  * - false: let the real page fault path to fix it.
2898  */
2899 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2900                             u32 error_code)
2901 {
2902         struct kvm_shadow_walk_iterator iterator;
2903         struct kvm_mmu_page *sp;
2904         bool ret = false;
2905         u64 spte = 0ull;
2906
2907         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2908                 return false;
2909
2910         if (!page_fault_can_be_fast(error_code))
2911                 return false;
2912
2913         walk_shadow_page_lockless_begin(vcpu);
2914         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2915                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2916                         break;
2917
2918         /*
2919          * If the mapping has been changed, let the vcpu fault on the
2920          * same address again.
2921          */
2922         if (!is_rmap_spte(spte)) {
2923                 ret = true;
2924                 goto exit;
2925         }
2926
2927         sp = page_header(__pa(iterator.sptep));
2928         if (!is_last_spte(spte, sp->role.level))
2929                 goto exit;
2930
2931         /*
2932          * Check if it is a spurious fault caused by TLB lazily flushed.
2933          *
2934          * Need not check the access of upper level table entries since
2935          * they are always ACC_ALL.
2936          */
2937          if (is_writable_pte(spte)) {
2938                 ret = true;
2939                 goto exit;
2940         }
2941
2942         /*
2943          * Currently, to simplify the code, only the spte write-protected
2944          * by dirty-log can be fast fixed.
2945          */
2946         if (!spte_is_locklessly_modifiable(spte))
2947                 goto exit;
2948
2949         /*
2950          * Do not fix write-permission on the large spte since we only dirty
2951          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2952          * that means other pages are missed if its slot is dirty-logged.
2953          *
2954          * Instead, we let the slow page fault path create a normal spte to
2955          * fix the access.
2956          *
2957          * See the comments in kvm_arch_commit_memory_region().
2958          */
2959         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2960                 goto exit;
2961
2962         /*
2963          * Currently, fast page fault only works for direct mapping since
2964          * the gfn is not stable for indirect shadow page.
2965          * See Documentation/virtual/kvm/locking.txt to get more detail.
2966          */
2967         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2968 exit:
2969         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2970                               spte, ret);
2971         walk_shadow_page_lockless_end(vcpu);
2972
2973         return ret;
2974 }
2975
2976 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2977                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2978 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2979
2980 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2981                          gfn_t gfn, bool prefault)
2982 {
2983         int r;
2984         int level;
2985         bool force_pt_level = false;
2986         pfn_t pfn;
2987         unsigned long mmu_seq;
2988         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2989
2990         level = mapping_level(vcpu, gfn, &force_pt_level);
2991         if (likely(!force_pt_level)) {
2992                 /*
2993                  * This path builds a PAE pagetable - so we can map
2994                  * 2mb pages at maximum. Therefore check if the level
2995                  * is larger than that.
2996                  */
2997                 if (level > PT_DIRECTORY_LEVEL)
2998                         level = PT_DIRECTORY_LEVEL;
2999
3000                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3001         }
3002
3003         if (fast_page_fault(vcpu, v, level, error_code))
3004                 return 0;
3005
3006         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3007         smp_rmb();
3008
3009         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3010                 return 0;
3011
3012         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3013                 return r;
3014
3015         spin_lock(&vcpu->kvm->mmu_lock);
3016         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3017                 goto out_unlock;
3018         make_mmu_pages_available(vcpu);
3019         if (likely(!force_pt_level))
3020                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3021         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3022                          prefault);
3023         spin_unlock(&vcpu->kvm->mmu_lock);
3024
3025
3026         return r;
3027
3028 out_unlock:
3029         spin_unlock(&vcpu->kvm->mmu_lock);
3030         kvm_release_pfn_clean(pfn);
3031         return 0;
3032 }
3033
3034
3035 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3036 {
3037         int i;
3038         struct kvm_mmu_page *sp;
3039         LIST_HEAD(invalid_list);
3040
3041         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3042                 return;
3043
3044         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3045             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3046              vcpu->arch.mmu.direct_map)) {
3047                 hpa_t root = vcpu->arch.mmu.root_hpa;
3048
3049                 spin_lock(&vcpu->kvm->mmu_lock);
3050                 sp = page_header(root);
3051                 --sp->root_count;
3052                 if (!sp->root_count && sp->role.invalid) {
3053                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3054                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3055                 }
3056                 spin_unlock(&vcpu->kvm->mmu_lock);
3057                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3058                 return;
3059         }
3060
3061         spin_lock(&vcpu->kvm->mmu_lock);
3062         for (i = 0; i < 4; ++i) {
3063                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3064
3065                 if (root) {
3066                         root &= PT64_BASE_ADDR_MASK;
3067                         sp = page_header(root);
3068                         --sp->root_count;
3069                         if (!sp->root_count && sp->role.invalid)
3070                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3071                                                          &invalid_list);
3072                 }
3073                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3074         }
3075         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3076         spin_unlock(&vcpu->kvm->mmu_lock);
3077         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3078 }
3079
3080 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3081 {
3082         int ret = 0;
3083
3084         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3085                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3086                 ret = 1;
3087         }
3088
3089         return ret;
3090 }
3091
3092 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3093 {
3094         struct kvm_mmu_page *sp;
3095         unsigned i;
3096
3097         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3098                 spin_lock(&vcpu->kvm->mmu_lock);
3099                 make_mmu_pages_available(vcpu);
3100                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3101                                       1, ACC_ALL, NULL);
3102                 ++sp->root_count;
3103                 spin_unlock(&vcpu->kvm->mmu_lock);
3104                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3105         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3106                 for (i = 0; i < 4; ++i) {
3107                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3108
3109                         MMU_WARN_ON(VALID_PAGE(root));
3110                         spin_lock(&vcpu->kvm->mmu_lock);
3111                         make_mmu_pages_available(vcpu);
3112                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3113                                               i << 30,
3114                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3115                                               NULL);
3116                         root = __pa(sp->spt);
3117                         ++sp->root_count;
3118                         spin_unlock(&vcpu->kvm->mmu_lock);
3119                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3120                 }
3121                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3122         } else
3123                 BUG();
3124
3125         return 0;
3126 }
3127
3128 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3129 {
3130         struct kvm_mmu_page *sp;
3131         u64 pdptr, pm_mask;
3132         gfn_t root_gfn;
3133         int i;
3134
3135         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3136
3137         if (mmu_check_root(vcpu, root_gfn))
3138                 return 1;
3139
3140         /*
3141          * Do we shadow a long mode page table? If so we need to
3142          * write-protect the guests page table root.
3143          */
3144         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3145                 hpa_t root = vcpu->arch.mmu.root_hpa;
3146
3147                 MMU_WARN_ON(VALID_PAGE(root));
3148
3149                 spin_lock(&vcpu->kvm->mmu_lock);
3150                 make_mmu_pages_available(vcpu);
3151                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3152                                       0, ACC_ALL, NULL);
3153                 root = __pa(sp->spt);
3154                 ++sp->root_count;
3155                 spin_unlock(&vcpu->kvm->mmu_lock);
3156                 vcpu->arch.mmu.root_hpa = root;
3157                 return 0;
3158         }
3159
3160         /*
3161          * We shadow a 32 bit page table. This may be a legacy 2-level
3162          * or a PAE 3-level page table. In either case we need to be aware that
3163          * the shadow page table may be a PAE or a long mode page table.
3164          */
3165         pm_mask = PT_PRESENT_MASK;
3166         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3167                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3168
3169         for (i = 0; i < 4; ++i) {
3170                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3171
3172                 MMU_WARN_ON(VALID_PAGE(root));
3173                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3174                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3175                         if (!is_present_gpte(pdptr)) {
3176                                 vcpu->arch.mmu.pae_root[i] = 0;
3177                                 continue;
3178                         }
3179                         root_gfn = pdptr >> PAGE_SHIFT;
3180                         if (mmu_check_root(vcpu, root_gfn))
3181                                 return 1;
3182                 }
3183                 spin_lock(&vcpu->kvm->mmu_lock);
3184                 make_mmu_pages_available(vcpu);
3185                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3186                                       PT32_ROOT_LEVEL, 0,
3187                                       ACC_ALL, NULL);
3188                 root = __pa(sp->spt);
3189                 ++sp->root_count;
3190                 spin_unlock(&vcpu->kvm->mmu_lock);
3191
3192                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3193         }
3194         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3195
3196         /*
3197          * If we shadow a 32 bit page table with a long mode page
3198          * table we enter this path.
3199          */
3200         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3201                 if (vcpu->arch.mmu.lm_root == NULL) {
3202                         /*
3203                          * The additional page necessary for this is only
3204                          * allocated on demand.
3205                          */
3206
3207                         u64 *lm_root;
3208
3209                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3210                         if (lm_root == NULL)
3211                                 return 1;
3212
3213                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3214
3215                         vcpu->arch.mmu.lm_root = lm_root;
3216                 }
3217
3218                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3219         }
3220
3221         return 0;
3222 }
3223
3224 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3225 {
3226         if (vcpu->arch.mmu.direct_map)
3227                 return mmu_alloc_direct_roots(vcpu);
3228         else
3229                 return mmu_alloc_shadow_roots(vcpu);
3230 }
3231
3232 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3233 {
3234         int i;
3235         struct kvm_mmu_page *sp;
3236
3237         if (vcpu->arch.mmu.direct_map)
3238                 return;
3239
3240         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3241                 return;
3242
3243         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3244         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3245         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3246                 hpa_t root = vcpu->arch.mmu.root_hpa;
3247                 sp = page_header(root);
3248                 mmu_sync_children(vcpu, sp);
3249                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3250                 return;
3251         }
3252         for (i = 0; i < 4; ++i) {
3253                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3254
3255                 if (root && VALID_PAGE(root)) {
3256                         root &= PT64_BASE_ADDR_MASK;
3257                         sp = page_header(root);
3258                         mmu_sync_children(vcpu, sp);
3259                 }
3260         }
3261         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3262 }
3263
3264 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3265 {
3266         spin_lock(&vcpu->kvm->mmu_lock);
3267         mmu_sync_roots(vcpu);
3268         spin_unlock(&vcpu->kvm->mmu_lock);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3271
3272 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3273                                   u32 access, struct x86_exception *exception)
3274 {
3275         if (exception)
3276                 exception->error_code = 0;
3277         return vaddr;
3278 }
3279
3280 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3281                                          u32 access,
3282                                          struct x86_exception *exception)
3283 {
3284         if (exception)
3285                 exception->error_code = 0;
3286         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3287 }
3288
3289 static bool
3290 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3291 {
3292         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3293
3294         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3295                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3296 }
3297
3298 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3299 {
3300         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3301 }
3302
3303 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3304 {
3305         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3306 }
3307
3308 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3309 {
3310         if (direct)
3311                 return vcpu_match_mmio_gpa(vcpu, addr);
3312
3313         return vcpu_match_mmio_gva(vcpu, addr);
3314 }
3315
3316 /* return true if reserved bit is detected on spte. */
3317 static bool
3318 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3319 {
3320         struct kvm_shadow_walk_iterator iterator;
3321         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3322         int root, leaf;
3323         bool reserved = false;
3324
3325         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326                 goto exit;
3327
3328         walk_shadow_page_lockless_begin(vcpu);
3329
3330         for (shadow_walk_init(&iterator, vcpu, addr),
3331                  leaf = root = iterator.level;
3332              shadow_walk_okay(&iterator);
3333              __shadow_walk_next(&iterator, spte)) {
3334                 spte = mmu_spte_get_lockless(iterator.sptep);
3335
3336                 sptes[leaf - 1] = spte;
3337                 leaf--;
3338
3339                 if (!is_shadow_present_pte(spte))
3340                         break;
3341
3342                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3343                                                     iterator.level);
3344         }
3345
3346         walk_shadow_page_lockless_end(vcpu);
3347
3348         if (reserved) {
3349                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3350                        __func__, addr);
3351                 while (root > leaf) {
3352                         pr_err("------ spte 0x%llx level %d.\n",
3353                                sptes[root - 1], root);
3354                         root--;
3355                 }
3356         }
3357 exit:
3358         *sptep = spte;
3359         return reserved;
3360 }
3361
3362 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3363 {
3364         u64 spte;
3365         bool reserved;
3366
3367         if (quickly_check_mmio_pf(vcpu, addr, direct))
3368                 return RET_MMIO_PF_EMULATE;
3369
3370         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3371         if (WARN_ON(reserved))
3372                 return RET_MMIO_PF_BUG;
3373
3374         if (is_mmio_spte(spte)) {
3375                 gfn_t gfn = get_mmio_spte_gfn(spte);
3376                 unsigned access = get_mmio_spte_access(spte);
3377
3378                 if (!check_mmio_spte(vcpu, spte))
3379                         return RET_MMIO_PF_INVALID;
3380
3381                 if (direct)
3382                         addr = 0;
3383
3384                 trace_handle_mmio_page_fault(addr, gfn, access);
3385                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3386                 return RET_MMIO_PF_EMULATE;
3387         }
3388
3389         /*
3390          * If the page table is zapped by other cpus, let CPU fault again on
3391          * the address.
3392          */
3393         return RET_MMIO_PF_RETRY;
3394 }
3395 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3396
3397 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3398                                 u32 error_code, bool prefault)
3399 {
3400         gfn_t gfn;
3401         int r;
3402
3403         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3404
3405         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3406                 r = handle_mmio_page_fault(vcpu, gva, true);
3407
3408                 if (likely(r != RET_MMIO_PF_INVALID))
3409                         return r;
3410         }
3411
3412         r = mmu_topup_memory_caches(vcpu);
3413         if (r)
3414                 return r;
3415
3416         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3417
3418         gfn = gva >> PAGE_SHIFT;
3419
3420         return nonpaging_map(vcpu, gva & PAGE_MASK,
3421                              error_code, gfn, prefault);
3422 }
3423
3424 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3425 {
3426         struct kvm_arch_async_pf arch;
3427
3428         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3429         arch.gfn = gfn;
3430         arch.direct_map = vcpu->arch.mmu.direct_map;
3431         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3432
3433         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3434 }
3435
3436 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3437 {
3438         if (unlikely(!lapic_in_kernel(vcpu) ||
3439                      kvm_event_needs_reinjection(vcpu)))
3440                 return false;
3441
3442         return kvm_x86_ops->interrupt_allowed(vcpu);
3443 }
3444
3445 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3446                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3447 {
3448         struct kvm_memory_slot *slot;
3449         bool async;
3450
3451         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3452         async = false;
3453         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3454         if (!async)
3455                 return false; /* *pfn has correct page already */
3456
3457         if (!prefault && can_do_async_pf(vcpu)) {
3458                 trace_kvm_try_async_get_page(gva, gfn);
3459                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3460                         trace_kvm_async_pf_doublefault(gva, gfn);
3461                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3462                         return true;
3463                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3464                         return true;
3465         }
3466
3467         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3468         return false;
3469 }
3470
3471 static bool
3472 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3473 {
3474         int page_num = KVM_PAGES_PER_HPAGE(level);
3475
3476         gfn &= ~(page_num - 1);
3477
3478         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3479 }
3480
3481 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3482                           bool prefault)
3483 {
3484         pfn_t pfn;
3485         int r;
3486         int level;
3487         bool force_pt_level;
3488         gfn_t gfn = gpa >> PAGE_SHIFT;
3489         unsigned long mmu_seq;
3490         int write = error_code & PFERR_WRITE_MASK;
3491         bool map_writable;
3492
3493         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3494
3495         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3496                 r = handle_mmio_page_fault(vcpu, gpa, true);
3497
3498                 if (likely(r != RET_MMIO_PF_INVALID))
3499                         return r;
3500         }
3501
3502         r = mmu_topup_memory_caches(vcpu);
3503         if (r)
3504                 return r;
3505
3506         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3507                                                            PT_DIRECTORY_LEVEL);
3508         level = mapping_level(vcpu, gfn, &force_pt_level);
3509         if (likely(!force_pt_level)) {
3510                 if (level > PT_DIRECTORY_LEVEL &&
3511                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3512                         level = PT_DIRECTORY_LEVEL;
3513                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3514         }
3515
3516         if (fast_page_fault(vcpu, gpa, level, error_code))
3517                 return 0;
3518
3519         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3520         smp_rmb();
3521
3522         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3523                 return 0;
3524
3525         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3526                 return r;
3527
3528         spin_lock(&vcpu->kvm->mmu_lock);
3529         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3530                 goto out_unlock;
3531         make_mmu_pages_available(vcpu);
3532         if (likely(!force_pt_level))
3533                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3534         r = __direct_map(vcpu, gpa, write, map_writable,
3535                          level, gfn, pfn, prefault);
3536         spin_unlock(&vcpu->kvm->mmu_lock);
3537
3538         return r;
3539
3540 out_unlock:
3541         spin_unlock(&vcpu->kvm->mmu_lock);
3542         kvm_release_pfn_clean(pfn);
3543         return 0;
3544 }
3545
3546 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3547                                    struct kvm_mmu *context)
3548 {
3549         context->page_fault = nonpaging_page_fault;
3550         context->gva_to_gpa = nonpaging_gva_to_gpa;
3551         context->sync_page = nonpaging_sync_page;
3552         context->invlpg = nonpaging_invlpg;
3553         context->update_pte = nonpaging_update_pte;
3554         context->root_level = 0;
3555         context->shadow_root_level = PT32E_ROOT_LEVEL;
3556         context->root_hpa = INVALID_PAGE;
3557         context->direct_map = true;
3558         context->nx = false;
3559 }
3560
3561 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3562 {
3563         mmu_free_roots(vcpu);
3564 }
3565
3566 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3567 {
3568         return kvm_read_cr3(vcpu);
3569 }
3570
3571 static void inject_page_fault(struct kvm_vcpu *vcpu,
3572                               struct x86_exception *fault)
3573 {
3574         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3575 }
3576
3577 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3578                            unsigned access, int *nr_present)
3579 {
3580         if (unlikely(is_mmio_spte(*sptep))) {
3581                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3582                         mmu_spte_clear_no_track(sptep);
3583                         return true;
3584                 }
3585
3586                 (*nr_present)++;
3587                 mark_mmio_spte(vcpu, sptep, gfn, access);
3588                 return true;
3589         }
3590
3591         return false;
3592 }
3593
3594 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3595 {
3596         unsigned index;
3597
3598         index = level - 1;
3599         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3600         return mmu->last_pte_bitmap & (1 << index);
3601 }
3602
3603 #define PTTYPE_EPT 18 /* arbitrary */
3604 #define PTTYPE PTTYPE_EPT
3605 #include "paging_tmpl.h"
3606 #undef PTTYPE
3607
3608 #define PTTYPE 64
3609 #include "paging_tmpl.h"
3610 #undef PTTYPE
3611
3612 #define PTTYPE 32
3613 #include "paging_tmpl.h"
3614 #undef PTTYPE
3615
3616 static void
3617 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3618                         struct rsvd_bits_validate *rsvd_check,
3619                         int maxphyaddr, int level, bool nx, bool gbpages,
3620                         bool pse, bool amd)
3621 {
3622         u64 exb_bit_rsvd = 0;
3623         u64 gbpages_bit_rsvd = 0;
3624         u64 nonleaf_bit8_rsvd = 0;
3625
3626         rsvd_check->bad_mt_xwr = 0;
3627
3628         if (!nx)
3629                 exb_bit_rsvd = rsvd_bits(63, 63);
3630         if (!gbpages)
3631                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3632
3633         /*
3634          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3635          * leaf entries) on AMD CPUs only.
3636          */
3637         if (amd)
3638                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3639
3640         switch (level) {
3641         case PT32_ROOT_LEVEL:
3642                 /* no rsvd bits for 2 level 4K page table entries */
3643                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3644                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3645                 rsvd_check->rsvd_bits_mask[1][0] =
3646                         rsvd_check->rsvd_bits_mask[0][0];
3647
3648                 if (!pse) {
3649                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3650                         break;
3651                 }
3652
3653                 if (is_cpuid_PSE36())
3654                         /* 36bits PSE 4MB page */
3655                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3656                 else
3657                         /* 32 bits PSE 4MB page */
3658                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3659                 break;
3660         case PT32E_ROOT_LEVEL:
3661                 rsvd_check->rsvd_bits_mask[0][2] =
3662                         rsvd_bits(maxphyaddr, 63) |
3663                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3664                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3665                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3666                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3667                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3668                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3669                         rsvd_bits(maxphyaddr, 62) |
3670                         rsvd_bits(13, 20);              /* large page */
3671                 rsvd_check->rsvd_bits_mask[1][0] =
3672                         rsvd_check->rsvd_bits_mask[0][0];
3673                 break;
3674         case PT64_ROOT_LEVEL:
3675                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3676                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3677                         rsvd_bits(maxphyaddr, 51);
3678                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3679                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3680                         rsvd_bits(maxphyaddr, 51);
3681                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3682                         rsvd_bits(maxphyaddr, 51);
3683                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3684                         rsvd_bits(maxphyaddr, 51);
3685                 rsvd_check->rsvd_bits_mask[1][3] =
3686                         rsvd_check->rsvd_bits_mask[0][3];
3687                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3688                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3689                         rsvd_bits(13, 29);
3690                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3691                         rsvd_bits(maxphyaddr, 51) |
3692                         rsvd_bits(13, 20);              /* large page */
3693                 rsvd_check->rsvd_bits_mask[1][0] =
3694                         rsvd_check->rsvd_bits_mask[0][0];
3695                 break;
3696         }
3697 }
3698
3699 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3700                                   struct kvm_mmu *context)
3701 {
3702         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3703                                 cpuid_maxphyaddr(vcpu), context->root_level,
3704                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3705                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3706 }
3707
3708 static void
3709 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3710                             int maxphyaddr, bool execonly)
3711 {
3712         u64 bad_mt_xwr;
3713
3714         rsvd_check->rsvd_bits_mask[0][3] =
3715                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3716         rsvd_check->rsvd_bits_mask[0][2] =
3717                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3718         rsvd_check->rsvd_bits_mask[0][1] =
3719                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3720         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3721
3722         /* large page */
3723         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3724         rsvd_check->rsvd_bits_mask[1][2] =
3725                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3726         rsvd_check->rsvd_bits_mask[1][1] =
3727                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3728         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3729
3730         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3731         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3732         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3733         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3734         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3735         if (!execonly) {
3736                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3737                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3738         }
3739         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3740 }
3741
3742 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3743                 struct kvm_mmu *context, bool execonly)
3744 {
3745         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3746                                     cpuid_maxphyaddr(vcpu), execonly);
3747 }
3748
3749 /*
3750  * the page table on host is the shadow page table for the page
3751  * table in guest or amd nested guest, its mmu features completely
3752  * follow the features in guest.
3753  */
3754 void
3755 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3756 {
3757         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3758
3759         /*
3760          * Passing "true" to the last argument is okay; it adds a check
3761          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3762          */
3763         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3764                                 boot_cpu_data.x86_phys_bits,
3765                                 context->shadow_root_level, uses_nx,
3766                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3767                                 true);
3768 }
3769 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3770
3771 static inline bool boot_cpu_is_amd(void)
3772 {
3773         WARN_ON_ONCE(!tdp_enabled);
3774         return shadow_x_mask == 0;
3775 }
3776
3777 /*
3778  * the direct page table on host, use as much mmu features as
3779  * possible, however, kvm currently does not do execution-protection.
3780  */
3781 static void
3782 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3783                                 struct kvm_mmu *context)
3784 {
3785         if (boot_cpu_is_amd())
3786                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3787                                         boot_cpu_data.x86_phys_bits,
3788                                         context->shadow_root_level, false,
3789                                         cpu_has_gbpages, true, true);
3790         else
3791                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3792                                             boot_cpu_data.x86_phys_bits,
3793                                             false);
3794
3795 }
3796
3797 /*
3798  * as the comments in reset_shadow_zero_bits_mask() except it
3799  * is the shadow page table for intel nested guest.
3800  */
3801 static void
3802 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3803                                 struct kvm_mmu *context, bool execonly)
3804 {
3805         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3806                                     boot_cpu_data.x86_phys_bits, execonly);
3807 }
3808
3809 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3810                                       struct kvm_mmu *mmu, bool ept)
3811 {
3812         unsigned bit, byte, pfec;
3813         u8 map;
3814         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3815
3816         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3817         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3818         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3819                 pfec = byte << 1;
3820                 map = 0;
3821                 wf = pfec & PFERR_WRITE_MASK;
3822                 uf = pfec & PFERR_USER_MASK;
3823                 ff = pfec & PFERR_FETCH_MASK;
3824                 /*
3825                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3826                  * subject to SMAP restrictions, and cleared otherwise. The
3827                  * bit is only meaningful if the SMAP bit is set in CR4.
3828                  */
3829                 smapf = !(pfec & PFERR_RSVD_MASK);
3830                 for (bit = 0; bit < 8; ++bit) {
3831                         x = bit & ACC_EXEC_MASK;
3832                         w = bit & ACC_WRITE_MASK;
3833                         u = bit & ACC_USER_MASK;
3834
3835                         if (!ept) {
3836                                 /* Not really needed: !nx will cause pte.nx to fault */
3837                                 x |= !mmu->nx;
3838                                 /* Allow supervisor writes if !cr0.wp */
3839                                 w |= !is_write_protection(vcpu) && !uf;
3840                                 /* Disallow supervisor fetches of user code if cr4.smep */
3841                                 x &= !(cr4_smep && u && !uf);
3842
3843                                 /*
3844                                  * SMAP:kernel-mode data accesses from user-mode
3845                                  * mappings should fault. A fault is considered
3846                                  * as a SMAP violation if all of the following
3847                                  * conditions are ture:
3848                                  *   - X86_CR4_SMAP is set in CR4
3849                                  *   - An user page is accessed
3850                                  *   - Page fault in kernel mode
3851                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3852                                  *
3853                                  *   Here, we cover the first three conditions.
3854                                  *   The fourth is computed dynamically in
3855                                  *   permission_fault() and is in smapf.
3856                                  *
3857                                  *   Also, SMAP does not affect instruction
3858                                  *   fetches, add the !ff check here to make it
3859                                  *   clearer.
3860                                  */
3861                                 smap = cr4_smap && u && !uf && !ff;
3862                         } else
3863                                 /* Not really needed: no U/S accesses on ept  */
3864                                 u = 1;
3865
3866                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3867                                 (smapf && smap);
3868                         map |= fault << bit;
3869                 }
3870                 mmu->permissions[byte] = map;
3871         }
3872 }
3873
3874 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3875 {
3876         u8 map;
3877         unsigned level, root_level = mmu->root_level;
3878         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3879
3880         if (root_level == PT32E_ROOT_LEVEL)
3881                 --root_level;
3882         /* PT_PAGE_TABLE_LEVEL always terminates */
3883         map = 1 | (1 << ps_set_index);
3884         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3885                 if (level <= PT_PDPE_LEVEL
3886                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3887                         map |= 1 << (ps_set_index | (level - 1));
3888         }
3889         mmu->last_pte_bitmap = map;
3890 }
3891
3892 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3893                                          struct kvm_mmu *context,
3894                                          int level)
3895 {
3896         context->nx = is_nx(vcpu);
3897         context->root_level = level;
3898
3899         reset_rsvds_bits_mask(vcpu, context);
3900         update_permission_bitmask(vcpu, context, false);
3901         update_last_pte_bitmap(vcpu, context);
3902
3903         MMU_WARN_ON(!is_pae(vcpu));
3904         context->page_fault = paging64_page_fault;
3905         context->gva_to_gpa = paging64_gva_to_gpa;
3906         context->sync_page = paging64_sync_page;
3907         context->invlpg = paging64_invlpg;
3908         context->update_pte = paging64_update_pte;
3909         context->shadow_root_level = level;
3910         context->root_hpa = INVALID_PAGE;
3911         context->direct_map = false;
3912 }
3913
3914 static void paging64_init_context(struct kvm_vcpu *vcpu,
3915                                   struct kvm_mmu *context)
3916 {
3917         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3918 }
3919
3920 static void paging32_init_context(struct kvm_vcpu *vcpu,
3921                                   struct kvm_mmu *context)
3922 {
3923         context->nx = false;
3924         context->root_level = PT32_ROOT_LEVEL;
3925
3926         reset_rsvds_bits_mask(vcpu, context);
3927         update_permission_bitmask(vcpu, context, false);
3928         update_last_pte_bitmap(vcpu, context);
3929
3930         context->page_fault = paging32_page_fault;
3931         context->gva_to_gpa = paging32_gva_to_gpa;
3932         context->sync_page = paging32_sync_page;
3933         context->invlpg = paging32_invlpg;
3934         context->update_pte = paging32_update_pte;
3935         context->shadow_root_level = PT32E_ROOT_LEVEL;
3936         context->root_hpa = INVALID_PAGE;
3937         context->direct_map = false;
3938 }
3939
3940 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3941                                    struct kvm_mmu *context)
3942 {
3943         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3944 }
3945
3946 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3947 {
3948         struct kvm_mmu *context = &vcpu->arch.mmu;
3949
3950         context->base_role.word = 0;
3951         context->base_role.smm = is_smm(vcpu);
3952         context->page_fault = tdp_page_fault;
3953         context->sync_page = nonpaging_sync_page;
3954         context->invlpg = nonpaging_invlpg;
3955         context->update_pte = nonpaging_update_pte;
3956         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3957         context->root_hpa = INVALID_PAGE;
3958         context->direct_map = true;
3959         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3960         context->get_cr3 = get_cr3;
3961         context->get_pdptr = kvm_pdptr_read;
3962         context->inject_page_fault = kvm_inject_page_fault;
3963
3964         if (!is_paging(vcpu)) {
3965                 context->nx = false;
3966                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3967                 context->root_level = 0;
3968         } else if (is_long_mode(vcpu)) {
3969                 context->nx = is_nx(vcpu);
3970                 context->root_level = PT64_ROOT_LEVEL;
3971                 reset_rsvds_bits_mask(vcpu, context);
3972                 context->gva_to_gpa = paging64_gva_to_gpa;
3973         } else if (is_pae(vcpu)) {
3974                 context->nx = is_nx(vcpu);
3975                 context->root_level = PT32E_ROOT_LEVEL;
3976                 reset_rsvds_bits_mask(vcpu, context);
3977                 context->gva_to_gpa = paging64_gva_to_gpa;
3978         } else {
3979                 context->nx = false;
3980                 context->root_level = PT32_ROOT_LEVEL;
3981                 reset_rsvds_bits_mask(vcpu, context);
3982                 context->gva_to_gpa = paging32_gva_to_gpa;
3983         }
3984
3985         update_permission_bitmask(vcpu, context, false);
3986         update_last_pte_bitmap(vcpu, context);
3987         reset_tdp_shadow_zero_bits_mask(vcpu, context);
3988 }
3989
3990 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3991 {
3992         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3993         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3994         struct kvm_mmu *context = &vcpu->arch.mmu;
3995
3996         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3997
3998         if (!is_paging(vcpu))
3999                 nonpaging_init_context(vcpu, context);
4000         else if (is_long_mode(vcpu))
4001                 paging64_init_context(vcpu, context);
4002         else if (is_pae(vcpu))
4003                 paging32E_init_context(vcpu, context);
4004         else
4005                 paging32_init_context(vcpu, context);
4006
4007         context->base_role.nxe = is_nx(vcpu);
4008         context->base_role.cr4_pae = !!is_pae(vcpu);
4009         context->base_role.cr0_wp  = is_write_protection(vcpu);
4010         context->base_role.smep_andnot_wp
4011                 = smep && !is_write_protection(vcpu);
4012         context->base_role.smap_andnot_wp
4013                 = smap && !is_write_protection(vcpu);
4014         context->base_role.smm = is_smm(vcpu);
4015         reset_shadow_zero_bits_mask(vcpu, context);
4016 }
4017 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4018
4019 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4020 {
4021         struct kvm_mmu *context = &vcpu->arch.mmu;
4022
4023         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4024
4025         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4026
4027         context->nx = true;
4028         context->page_fault = ept_page_fault;
4029         context->gva_to_gpa = ept_gva_to_gpa;
4030         context->sync_page = ept_sync_page;
4031         context->invlpg = ept_invlpg;
4032         context->update_pte = ept_update_pte;
4033         context->root_level = context->shadow_root_level;
4034         context->root_hpa = INVALID_PAGE;
4035         context->direct_map = false;
4036
4037         update_permission_bitmask(vcpu, context, true);
4038         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4039         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4040 }
4041 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4042
4043 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4044 {
4045         struct kvm_mmu *context = &vcpu->arch.mmu;
4046
4047         kvm_init_shadow_mmu(vcpu);
4048         context->set_cr3           = kvm_x86_ops->set_cr3;
4049         context->get_cr3           = get_cr3;
4050         context->get_pdptr         = kvm_pdptr_read;
4051         context->inject_page_fault = kvm_inject_page_fault;
4052 }
4053
4054 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4055 {
4056         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4057
4058         g_context->get_cr3           = get_cr3;
4059         g_context->get_pdptr         = kvm_pdptr_read;
4060         g_context->inject_page_fault = kvm_inject_page_fault;
4061
4062         /*
4063          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4064          * translation of l2_gpa to l1_gpa addresses is done using the
4065          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4066          * functions between mmu and nested_mmu are swapped.
4067          */
4068         if (!is_paging(vcpu)) {
4069                 g_context->nx = false;
4070                 g_context->root_level = 0;
4071                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4072         } else if (is_long_mode(vcpu)) {
4073                 g_context->nx = is_nx(vcpu);
4074                 g_context->root_level = PT64_ROOT_LEVEL;
4075                 reset_rsvds_bits_mask(vcpu, g_context);
4076                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4077         } else if (is_pae(vcpu)) {
4078                 g_context->nx = is_nx(vcpu);
4079                 g_context->root_level = PT32E_ROOT_LEVEL;
4080                 reset_rsvds_bits_mask(vcpu, g_context);
4081                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4082         } else {
4083                 g_context->nx = false;
4084                 g_context->root_level = PT32_ROOT_LEVEL;
4085                 reset_rsvds_bits_mask(vcpu, g_context);
4086                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4087         }
4088
4089         update_permission_bitmask(vcpu, g_context, false);
4090         update_last_pte_bitmap(vcpu, g_context);
4091 }
4092
4093 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4094 {
4095         if (mmu_is_nested(vcpu))
4096                 init_kvm_nested_mmu(vcpu);
4097         else if (tdp_enabled)
4098                 init_kvm_tdp_mmu(vcpu);
4099         else
4100                 init_kvm_softmmu(vcpu);
4101 }
4102
4103 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4104 {
4105         kvm_mmu_unload(vcpu);
4106         init_kvm_mmu(vcpu);
4107 }
4108 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4109
4110 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4111 {
4112         int r;
4113
4114         r = mmu_topup_memory_caches(vcpu);
4115         if (r)
4116                 goto out;
4117         r = mmu_alloc_roots(vcpu);
4118         kvm_mmu_sync_roots(vcpu);
4119         if (r)
4120                 goto out;
4121         /* set_cr3() should ensure TLB has been flushed */
4122         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4123 out:
4124         return r;
4125 }
4126 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4127
4128 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4129 {
4130         mmu_free_roots(vcpu);
4131         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4132 }
4133 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4134
4135 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4136                                   struct kvm_mmu_page *sp, u64 *spte,
4137                                   const void *new)
4138 {
4139         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4140                 ++vcpu->kvm->stat.mmu_pde_zapped;
4141                 return;
4142         }
4143
4144         ++vcpu->kvm->stat.mmu_pte_updated;
4145         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4146 }
4147
4148 static bool need_remote_flush(u64 old, u64 new)
4149 {
4150         if (!is_shadow_present_pte(old))
4151                 return false;
4152         if (!is_shadow_present_pte(new))
4153                 return true;
4154         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4155                 return true;
4156         old ^= shadow_nx_mask;
4157         new ^= shadow_nx_mask;
4158         return (old & ~new & PT64_PERM_MASK) != 0;
4159 }
4160
4161 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4162                                     bool remote_flush, bool local_flush)
4163 {
4164         if (zap_page)
4165                 return;
4166
4167         if (remote_flush)
4168                 kvm_flush_remote_tlbs(vcpu->kvm);
4169         else if (local_flush)
4170                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4171 }
4172
4173 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4174                                     const u8 *new, int *bytes)
4175 {
4176         u64 gentry;
4177         int r;
4178
4179         /*
4180          * Assume that the pte write on a page table of the same type
4181          * as the current vcpu paging mode since we update the sptes only
4182          * when they have the same mode.
4183          */
4184         if (is_pae(vcpu) && *bytes == 4) {
4185                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4186                 *gpa &= ~(gpa_t)7;
4187                 *bytes = 8;
4188                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4189                 if (r)
4190                         gentry = 0;
4191                 new = (const u8 *)&gentry;
4192         }
4193
4194         switch (*bytes) {
4195         case 4:
4196                 gentry = *(const u32 *)new;
4197                 break;
4198         case 8:
4199                 gentry = *(const u64 *)new;
4200                 break;
4201         default:
4202                 gentry = 0;
4203                 break;
4204         }
4205
4206         return gentry;
4207 }
4208
4209 /*
4210  * If we're seeing too many writes to a page, it may no longer be a page table,
4211  * or we may be forking, in which case it is better to unmap the page.
4212  */
4213 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4214 {
4215         /*
4216          * Skip write-flooding detected for the sp whose level is 1, because
4217          * it can become unsync, then the guest page is not write-protected.
4218          */
4219         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4220                 return false;
4221
4222         return ++sp->write_flooding_count >= 3;
4223 }
4224
4225 /*
4226  * Misaligned accesses are too much trouble to fix up; also, they usually
4227  * indicate a page is not used as a page table.
4228  */
4229 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4230                                     int bytes)
4231 {
4232         unsigned offset, pte_size, misaligned;
4233
4234         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4235                  gpa, bytes, sp->role.word);
4236
4237         offset = offset_in_page(gpa);
4238         pte_size = sp->role.cr4_pae ? 8 : 4;
4239
4240         /*
4241          * Sometimes, the OS only writes the last one bytes to update status
4242          * bits, for example, in linux, andb instruction is used in clear_bit().
4243          */
4244         if (!(offset & (pte_size - 1)) && bytes == 1)
4245                 return false;
4246
4247         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4248         misaligned |= bytes < 4;
4249
4250         return misaligned;
4251 }
4252
4253 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4254 {
4255         unsigned page_offset, quadrant;
4256         u64 *spte;
4257         int level;
4258
4259         page_offset = offset_in_page(gpa);
4260         level = sp->role.level;
4261         *nspte = 1;
4262         if (!sp->role.cr4_pae) {
4263                 page_offset <<= 1;      /* 32->64 */
4264                 /*
4265                  * A 32-bit pde maps 4MB while the shadow pdes map
4266                  * only 2MB.  So we need to double the offset again
4267                  * and zap two pdes instead of one.
4268                  */
4269                 if (level == PT32_ROOT_LEVEL) {
4270                         page_offset &= ~7; /* kill rounding error */
4271                         page_offset <<= 1;
4272                         *nspte = 2;
4273                 }
4274                 quadrant = page_offset >> PAGE_SHIFT;
4275                 page_offset &= ~PAGE_MASK;
4276                 if (quadrant != sp->role.quadrant)
4277                         return NULL;
4278         }
4279
4280         spte = &sp->spt[page_offset / sizeof(*spte)];
4281         return spte;
4282 }
4283
4284 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4285                        const u8 *new, int bytes)
4286 {
4287         gfn_t gfn = gpa >> PAGE_SHIFT;
4288         struct kvm_mmu_page *sp;
4289         LIST_HEAD(invalid_list);
4290         u64 entry, gentry, *spte;
4291         int npte;
4292         bool remote_flush, local_flush, zap_page;
4293         union kvm_mmu_page_role mask = { };
4294
4295         mask.cr0_wp = 1;
4296         mask.cr4_pae = 1;
4297         mask.nxe = 1;
4298         mask.smep_andnot_wp = 1;
4299         mask.smap_andnot_wp = 1;
4300         mask.smm = 1;
4301
4302         /*
4303          * If we don't have indirect shadow pages, it means no page is
4304          * write-protected, so we can exit simply.
4305          */
4306         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4307                 return;
4308
4309         zap_page = remote_flush = local_flush = false;
4310
4311         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4312
4313         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4314
4315         /*
4316          * No need to care whether allocation memory is successful
4317          * or not since pte prefetch is skiped if it does not have
4318          * enough objects in the cache.
4319          */
4320         mmu_topup_memory_caches(vcpu);
4321
4322         spin_lock(&vcpu->kvm->mmu_lock);
4323         ++vcpu->kvm->stat.mmu_pte_write;
4324         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4325
4326         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4327                 if (detect_write_misaligned(sp, gpa, bytes) ||
4328                       detect_write_flooding(sp)) {
4329                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4330                                                      &invalid_list);
4331                         ++vcpu->kvm->stat.mmu_flooded;
4332                         continue;
4333                 }
4334
4335                 spte = get_written_sptes(sp, gpa, &npte);
4336                 if (!spte)
4337                         continue;
4338
4339                 local_flush = true;
4340                 while (npte--) {
4341                         entry = *spte;
4342                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4343                         if (gentry &&
4344                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4345                               & mask.word) && rmap_can_add(vcpu))
4346                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4347                         if (need_remote_flush(entry, *spte))
4348                                 remote_flush = true;
4349                         ++spte;
4350                 }
4351         }
4352         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4353         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4354         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4355         spin_unlock(&vcpu->kvm->mmu_lock);
4356 }
4357
4358 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4359 {
4360         gpa_t gpa;
4361         int r;
4362
4363         if (vcpu->arch.mmu.direct_map)
4364                 return 0;
4365
4366         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4367
4368         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4369
4370         return r;
4371 }
4372 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4373
4374 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4375 {
4376         LIST_HEAD(invalid_list);
4377
4378         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4379                 return;
4380
4381         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4382                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4383                         break;
4384
4385                 ++vcpu->kvm->stat.mmu_recycled;
4386         }
4387         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4388 }
4389
4390 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4391 {
4392         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4393                 return vcpu_match_mmio_gpa(vcpu, addr);
4394
4395         return vcpu_match_mmio_gva(vcpu, addr);
4396 }
4397
4398 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4399                        void *insn, int insn_len)
4400 {
4401         int r, emulation_type = EMULTYPE_RETRY;
4402         enum emulation_result er;
4403
4404         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4405         if (r < 0)
4406                 goto out;
4407
4408         if (!r) {
4409                 r = 1;
4410                 goto out;
4411         }
4412
4413         if (is_mmio_page_fault(vcpu, cr2))
4414                 emulation_type = 0;
4415
4416         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4417
4418         switch (er) {
4419         case EMULATE_DONE:
4420                 return 1;
4421         case EMULATE_USER_EXIT:
4422                 ++vcpu->stat.mmio_exits;
4423                 /* fall through */
4424         case EMULATE_FAIL:
4425                 return 0;
4426         default:
4427                 BUG();
4428         }
4429 out:
4430         return r;
4431 }
4432 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4433
4434 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4435 {
4436         vcpu->arch.mmu.invlpg(vcpu, gva);
4437         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4438         ++vcpu->stat.invlpg;
4439 }
4440 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4441
4442 void kvm_enable_tdp(void)
4443 {
4444         tdp_enabled = true;
4445 }
4446 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4447
4448 void kvm_disable_tdp(void)
4449 {
4450         tdp_enabled = false;
4451 }
4452 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4453
4454 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4455 {
4456         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4457         if (vcpu->arch.mmu.lm_root != NULL)
4458                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4459 }
4460
4461 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4462 {
4463         struct page *page;
4464         int i;
4465
4466         /*
4467          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4468          * Therefore we need to allocate shadow page tables in the first
4469          * 4GB of memory, which happens to fit the DMA32 zone.
4470          */
4471         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4472         if (!page)
4473                 return -ENOMEM;
4474
4475         vcpu->arch.mmu.pae_root = page_address(page);
4476         for (i = 0; i < 4; ++i)
4477                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4478
4479         return 0;
4480 }
4481
4482 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4483 {
4484         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4485         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4486         vcpu->arch.mmu.translate_gpa = translate_gpa;
4487         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4488
4489         return alloc_mmu_pages(vcpu);
4490 }
4491
4492 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4493 {
4494         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4495
4496         init_kvm_mmu(vcpu);
4497 }
4498
4499 /* The return value indicates if tlb flush on all vcpus is needed. */
4500 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4501
4502 /* The caller should hold mmu-lock before calling this function. */
4503 static bool
4504 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4505                         slot_level_handler fn, int start_level, int end_level,
4506                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4507 {
4508         struct slot_rmap_walk_iterator iterator;
4509         bool flush = false;
4510
4511         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4512                         end_gfn, &iterator) {
4513                 if (iterator.rmap)
4514                         flush |= fn(kvm, iterator.rmap);
4515
4516                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4517                         if (flush && lock_flush_tlb) {
4518                                 kvm_flush_remote_tlbs(kvm);
4519                                 flush = false;
4520                         }
4521                         cond_resched_lock(&kvm->mmu_lock);
4522                 }
4523         }
4524
4525         if (flush && lock_flush_tlb) {
4526                 kvm_flush_remote_tlbs(kvm);
4527                 flush = false;
4528         }
4529
4530         return flush;
4531 }
4532
4533 static bool
4534 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4535                   slot_level_handler fn, int start_level, int end_level,
4536                   bool lock_flush_tlb)
4537 {
4538         return slot_handle_level_range(kvm, memslot, fn, start_level,
4539                         end_level, memslot->base_gfn,
4540                         memslot->base_gfn + memslot->npages - 1,
4541                         lock_flush_tlb);
4542 }
4543
4544 static bool
4545 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4546                       slot_level_handler fn, bool lock_flush_tlb)
4547 {
4548         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4549                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4550 }
4551
4552 static bool
4553 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4554                         slot_level_handler fn, bool lock_flush_tlb)
4555 {
4556         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4557                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4558 }
4559
4560 static bool
4561 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4562                  slot_level_handler fn, bool lock_flush_tlb)
4563 {
4564         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4565                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4566 }
4567
4568 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4569 {
4570         struct kvm_memslots *slots;
4571         struct kvm_memory_slot *memslot;
4572         int i;
4573
4574         spin_lock(&kvm->mmu_lock);
4575         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4576                 slots = __kvm_memslots(kvm, i);
4577                 kvm_for_each_memslot(memslot, slots) {
4578                         gfn_t start, end;
4579
4580                         start = max(gfn_start, memslot->base_gfn);
4581                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4582                         if (start >= end)
4583                                 continue;
4584
4585                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4586                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4587                                                 start, end - 1, true);
4588                 }
4589         }
4590
4591         spin_unlock(&kvm->mmu_lock);
4592 }
4593
4594 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4595 {
4596         return __rmap_write_protect(kvm, rmapp, false);
4597 }
4598
4599 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4600                                       struct kvm_memory_slot *memslot)
4601 {
4602         bool flush;
4603
4604         spin_lock(&kvm->mmu_lock);
4605         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4606                                       false);
4607         spin_unlock(&kvm->mmu_lock);
4608
4609         /*
4610          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4611          * which do tlb flush out of mmu-lock should be serialized by
4612          * kvm->slots_lock otherwise tlb flush would be missed.
4613          */
4614         lockdep_assert_held(&kvm->slots_lock);
4615
4616         /*
4617          * We can flush all the TLBs out of the mmu lock without TLB
4618          * corruption since we just change the spte from writable to
4619          * readonly so that we only need to care the case of changing
4620          * spte from present to present (changing the spte from present
4621          * to nonpresent will flush all the TLBs immediately), in other
4622          * words, the only case we care is mmu_spte_update() where we
4623          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4624          * instead of PT_WRITABLE_MASK, that means it does not depend
4625          * on PT_WRITABLE_MASK anymore.
4626          */
4627         if (flush)
4628                 kvm_flush_remote_tlbs(kvm);
4629 }
4630
4631 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4632                 unsigned long *rmapp)
4633 {
4634         u64 *sptep;
4635         struct rmap_iterator iter;
4636         int need_tlb_flush = 0;
4637         pfn_t pfn;
4638         struct kvm_mmu_page *sp;
4639
4640 restart:
4641         for_each_rmap_spte(rmapp, &iter, sptep) {
4642                 sp = page_header(__pa(sptep));
4643                 pfn = spte_to_pfn(*sptep);
4644
4645                 /*
4646                  * We cannot do huge page mapping for indirect shadow pages,
4647                  * which are found on the last rmap (level = 1) when not using
4648                  * tdp; such shadow pages are synced with the page table in
4649                  * the guest, and the guest page table is using 4K page size
4650                  * mapping if the indirect sp has level = 1.
4651                  */
4652                 if (sp->role.direct &&
4653                         !kvm_is_reserved_pfn(pfn) &&
4654                         PageTransCompound(pfn_to_page(pfn))) {
4655                         drop_spte(kvm, sptep);
4656                         need_tlb_flush = 1;
4657                         goto restart;
4658                 }
4659         }
4660
4661         return need_tlb_flush;
4662 }
4663
4664 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4665                                    const struct kvm_memory_slot *memslot)
4666 {
4667         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4668         spin_lock(&kvm->mmu_lock);
4669         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4670                          kvm_mmu_zap_collapsible_spte, true);
4671         spin_unlock(&kvm->mmu_lock);
4672 }
4673
4674 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4675                                    struct kvm_memory_slot *memslot)
4676 {
4677         bool flush;
4678
4679         spin_lock(&kvm->mmu_lock);
4680         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4681         spin_unlock(&kvm->mmu_lock);
4682
4683         lockdep_assert_held(&kvm->slots_lock);
4684
4685         /*
4686          * It's also safe to flush TLBs out of mmu lock here as currently this
4687          * function is only used for dirty logging, in which case flushing TLB
4688          * out of mmu lock also guarantees no dirty pages will be lost in
4689          * dirty_bitmap.
4690          */
4691         if (flush)
4692                 kvm_flush_remote_tlbs(kvm);
4693 }
4694 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4695
4696 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4697                                         struct kvm_memory_slot *memslot)
4698 {
4699         bool flush;
4700
4701         spin_lock(&kvm->mmu_lock);
4702         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4703                                         false);
4704         spin_unlock(&kvm->mmu_lock);
4705
4706         /* see kvm_mmu_slot_remove_write_access */
4707         lockdep_assert_held(&kvm->slots_lock);
4708
4709         if (flush)
4710                 kvm_flush_remote_tlbs(kvm);
4711 }
4712 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4713
4714 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4715                             struct kvm_memory_slot *memslot)
4716 {
4717         bool flush;
4718
4719         spin_lock(&kvm->mmu_lock);
4720         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4721         spin_unlock(&kvm->mmu_lock);
4722
4723         lockdep_assert_held(&kvm->slots_lock);
4724
4725         /* see kvm_mmu_slot_leaf_clear_dirty */
4726         if (flush)
4727                 kvm_flush_remote_tlbs(kvm);
4728 }
4729 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4730
4731 #define BATCH_ZAP_PAGES 10
4732 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4733 {
4734         struct kvm_mmu_page *sp, *node;
4735         int batch = 0;
4736
4737 restart:
4738         list_for_each_entry_safe_reverse(sp, node,
4739               &kvm->arch.active_mmu_pages, link) {
4740                 int ret;
4741
4742                 /*
4743                  * No obsolete page exists before new created page since
4744                  * active_mmu_pages is the FIFO list.
4745                  */
4746                 if (!is_obsolete_sp(kvm, sp))
4747                         break;
4748
4749                 /*
4750                  * Since we are reversely walking the list and the invalid
4751                  * list will be moved to the head, skip the invalid page
4752                  * can help us to avoid the infinity list walking.
4753                  */
4754                 if (sp->role.invalid)
4755                         continue;
4756
4757                 /*
4758                  * Need not flush tlb since we only zap the sp with invalid
4759                  * generation number.
4760                  */
4761                 if (batch >= BATCH_ZAP_PAGES &&
4762                       cond_resched_lock(&kvm->mmu_lock)) {
4763                         batch = 0;
4764                         goto restart;
4765                 }
4766
4767                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4768                                 &kvm->arch.zapped_obsolete_pages);
4769                 batch += ret;
4770
4771                 if (ret)
4772                         goto restart;
4773         }
4774
4775         /*
4776          * Should flush tlb before free page tables since lockless-walking
4777          * may use the pages.
4778          */
4779         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4780 }
4781
4782 /*
4783  * Fast invalidate all shadow pages and use lock-break technique
4784  * to zap obsolete pages.
4785  *
4786  * It's required when memslot is being deleted or VM is being
4787  * destroyed, in these cases, we should ensure that KVM MMU does
4788  * not use any resource of the being-deleted slot or all slots
4789  * after calling the function.
4790  */
4791 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4792 {
4793         spin_lock(&kvm->mmu_lock);
4794         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4795         kvm->arch.mmu_valid_gen++;
4796
4797         /*
4798          * Notify all vcpus to reload its shadow page table
4799          * and flush TLB. Then all vcpus will switch to new
4800          * shadow page table with the new mmu_valid_gen.
4801          *
4802          * Note: we should do this under the protection of
4803          * mmu-lock, otherwise, vcpu would purge shadow page
4804          * but miss tlb flush.
4805          */
4806         kvm_reload_remote_mmus(kvm);
4807
4808         kvm_zap_obsolete_pages(kvm);
4809         spin_unlock(&kvm->mmu_lock);
4810 }
4811
4812 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4813 {
4814         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4815 }
4816
4817 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4818 {
4819         /*
4820          * The very rare case: if the generation-number is round,
4821          * zap all shadow pages.
4822          */
4823         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4824                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4825                 kvm_mmu_invalidate_zap_all_pages(kvm);
4826         }
4827 }
4828
4829 static unsigned long
4830 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4831 {
4832         struct kvm *kvm;
4833         int nr_to_scan = sc->nr_to_scan;
4834         unsigned long freed = 0;
4835
4836         spin_lock(&kvm_lock);
4837
4838         list_for_each_entry(kvm, &vm_list, vm_list) {
4839                 int idx;
4840                 LIST_HEAD(invalid_list);
4841
4842                 /*
4843                  * Never scan more than sc->nr_to_scan VM instances.
4844                  * Will not hit this condition practically since we do not try
4845                  * to shrink more than one VM and it is very unlikely to see
4846                  * !n_used_mmu_pages so many times.
4847                  */
4848                 if (!nr_to_scan--)
4849                         break;
4850                 /*
4851                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4852                  * here. We may skip a VM instance errorneosly, but we do not
4853                  * want to shrink a VM that only started to populate its MMU
4854                  * anyway.
4855                  */
4856                 if (!kvm->arch.n_used_mmu_pages &&
4857                       !kvm_has_zapped_obsolete_pages(kvm))
4858                         continue;
4859
4860                 idx = srcu_read_lock(&kvm->srcu);
4861                 spin_lock(&kvm->mmu_lock);
4862
4863                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4864                         kvm_mmu_commit_zap_page(kvm,
4865                               &kvm->arch.zapped_obsolete_pages);
4866                         goto unlock;
4867                 }
4868
4869                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4870                         freed++;
4871                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4872
4873 unlock:
4874                 spin_unlock(&kvm->mmu_lock);
4875                 srcu_read_unlock(&kvm->srcu, idx);
4876
4877                 /*
4878                  * unfair on small ones
4879                  * per-vm shrinkers cry out
4880                  * sadness comes quickly
4881                  */
4882                 list_move_tail(&kvm->vm_list, &vm_list);
4883                 break;
4884         }
4885
4886         spin_unlock(&kvm_lock);
4887         return freed;
4888 }
4889
4890 static unsigned long
4891 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4892 {
4893         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4894 }
4895
4896 static struct shrinker mmu_shrinker = {
4897         .count_objects = mmu_shrink_count,
4898         .scan_objects = mmu_shrink_scan,
4899         .seeks = DEFAULT_SEEKS * 10,
4900 };
4901
4902 static void mmu_destroy_caches(void)
4903 {
4904         if (pte_list_desc_cache)
4905                 kmem_cache_destroy(pte_list_desc_cache);
4906         if (mmu_page_header_cache)
4907                 kmem_cache_destroy(mmu_page_header_cache);
4908 }
4909
4910 int kvm_mmu_module_init(void)
4911 {
4912         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4913                                             sizeof(struct pte_list_desc),
4914                                             0, 0, NULL);
4915         if (!pte_list_desc_cache)
4916                 goto nomem;
4917
4918         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4919                                                   sizeof(struct kvm_mmu_page),
4920                                                   0, 0, NULL);
4921         if (!mmu_page_header_cache)
4922                 goto nomem;
4923
4924         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4925                 goto nomem;
4926
4927         register_shrinker(&mmu_shrinker);
4928
4929         return 0;
4930
4931 nomem:
4932         mmu_destroy_caches();
4933         return -ENOMEM;
4934 }
4935
4936 /*
4937  * Caculate mmu pages needed for kvm.
4938  */
4939 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4940 {
4941         unsigned int nr_mmu_pages;
4942         unsigned int  nr_pages = 0;
4943         struct kvm_memslots *slots;
4944         struct kvm_memory_slot *memslot;
4945         int i;
4946
4947         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4948                 slots = __kvm_memslots(kvm, i);
4949
4950                 kvm_for_each_memslot(memslot, slots)
4951                         nr_pages += memslot->npages;
4952         }
4953
4954         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4955         nr_mmu_pages = max(nr_mmu_pages,
4956                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4957
4958         return nr_mmu_pages;
4959 }
4960
4961 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4962 {
4963         kvm_mmu_unload(vcpu);
4964         free_mmu_pages(vcpu);
4965         mmu_free_memory_caches(vcpu);
4966 }
4967
4968 void kvm_mmu_module_exit(void)
4969 {
4970         mmu_destroy_caches();
4971         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4972         unregister_shrinker(&mmu_shrinker);
4973         mmu_audit_disable();
4974 }