These changes are a raw update to a vanilla kernel 4.1.10, with the
[kvmfornfv.git] / kernel / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM                8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99                                                 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110                                                 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                             * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123                         | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
163              shadow_walk_okay(&(_walker)) &&                            \
164                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
165              __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183         shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT         2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
198
199 #define MMIO_GEN_SHIFT                  20
200 #define MMIO_GEN_LOW_SHIFT              10
201 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206         u64 mask;
207
208         WARN_ON(gen & ~MMIO_GEN_MASK);
209
210         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212         return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217         unsigned int gen;
218
219         spte &= ~shadow_mmio_mask;
220
221         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223         return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227 {
228         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232                            unsigned access)
233 {
234         unsigned int gen = kvm_current_mmio_generation(kvm);
235         u64 mask = generation_mmio_spte_mask(gen);
236
237         access &= ACC_WRITE_MASK | ACC_USER_MASK;
238         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240         trace_mark_mmio_spte(sptep, gfn, access, gen);
241         mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252         return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258         return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262                           pfn_t pfn, unsigned access)
263 {
264         if (unlikely(is_noslot_pfn(pfn))) {
265                 mark_mmio_spte(kvm, sptep, gfn, access);
266                 return true;
267         }
268
269         return false;
270 }
271
272 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273 {
274         unsigned int kvm_gen, spte_gen;
275
276         kvm_gen = kvm_current_mmio_generation(kvm);
277         spte_gen = get_mmio_spte_generation(spte);
278
279         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280         return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286         shadow_user_mask = user_mask;
287         shadow_accessed_mask = accessed_mask;
288         shadow_dirty_mask = dirty_mask;
289         shadow_nx_mask = nx_mask;
290         shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296         return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311         return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316         return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321         if (level == PT_PAGE_TABLE_LEVEL)
322                 return 1;
323         if (is_large_pte(pte))
324                 return 1;
325         return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337         return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362         struct {
363                 u32 spte_low;
364                 u32 spte_high;
365         };
366         u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
372
373         if (is_shadow_present_pte(spte))
374                 return;
375
376         /* Ensure the spte is completely set before we increase the count */
377         smp_wmb();
378         sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383         union split_spte *ssptep, sspte;
384
385         ssptep = (union split_spte *)sptep;
386         sspte = (union split_spte)spte;
387
388         ssptep->spte_high = sspte.spte_high;
389
390         /*
391          * If we map the spte from nonpresent to present, We should store
392          * the high bits firstly, then set present bit, so cpu can not
393          * fetch this spte while we are setting the spte.
394          */
395         smp_wmb();
396
397         ssptep->spte_low = sspte.spte_low;
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402         union split_spte *ssptep, sspte;
403
404         ssptep = (union split_spte *)sptep;
405         sspte = (union split_spte)spte;
406
407         ssptep->spte_low = sspte.spte_low;
408
409         /*
410          * If we map the spte from present to nonpresent, we should clear
411          * present bit firstly to avoid vcpu fetch the old high bits.
412          */
413         smp_wmb();
414
415         ssptep->spte_high = sspte.spte_high;
416         count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421         union split_spte *ssptep, sspte, orig;
422
423         ssptep = (union split_spte *)sptep;
424         sspte = (union split_spte)spte;
425
426         /* xchg acts as a barrier before the setting of the high bits */
427         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428         orig.spte_high = ssptep->spte_high;
429         ssptep->spte_high = sspte.spte_high;
430         count_spte_clear(sptep, spte);
431
432         return orig.spte;
433 }
434
435 /*
436  * The idea using the light way get the spte on x86_32 guest is from
437  * gup_get_pte(arch/x86/mm/gup.c).
438  *
439  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440  * coalesces them and we are running out of the MMU lock.  Therefore
441  * we need to protect against in-progress updates of the spte.
442  *
443  * Reading the spte while an update is in progress may get the old value
444  * for the high part of the spte.  The race is fine for a present->non-present
445  * change (because the high part of the spte is ignored for non-present spte),
446  * but for a present->present change we must reread the spte.
447  *
448  * All such changes are done in two steps (present->non-present and
449  * non-present->present), hence it is enough to count the number of
450  * present->non-present updates: if it changed while reading the spte,
451  * we might have hit the race.  This is done using clear_spte_count.
452  */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
456         union split_spte spte, *orig = (union split_spte *)sptep;
457         int count;
458
459 retry:
460         count = sp->clear_spte_count;
461         smp_rmb();
462
463         spte.spte_low = orig->spte_low;
464         smp_rmb();
465
466         spte.spte_high = orig->spte_high;
467         smp_rmb();
468
469         if (unlikely(spte.spte_low != orig->spte_low ||
470               count != sp->clear_spte_count))
471                 goto retry;
472
473         return spte.spte;
474 }
475 #endif
476
477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482
483 static bool spte_has_volatile_bits(u64 spte)
484 {
485         /*
486          * Always atomicly update spte if it can be updated
487          * out of mmu-lock, it can ensure dirty bit is not lost,
488          * also, it can help us to get a stable is_writable_pte()
489          * to ensure tlb flush is not missed.
490          */
491         if (spte_is_locklessly_modifiable(spte))
492                 return true;
493
494         if (!shadow_accessed_mask)
495                 return false;
496
497         if (!is_shadow_present_pte(spte))
498                 return false;
499
500         if ((spte & shadow_accessed_mask) &&
501               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502                 return false;
503
504         return true;
505 }
506
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509         return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514         return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516
517 /* Rules for using mmu_spte_set:
518  * Set the sptep from nonpresent to present.
519  * Note: the sptep being assigned *must* be either not present
520  * or in a state where the hardware will not attempt to update
521  * the spte.
522  */
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525         WARN_ON(is_shadow_present_pte(*sptep));
526         __set_spte(sptep, new_spte);
527 }
528
529 /* Rules for using mmu_spte_update:
530  * Update the state bits, it means the mapped pfn is not changged.
531  *
532  * Whenever we overwrite a writable spte with a read-only one we
533  * should flush remote TLBs. Otherwise rmap_write_protect
534  * will find a read-only spte, even though the writable spte
535  * might be cached on a CPU's TLB, the return value indicates this
536  * case.
537  */
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540         u64 old_spte = *sptep;
541         bool ret = false;
542
543         WARN_ON(!is_rmap_spte(new_spte));
544
545         if (!is_shadow_present_pte(old_spte)) {
546                 mmu_spte_set(sptep, new_spte);
547                 return ret;
548         }
549
550         if (!spte_has_volatile_bits(old_spte))
551                 __update_clear_spte_fast(sptep, new_spte);
552         else
553                 old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555         /*
556          * For the spte updated out of mmu-lock is safe, since
557          * we always atomicly update it, see the comments in
558          * spte_has_volatile_bits().
559          */
560         if (spte_is_locklessly_modifiable(old_spte) &&
561               !is_writable_pte(new_spte))
562                 ret = true;
563
564         if (!shadow_accessed_mask)
565                 return ret;
566
567         /*
568          * Flush TLB when accessed/dirty bits are changed in the page tables,
569          * to guarantee consistency between TLB and page tables.
570          */
571         if (spte_is_bit_changed(old_spte, new_spte,
572                                 shadow_accessed_mask | shadow_dirty_mask))
573                 ret = true;
574
575         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
580         return ret;
581 }
582
583 /*
584  * Rules for using mmu_spte_clear_track_bits:
585  * It sets the sptep from present to nonpresent, and track the
586  * state bits, it is used to clear the last level sptep.
587  */
588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590         pfn_t pfn;
591         u64 old_spte = *sptep;
592
593         if (!spte_has_volatile_bits(old_spte))
594                 __update_clear_spte_fast(sptep, 0ull);
595         else
596                 old_spte = __update_clear_spte_slow(sptep, 0ull);
597
598         if (!is_rmap_spte(old_spte))
599                 return 0;
600
601         pfn = spte_to_pfn(old_spte);
602
603         /*
604          * KVM does not hold the refcount of the page used by
605          * kvm mmu, before reclaiming the page, we should
606          * unmap it from mmu first.
607          */
608         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609
610         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611                 kvm_set_pfn_accessed(pfn);
612         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613                 kvm_set_pfn_dirty(pfn);
614         return 1;
615 }
616
617 /*
618  * Rules for using mmu_spte_clear_no_track:
619  * Directly clear spte without caring the state bits of sptep,
620  * it is used to set the upper level spte.
621  */
622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624         __update_clear_spte_fast(sptep, 0ull);
625 }
626
627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629         return __get_spte_lockless(sptep);
630 }
631
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634         /*
635          * Prevent page table teardown by making any free-er wait during
636          * kvm_flush_remote_tlbs() IPI to all active vcpus.
637          */
638         local_irq_disable();
639         vcpu->mode = READING_SHADOW_PAGE_TABLES;
640         /*
641          * Make sure a following spte read is not reordered ahead of the write
642          * to vcpu->mode.
643          */
644         smp_mb();
645 }
646
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649         /*
650          * Make sure the write to vcpu->mode is not reordered in front of
651          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
652          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653          */
654         smp_mb();
655         vcpu->mode = OUTSIDE_GUEST_MODE;
656         local_irq_enable();
657 }
658
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660                                   struct kmem_cache *base_cache, int min)
661 {
662         void *obj;
663
664         if (cache->nobjs >= min)
665                 return 0;
666         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668                 if (!obj)
669                         return -ENOMEM;
670                 cache->objects[cache->nobjs++] = obj;
671         }
672         return 0;
673 }
674
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677         return cache->nobjs;
678 }
679
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681                                   struct kmem_cache *cache)
682 {
683         while (mc->nobjs)
684                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688                                        int min)
689 {
690         void *page;
691
692         if (cache->nobjs >= min)
693                 return 0;
694         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695                 page = (void *)__get_free_page(GFP_KERNEL);
696                 if (!page)
697                         return -ENOMEM;
698                 cache->objects[cache->nobjs++] = page;
699         }
700         return 0;
701 }
702
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705         while (mc->nobjs)
706                 free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708
709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711         int r;
712
713         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715         if (r)
716                 goto out;
717         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718         if (r)
719                 goto out;
720         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721                                    mmu_page_header_cache, 4);
722 out:
723         return r;
724 }
725
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729                                 pte_list_desc_cache);
730         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732                                 mmu_page_header_cache);
733 }
734
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737         void *p;
738
739         BUG_ON(!mc->nobjs);
740         p = mc->objects[--mc->nobjs];
741         return p;
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756         if (!sp->role.direct)
757                 return sp->gfns[index];
758
759         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764         if (sp->role.direct)
765                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766         else
767                 sp->gfns[index] = gfn;
768 }
769
770 /*
771  * Return the pointer to the large page information for a given gfn,
772  * handling slots that are not large page aligned.
773  */
774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775                                               struct kvm_memory_slot *slot,
776                                               int level)
777 {
778         unsigned long idx;
779
780         idx = gfn_to_index(gfn, slot->base_gfn, level);
781         return &slot->arch.lpage_info[level - 2][idx];
782 }
783
784 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
785 {
786         struct kvm_memory_slot *slot;
787         struct kvm_lpage_info *linfo;
788         int i;
789
790         slot = gfn_to_memslot(kvm, gfn);
791         for (i = PT_DIRECTORY_LEVEL;
792              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
793                 linfo = lpage_info_slot(gfn, slot, i);
794                 linfo->write_count += 1;
795         }
796         kvm->arch.indirect_shadow_pages++;
797 }
798
799 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
800 {
801         struct kvm_memory_slot *slot;
802         struct kvm_lpage_info *linfo;
803         int i;
804
805         slot = gfn_to_memslot(kvm, gfn);
806         for (i = PT_DIRECTORY_LEVEL;
807              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
808                 linfo = lpage_info_slot(gfn, slot, i);
809                 linfo->write_count -= 1;
810                 WARN_ON(linfo->write_count < 0);
811         }
812         kvm->arch.indirect_shadow_pages--;
813 }
814
815 static int has_wrprotected_page(struct kvm *kvm,
816                                 gfn_t gfn,
817                                 int level)
818 {
819         struct kvm_memory_slot *slot;
820         struct kvm_lpage_info *linfo;
821
822         slot = gfn_to_memslot(kvm, gfn);
823         if (slot) {
824                 linfo = lpage_info_slot(gfn, slot, level);
825                 return linfo->write_count;
826         }
827
828         return 1;
829 }
830
831 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
832 {
833         unsigned long page_size;
834         int i, ret = 0;
835
836         page_size = kvm_host_page_size(kvm, gfn);
837
838         for (i = PT_PAGE_TABLE_LEVEL;
839              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
840                 if (page_size >= KVM_HPAGE_SIZE(i))
841                         ret = i;
842                 else
843                         break;
844         }
845
846         return ret;
847 }
848
849 static struct kvm_memory_slot *
850 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
851                             bool no_dirty_log)
852 {
853         struct kvm_memory_slot *slot;
854
855         slot = gfn_to_memslot(vcpu->kvm, gfn);
856         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
857               (no_dirty_log && slot->dirty_bitmap))
858                 slot = NULL;
859
860         return slot;
861 }
862
863 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
864 {
865         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
866 }
867
868 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
869 {
870         int host_level, level, max_level;
871
872         host_level = host_mapping_level(vcpu->kvm, large_gfn);
873
874         if (host_level == PT_PAGE_TABLE_LEVEL)
875                 return host_level;
876
877         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878
879         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
880                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
881                         break;
882
883         return level - 1;
884 }
885
886 /*
887  * Pte mapping structures:
888  *
889  * If pte_list bit zero is zero, then pte_list point to the spte.
890  *
891  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
892  * pte_list_desc containing more mappings.
893  *
894  * Returns the number of pte entries before the spte was added or zero if
895  * the spte was not added.
896  *
897  */
898 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
899                         unsigned long *pte_list)
900 {
901         struct pte_list_desc *desc;
902         int i, count = 0;
903
904         if (!*pte_list) {
905                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
906                 *pte_list = (unsigned long)spte;
907         } else if (!(*pte_list & 1)) {
908                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
909                 desc = mmu_alloc_pte_list_desc(vcpu);
910                 desc->sptes[0] = (u64 *)*pte_list;
911                 desc->sptes[1] = spte;
912                 *pte_list = (unsigned long)desc | 1;
913                 ++count;
914         } else {
915                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
916                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
917                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
918                         desc = desc->more;
919                         count += PTE_LIST_EXT;
920                 }
921                 if (desc->sptes[PTE_LIST_EXT-1]) {
922                         desc->more = mmu_alloc_pte_list_desc(vcpu);
923                         desc = desc->more;
924                 }
925                 for (i = 0; desc->sptes[i]; ++i)
926                         ++count;
927                 desc->sptes[i] = spte;
928         }
929         return count;
930 }
931
932 static void
933 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
934                            int i, struct pte_list_desc *prev_desc)
935 {
936         int j;
937
938         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
939                 ;
940         desc->sptes[i] = desc->sptes[j];
941         desc->sptes[j] = NULL;
942         if (j != 0)
943                 return;
944         if (!prev_desc && !desc->more)
945                 *pte_list = (unsigned long)desc->sptes[0];
946         else
947                 if (prev_desc)
948                         prev_desc->more = desc->more;
949                 else
950                         *pte_list = (unsigned long)desc->more | 1;
951         mmu_free_pte_list_desc(desc);
952 }
953
954 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
955 {
956         struct pte_list_desc *desc;
957         struct pte_list_desc *prev_desc;
958         int i;
959
960         if (!*pte_list) {
961                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
962                 BUG();
963         } else if (!(*pte_list & 1)) {
964                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
965                 if ((u64 *)*pte_list != spte) {
966                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
967                         BUG();
968                 }
969                 *pte_list = 0;
970         } else {
971                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
972                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
973                 prev_desc = NULL;
974                 while (desc) {
975                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
976                                 if (desc->sptes[i] == spte) {
977                                         pte_list_desc_remove_entry(pte_list,
978                                                                desc, i,
979                                                                prev_desc);
980                                         return;
981                                 }
982                         prev_desc = desc;
983                         desc = desc->more;
984                 }
985                 pr_err("pte_list_remove: %p many->many\n", spte);
986                 BUG();
987         }
988 }
989
990 typedef void (*pte_list_walk_fn) (u64 *spte);
991 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
992 {
993         struct pte_list_desc *desc;
994         int i;
995
996         if (!*pte_list)
997                 return;
998
999         if (!(*pte_list & 1))
1000                 return fn((u64 *)*pte_list);
1001
1002         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1003         while (desc) {
1004                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1005                         fn(desc->sptes[i]);
1006                 desc = desc->more;
1007         }
1008 }
1009
1010 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1011                                     struct kvm_memory_slot *slot)
1012 {
1013         unsigned long idx;
1014
1015         idx = gfn_to_index(gfn, slot->base_gfn, level);
1016         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1017 }
1018
1019 /*
1020  * Take gfn and return the reverse mapping to it.
1021  */
1022 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1023 {
1024         struct kvm_memory_slot *slot;
1025
1026         slot = gfn_to_memslot(kvm, gfn);
1027         return __gfn_to_rmap(gfn, level, slot);
1028 }
1029
1030 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1031 {
1032         struct kvm_mmu_memory_cache *cache;
1033
1034         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1035         return mmu_memory_cache_free_objects(cache);
1036 }
1037
1038 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1039 {
1040         struct kvm_mmu_page *sp;
1041         unsigned long *rmapp;
1042
1043         sp = page_header(__pa(spte));
1044         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1045         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1046         return pte_list_add(vcpu, spte, rmapp);
1047 }
1048
1049 static void rmap_remove(struct kvm *kvm, u64 *spte)
1050 {
1051         struct kvm_mmu_page *sp;
1052         gfn_t gfn;
1053         unsigned long *rmapp;
1054
1055         sp = page_header(__pa(spte));
1056         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1057         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1058         pte_list_remove(spte, rmapp);
1059 }
1060
1061 /*
1062  * Used by the following functions to iterate through the sptes linked by a
1063  * rmap.  All fields are private and not assumed to be used outside.
1064  */
1065 struct rmap_iterator {
1066         /* private fields */
1067         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1068         int pos;                        /* index of the sptep */
1069 };
1070
1071 /*
1072  * Iteration must be started by this function.  This should also be used after
1073  * removing/dropping sptes from the rmap link because in such cases the
1074  * information in the itererator may not be valid.
1075  *
1076  * Returns sptep if found, NULL otherwise.
1077  */
1078 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1079 {
1080         if (!rmap)
1081                 return NULL;
1082
1083         if (!(rmap & 1)) {
1084                 iter->desc = NULL;
1085                 return (u64 *)rmap;
1086         }
1087
1088         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1089         iter->pos = 0;
1090         return iter->desc->sptes[iter->pos];
1091 }
1092
1093 /*
1094  * Must be used with a valid iterator: e.g. after rmap_get_first().
1095  *
1096  * Returns sptep if found, NULL otherwise.
1097  */
1098 static u64 *rmap_get_next(struct rmap_iterator *iter)
1099 {
1100         if (iter->desc) {
1101                 if (iter->pos < PTE_LIST_EXT - 1) {
1102                         u64 *sptep;
1103
1104                         ++iter->pos;
1105                         sptep = iter->desc->sptes[iter->pos];
1106                         if (sptep)
1107                                 return sptep;
1108                 }
1109
1110                 iter->desc = iter->desc->more;
1111
1112                 if (iter->desc) {
1113                         iter->pos = 0;
1114                         /* desc->sptes[0] cannot be NULL */
1115                         return iter->desc->sptes[iter->pos];
1116                 }
1117         }
1118
1119         return NULL;
1120 }
1121
1122 static void drop_spte(struct kvm *kvm, u64 *sptep)
1123 {
1124         if (mmu_spte_clear_track_bits(sptep))
1125                 rmap_remove(kvm, sptep);
1126 }
1127
1128
1129 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1130 {
1131         if (is_large_pte(*sptep)) {
1132                 WARN_ON(page_header(__pa(sptep))->role.level ==
1133                         PT_PAGE_TABLE_LEVEL);
1134                 drop_spte(kvm, sptep);
1135                 --kvm->stat.lpages;
1136                 return true;
1137         }
1138
1139         return false;
1140 }
1141
1142 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1143 {
1144         if (__drop_large_spte(vcpu->kvm, sptep))
1145                 kvm_flush_remote_tlbs(vcpu->kvm);
1146 }
1147
1148 /*
1149  * Write-protect on the specified @sptep, @pt_protect indicates whether
1150  * spte write-protection is caused by protecting shadow page table.
1151  *
1152  * Note: write protection is difference between dirty logging and spte
1153  * protection:
1154  * - for dirty logging, the spte can be set to writable at anytime if
1155  *   its dirty bitmap is properly set.
1156  * - for spte protection, the spte can be writable only after unsync-ing
1157  *   shadow page.
1158  *
1159  * Return true if tlb need be flushed.
1160  */
1161 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1162 {
1163         u64 spte = *sptep;
1164
1165         if (!is_writable_pte(spte) &&
1166               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1167                 return false;
1168
1169         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1170
1171         if (pt_protect)
1172                 spte &= ~SPTE_MMU_WRITEABLE;
1173         spte = spte & ~PT_WRITABLE_MASK;
1174
1175         return mmu_spte_update(sptep, spte);
1176 }
1177
1178 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1179                                  bool pt_protect)
1180 {
1181         u64 *sptep;
1182         struct rmap_iterator iter;
1183         bool flush = false;
1184
1185         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1186                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1187
1188                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1189                 sptep = rmap_get_next(&iter);
1190         }
1191
1192         return flush;
1193 }
1194
1195 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1196 {
1197         u64 spte = *sptep;
1198
1199         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1200
1201         spte &= ~shadow_dirty_mask;
1202
1203         return mmu_spte_update(sptep, spte);
1204 }
1205
1206 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1207 {
1208         u64 *sptep;
1209         struct rmap_iterator iter;
1210         bool flush = false;
1211
1212         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1213                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1214
1215                 flush |= spte_clear_dirty(kvm, sptep);
1216                 sptep = rmap_get_next(&iter);
1217         }
1218
1219         return flush;
1220 }
1221
1222 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1223 {
1224         u64 spte = *sptep;
1225
1226         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1227
1228         spte |= shadow_dirty_mask;
1229
1230         return mmu_spte_update(sptep, spte);
1231 }
1232
1233 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1234 {
1235         u64 *sptep;
1236         struct rmap_iterator iter;
1237         bool flush = false;
1238
1239         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1241
1242                 flush |= spte_set_dirty(kvm, sptep);
1243                 sptep = rmap_get_next(&iter);
1244         }
1245
1246         return flush;
1247 }
1248
1249 /**
1250  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1251  * @kvm: kvm instance
1252  * @slot: slot to protect
1253  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1254  * @mask: indicates which pages we should protect
1255  *
1256  * Used when we do not need to care about huge page mappings: e.g. during dirty
1257  * logging we do not have any such mappings.
1258  */
1259 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1260                                      struct kvm_memory_slot *slot,
1261                                      gfn_t gfn_offset, unsigned long mask)
1262 {
1263         unsigned long *rmapp;
1264
1265         while (mask) {
1266                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1267                                       PT_PAGE_TABLE_LEVEL, slot);
1268                 __rmap_write_protect(kvm, rmapp, false);
1269
1270                 /* clear the first set bit */
1271                 mask &= mask - 1;
1272         }
1273 }
1274
1275 /**
1276  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1277  * @kvm: kvm instance
1278  * @slot: slot to clear D-bit
1279  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1280  * @mask: indicates which pages we should clear D-bit
1281  *
1282  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1283  */
1284 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1285                                      struct kvm_memory_slot *slot,
1286                                      gfn_t gfn_offset, unsigned long mask)
1287 {
1288         unsigned long *rmapp;
1289
1290         while (mask) {
1291                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1292                                       PT_PAGE_TABLE_LEVEL, slot);
1293                 __rmap_clear_dirty(kvm, rmapp);
1294
1295                 /* clear the first set bit */
1296                 mask &= mask - 1;
1297         }
1298 }
1299 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1300
1301 /**
1302  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1303  * PT level pages.
1304  *
1305  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306  * enable dirty logging for them.
1307  *
1308  * Used when we do not need to care about huge page mappings: e.g. during dirty
1309  * logging we do not have any such mappings.
1310  */
1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312                                 struct kvm_memory_slot *slot,
1313                                 gfn_t gfn_offset, unsigned long mask)
1314 {
1315         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1316                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1317                                 mask);
1318         else
1319                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1320 }
1321
1322 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1323 {
1324         struct kvm_memory_slot *slot;
1325         unsigned long *rmapp;
1326         int i;
1327         bool write_protected = false;
1328
1329         slot = gfn_to_memslot(kvm, gfn);
1330
1331         for (i = PT_PAGE_TABLE_LEVEL;
1332              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1333                 rmapp = __gfn_to_rmap(gfn, i, slot);
1334                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1335         }
1336
1337         return write_protected;
1338 }
1339
1340 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1341                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1342                            unsigned long data)
1343 {
1344         u64 *sptep;
1345         struct rmap_iterator iter;
1346         int need_tlb_flush = 0;
1347
1348         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1349                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1350                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1351                              sptep, *sptep, gfn, level);
1352
1353                 drop_spte(kvm, sptep);
1354                 need_tlb_flush = 1;
1355         }
1356
1357         return need_tlb_flush;
1358 }
1359
1360 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1361                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1362                              unsigned long data)
1363 {
1364         u64 *sptep;
1365         struct rmap_iterator iter;
1366         int need_flush = 0;
1367         u64 new_spte;
1368         pte_t *ptep = (pte_t *)data;
1369         pfn_t new_pfn;
1370
1371         WARN_ON(pte_huge(*ptep));
1372         new_pfn = pte_pfn(*ptep);
1373
1374         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1375                 BUG_ON(!is_shadow_present_pte(*sptep));
1376                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1377                              sptep, *sptep, gfn, level);
1378
1379                 need_flush = 1;
1380
1381                 if (pte_write(*ptep)) {
1382                         drop_spte(kvm, sptep);
1383                         sptep = rmap_get_first(*rmapp, &iter);
1384                 } else {
1385                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1386                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1387
1388                         new_spte &= ~PT_WRITABLE_MASK;
1389                         new_spte &= ~SPTE_HOST_WRITEABLE;
1390                         new_spte &= ~shadow_accessed_mask;
1391
1392                         mmu_spte_clear_track_bits(sptep);
1393                         mmu_spte_set(sptep, new_spte);
1394                         sptep = rmap_get_next(&iter);
1395                 }
1396         }
1397
1398         if (need_flush)
1399                 kvm_flush_remote_tlbs(kvm);
1400
1401         return 0;
1402 }
1403
1404 static int kvm_handle_hva_range(struct kvm *kvm,
1405                                 unsigned long start,
1406                                 unsigned long end,
1407                                 unsigned long data,
1408                                 int (*handler)(struct kvm *kvm,
1409                                                unsigned long *rmapp,
1410                                                struct kvm_memory_slot *slot,
1411                                                gfn_t gfn,
1412                                                int level,
1413                                                unsigned long data))
1414 {
1415         int j;
1416         int ret = 0;
1417         struct kvm_memslots *slots;
1418         struct kvm_memory_slot *memslot;
1419
1420         slots = kvm_memslots(kvm);
1421
1422         kvm_for_each_memslot(memslot, slots) {
1423                 unsigned long hva_start, hva_end;
1424                 gfn_t gfn_start, gfn_end;
1425
1426                 hva_start = max(start, memslot->userspace_addr);
1427                 hva_end = min(end, memslot->userspace_addr +
1428                                         (memslot->npages << PAGE_SHIFT));
1429                 if (hva_start >= hva_end)
1430                         continue;
1431                 /*
1432                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1433                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1434                  */
1435                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1436                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1437
1438                 for (j = PT_PAGE_TABLE_LEVEL;
1439                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1440                         unsigned long idx, idx_end;
1441                         unsigned long *rmapp;
1442                         gfn_t gfn = gfn_start;
1443
1444                         /*
1445                          * {idx(page_j) | page_j intersects with
1446                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1447                          */
1448                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1449                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1450
1451                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1452
1453                         for (; idx <= idx_end;
1454                                ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1455                                 ret |= handler(kvm, rmapp++, memslot,
1456                                                gfn, j, data);
1457                 }
1458         }
1459
1460         return ret;
1461 }
1462
1463 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1464                           unsigned long data,
1465                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1466                                          struct kvm_memory_slot *slot,
1467                                          gfn_t gfn, int level,
1468                                          unsigned long data))
1469 {
1470         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1471 }
1472
1473 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1474 {
1475         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1476 }
1477
1478 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1479 {
1480         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1481 }
1482
1483 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1484 {
1485         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1486 }
1487
1488 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1489                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1490                          unsigned long data)
1491 {
1492         u64 *sptep;
1493         struct rmap_iterator uninitialized_var(iter);
1494         int young = 0;
1495
1496         BUG_ON(!shadow_accessed_mask);
1497
1498         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1499              sptep = rmap_get_next(&iter)) {
1500                 BUG_ON(!is_shadow_present_pte(*sptep));
1501
1502                 if (*sptep & shadow_accessed_mask) {
1503                         young = 1;
1504                         clear_bit((ffs(shadow_accessed_mask) - 1),
1505                                  (unsigned long *)sptep);
1506                 }
1507         }
1508         trace_kvm_age_page(gfn, level, slot, young);
1509         return young;
1510 }
1511
1512 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1513                               struct kvm_memory_slot *slot, gfn_t gfn,
1514                               int level, unsigned long data)
1515 {
1516         u64 *sptep;
1517         struct rmap_iterator iter;
1518         int young = 0;
1519
1520         /*
1521          * If there's no access bit in the secondary pte set by the
1522          * hardware it's up to gup-fast/gup to set the access bit in
1523          * the primary pte or in the page structure.
1524          */
1525         if (!shadow_accessed_mask)
1526                 goto out;
1527
1528         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1529              sptep = rmap_get_next(&iter)) {
1530                 BUG_ON(!is_shadow_present_pte(*sptep));
1531
1532                 if (*sptep & shadow_accessed_mask) {
1533                         young = 1;
1534                         break;
1535                 }
1536         }
1537 out:
1538         return young;
1539 }
1540
1541 #define RMAP_RECYCLE_THRESHOLD 1000
1542
1543 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1544 {
1545         unsigned long *rmapp;
1546         struct kvm_mmu_page *sp;
1547
1548         sp = page_header(__pa(spte));
1549
1550         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1551
1552         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1553         kvm_flush_remote_tlbs(vcpu->kvm);
1554 }
1555
1556 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1557 {
1558         /*
1559          * In case of absence of EPT Access and Dirty Bits supports,
1560          * emulate the accessed bit for EPT, by checking if this page has
1561          * an EPT mapping, and clearing it if it does. On the next access,
1562          * a new EPT mapping will be established.
1563          * This has some overhead, but not as much as the cost of swapping
1564          * out actively used pages or breaking up actively used hugepages.
1565          */
1566         if (!shadow_accessed_mask) {
1567                 /*
1568                  * We are holding the kvm->mmu_lock, and we are blowing up
1569                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1570                  * This is correct as long as we don't decouple the mmu_lock
1571                  * protected regions (like invalidate_range_start|end does).
1572                  */
1573                 kvm->mmu_notifier_seq++;
1574                 return kvm_handle_hva_range(kvm, start, end, 0,
1575                                             kvm_unmap_rmapp);
1576         }
1577
1578         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1579 }
1580
1581 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1582 {
1583         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1584 }
1585
1586 #ifdef MMU_DEBUG
1587 static int is_empty_shadow_page(u64 *spt)
1588 {
1589         u64 *pos;
1590         u64 *end;
1591
1592         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1593                 if (is_shadow_present_pte(*pos)) {
1594                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1595                                pos, *pos);
1596                         return 0;
1597                 }
1598         return 1;
1599 }
1600 #endif
1601
1602 /*
1603  * This value is the sum of all of the kvm instances's
1604  * kvm->arch.n_used_mmu_pages values.  We need a global,
1605  * aggregate version in order to make the slab shrinker
1606  * faster
1607  */
1608 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1609 {
1610         kvm->arch.n_used_mmu_pages += nr;
1611         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1612 }
1613
1614 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1615 {
1616         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1617         hlist_del(&sp->hash_link);
1618         list_del(&sp->link);
1619         free_page((unsigned long)sp->spt);
1620         if (!sp->role.direct)
1621                 free_page((unsigned long)sp->gfns);
1622         kmem_cache_free(mmu_page_header_cache, sp);
1623 }
1624
1625 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1626 {
1627         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1628 }
1629
1630 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1631                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1632 {
1633         if (!parent_pte)
1634                 return;
1635
1636         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1637 }
1638
1639 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1640                                        u64 *parent_pte)
1641 {
1642         pte_list_remove(parent_pte, &sp->parent_ptes);
1643 }
1644
1645 static void drop_parent_pte(struct kvm_mmu_page *sp,
1646                             u64 *parent_pte)
1647 {
1648         mmu_page_remove_parent_pte(sp, parent_pte);
1649         mmu_spte_clear_no_track(parent_pte);
1650 }
1651
1652 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1653                                                u64 *parent_pte, int direct)
1654 {
1655         struct kvm_mmu_page *sp;
1656
1657         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1658         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1659         if (!direct)
1660                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1661         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1662
1663         /*
1664          * The active_mmu_pages list is the FIFO list, do not move the
1665          * page until it is zapped. kvm_zap_obsolete_pages depends on
1666          * this feature. See the comments in kvm_zap_obsolete_pages().
1667          */
1668         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1669         sp->parent_ptes = 0;
1670         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1671         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1672         return sp;
1673 }
1674
1675 static void mark_unsync(u64 *spte);
1676 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1677 {
1678         pte_list_walk(&sp->parent_ptes, mark_unsync);
1679 }
1680
1681 static void mark_unsync(u64 *spte)
1682 {
1683         struct kvm_mmu_page *sp;
1684         unsigned int index;
1685
1686         sp = page_header(__pa(spte));
1687         index = spte - sp->spt;
1688         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1689                 return;
1690         if (sp->unsync_children++)
1691                 return;
1692         kvm_mmu_mark_parents_unsync(sp);
1693 }
1694
1695 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1696                                struct kvm_mmu_page *sp)
1697 {
1698         return 1;
1699 }
1700
1701 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1702 {
1703 }
1704
1705 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1706                                  struct kvm_mmu_page *sp, u64 *spte,
1707                                  const void *pte)
1708 {
1709         WARN_ON(1);
1710 }
1711
1712 #define KVM_PAGE_ARRAY_NR 16
1713
1714 struct kvm_mmu_pages {
1715         struct mmu_page_and_offset {
1716                 struct kvm_mmu_page *sp;
1717                 unsigned int idx;
1718         } page[KVM_PAGE_ARRAY_NR];
1719         unsigned int nr;
1720 };
1721
1722 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1723                          int idx)
1724 {
1725         int i;
1726
1727         if (sp->unsync)
1728                 for (i=0; i < pvec->nr; i++)
1729                         if (pvec->page[i].sp == sp)
1730                                 return 0;
1731
1732         pvec->page[pvec->nr].sp = sp;
1733         pvec->page[pvec->nr].idx = idx;
1734         pvec->nr++;
1735         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1736 }
1737
1738 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1739                            struct kvm_mmu_pages *pvec)
1740 {
1741         int i, ret, nr_unsync_leaf = 0;
1742
1743         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1744                 struct kvm_mmu_page *child;
1745                 u64 ent = sp->spt[i];
1746
1747                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1748                         goto clear_child_bitmap;
1749
1750                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1751
1752                 if (child->unsync_children) {
1753                         if (mmu_pages_add(pvec, child, i))
1754                                 return -ENOSPC;
1755
1756                         ret = __mmu_unsync_walk(child, pvec);
1757                         if (!ret)
1758                                 goto clear_child_bitmap;
1759                         else if (ret > 0)
1760                                 nr_unsync_leaf += ret;
1761                         else
1762                                 return ret;
1763                 } else if (child->unsync) {
1764                         nr_unsync_leaf++;
1765                         if (mmu_pages_add(pvec, child, i))
1766                                 return -ENOSPC;
1767                 } else
1768                          goto clear_child_bitmap;
1769
1770                 continue;
1771
1772 clear_child_bitmap:
1773                 __clear_bit(i, sp->unsync_child_bitmap);
1774                 sp->unsync_children--;
1775                 WARN_ON((int)sp->unsync_children < 0);
1776         }
1777
1778
1779         return nr_unsync_leaf;
1780 }
1781
1782 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1783                            struct kvm_mmu_pages *pvec)
1784 {
1785         if (!sp->unsync_children)
1786                 return 0;
1787
1788         mmu_pages_add(pvec, sp, 0);
1789         return __mmu_unsync_walk(sp, pvec);
1790 }
1791
1792 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1793 {
1794         WARN_ON(!sp->unsync);
1795         trace_kvm_mmu_sync_page(sp);
1796         sp->unsync = 0;
1797         --kvm->stat.mmu_unsync;
1798 }
1799
1800 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1801                                     struct list_head *invalid_list);
1802 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1803                                     struct list_head *invalid_list);
1804
1805 /*
1806  * NOTE: we should pay more attention on the zapped-obsolete page
1807  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1808  * since it has been deleted from active_mmu_pages but still can be found
1809  * at hast list.
1810  *
1811  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1812  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1813  * all the obsolete pages.
1814  */
1815 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1816         hlist_for_each_entry(_sp,                                       \
1817           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1818                 if ((_sp)->gfn != (_gfn)) {} else
1819
1820 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1821         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1822                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1823
1824 /* @sp->gfn should be write-protected at the call site */
1825 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1826                            struct list_head *invalid_list, bool clear_unsync)
1827 {
1828         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1829                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1830                 return 1;
1831         }
1832
1833         if (clear_unsync)
1834                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1835
1836         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1837                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1838                 return 1;
1839         }
1840
1841         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1842         return 0;
1843 }
1844
1845 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1846                                    struct kvm_mmu_page *sp)
1847 {
1848         LIST_HEAD(invalid_list);
1849         int ret;
1850
1851         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1852         if (ret)
1853                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1854
1855         return ret;
1856 }
1857
1858 #ifdef CONFIG_KVM_MMU_AUDIT
1859 #include "mmu_audit.c"
1860 #else
1861 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1862 static void mmu_audit_disable(void) { }
1863 #endif
1864
1865 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1866                          struct list_head *invalid_list)
1867 {
1868         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1869 }
1870
1871 /* @gfn should be write-protected at the call site */
1872 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1873 {
1874         struct kvm_mmu_page *s;
1875         LIST_HEAD(invalid_list);
1876         bool flush = false;
1877
1878         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1879                 if (!s->unsync)
1880                         continue;
1881
1882                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1883                 kvm_unlink_unsync_page(vcpu->kvm, s);
1884                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1885                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1886                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1887                         continue;
1888                 }
1889                 flush = true;
1890         }
1891
1892         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1893         if (flush)
1894                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1895 }
1896
1897 struct mmu_page_path {
1898         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1899         unsigned int idx[PT64_ROOT_LEVEL-1];
1900 };
1901
1902 #define for_each_sp(pvec, sp, parents, i)                       \
1903                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1904                         sp = pvec.page[i].sp;                   \
1905                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1906                         i = mmu_pages_next(&pvec, &parents, i))
1907
1908 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1909                           struct mmu_page_path *parents,
1910                           int i)
1911 {
1912         int n;
1913
1914         for (n = i+1; n < pvec->nr; n++) {
1915                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1916
1917                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1918                         parents->idx[0] = pvec->page[n].idx;
1919                         return n;
1920                 }
1921
1922                 parents->parent[sp->role.level-2] = sp;
1923                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1924         }
1925
1926         return n;
1927 }
1928
1929 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1930 {
1931         struct kvm_mmu_page *sp;
1932         unsigned int level = 0;
1933
1934         do {
1935                 unsigned int idx = parents->idx[level];
1936
1937                 sp = parents->parent[level];
1938                 if (!sp)
1939                         return;
1940
1941                 --sp->unsync_children;
1942                 WARN_ON((int)sp->unsync_children < 0);
1943                 __clear_bit(idx, sp->unsync_child_bitmap);
1944                 level++;
1945         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1946 }
1947
1948 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1949                                struct mmu_page_path *parents,
1950                                struct kvm_mmu_pages *pvec)
1951 {
1952         parents->parent[parent->role.level-1] = NULL;
1953         pvec->nr = 0;
1954 }
1955
1956 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1957                               struct kvm_mmu_page *parent)
1958 {
1959         int i;
1960         struct kvm_mmu_page *sp;
1961         struct mmu_page_path parents;
1962         struct kvm_mmu_pages pages;
1963         LIST_HEAD(invalid_list);
1964
1965         kvm_mmu_pages_init(parent, &parents, &pages);
1966         while (mmu_unsync_walk(parent, &pages)) {
1967                 bool protected = false;
1968
1969                 for_each_sp(pages, sp, parents, i)
1970                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1971
1972                 if (protected)
1973                         kvm_flush_remote_tlbs(vcpu->kvm);
1974
1975                 for_each_sp(pages, sp, parents, i) {
1976                         kvm_sync_page(vcpu, sp, &invalid_list);
1977                         mmu_pages_clear_parents(&parents);
1978                 }
1979                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1980                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1981                 kvm_mmu_pages_init(parent, &parents, &pages);
1982         }
1983 }
1984
1985 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1986 {
1987         int i;
1988
1989         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1990                 sp->spt[i] = 0ull;
1991 }
1992
1993 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1994 {
1995         sp->write_flooding_count = 0;
1996 }
1997
1998 static void clear_sp_write_flooding_count(u64 *spte)
1999 {
2000         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2001
2002         __clear_sp_write_flooding_count(sp);
2003 }
2004
2005 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2006 {
2007         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2008 }
2009
2010 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2011                                              gfn_t gfn,
2012                                              gva_t gaddr,
2013                                              unsigned level,
2014                                              int direct,
2015                                              unsigned access,
2016                                              u64 *parent_pte)
2017 {
2018         union kvm_mmu_page_role role;
2019         unsigned quadrant;
2020         struct kvm_mmu_page *sp;
2021         bool need_sync = false;
2022
2023         role = vcpu->arch.mmu.base_role;
2024         role.level = level;
2025         role.direct = direct;
2026         if (role.direct)
2027                 role.cr4_pae = 0;
2028         role.access = access;
2029         if (!vcpu->arch.mmu.direct_map
2030             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2031                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2032                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2033                 role.quadrant = quadrant;
2034         }
2035         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2036                 if (is_obsolete_sp(vcpu->kvm, sp))
2037                         continue;
2038
2039                 if (!need_sync && sp->unsync)
2040                         need_sync = true;
2041
2042                 if (sp->role.word != role.word)
2043                         continue;
2044
2045                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2046                         break;
2047
2048                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2049                 if (sp->unsync_children) {
2050                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2051                         kvm_mmu_mark_parents_unsync(sp);
2052                 } else if (sp->unsync)
2053                         kvm_mmu_mark_parents_unsync(sp);
2054
2055                 __clear_sp_write_flooding_count(sp);
2056                 trace_kvm_mmu_get_page(sp, false);
2057                 return sp;
2058         }
2059         ++vcpu->kvm->stat.mmu_cache_miss;
2060         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2061         if (!sp)
2062                 return sp;
2063         sp->gfn = gfn;
2064         sp->role = role;
2065         hlist_add_head(&sp->hash_link,
2066                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2067         if (!direct) {
2068                 if (rmap_write_protect(vcpu->kvm, gfn))
2069                         kvm_flush_remote_tlbs(vcpu->kvm);
2070                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2071                         kvm_sync_pages(vcpu, gfn);
2072
2073                 account_shadowed(vcpu->kvm, gfn);
2074         }
2075         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2076         init_shadow_page_table(sp);
2077         trace_kvm_mmu_get_page(sp, true);
2078         return sp;
2079 }
2080
2081 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2082                              struct kvm_vcpu *vcpu, u64 addr)
2083 {
2084         iterator->addr = addr;
2085         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2086         iterator->level = vcpu->arch.mmu.shadow_root_level;
2087
2088         if (iterator->level == PT64_ROOT_LEVEL &&
2089             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2090             !vcpu->arch.mmu.direct_map)
2091                 --iterator->level;
2092
2093         if (iterator->level == PT32E_ROOT_LEVEL) {
2094                 iterator->shadow_addr
2095                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2096                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2097                 --iterator->level;
2098                 if (!iterator->shadow_addr)
2099                         iterator->level = 0;
2100         }
2101 }
2102
2103 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2104 {
2105         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2106                 return false;
2107
2108         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2109         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2110         return true;
2111 }
2112
2113 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2114                                u64 spte)
2115 {
2116         if (is_last_spte(spte, iterator->level)) {
2117                 iterator->level = 0;
2118                 return;
2119         }
2120
2121         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2122         --iterator->level;
2123 }
2124
2125 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2126 {
2127         return __shadow_walk_next(iterator, *iterator->sptep);
2128 }
2129
2130 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2131 {
2132         u64 spte;
2133
2134         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2135                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2136
2137         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2138                shadow_user_mask | shadow_x_mask;
2139
2140         if (accessed)
2141                 spte |= shadow_accessed_mask;
2142
2143         mmu_spte_set(sptep, spte);
2144 }
2145
2146 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2147                                    unsigned direct_access)
2148 {
2149         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2150                 struct kvm_mmu_page *child;
2151
2152                 /*
2153                  * For the direct sp, if the guest pte's dirty bit
2154                  * changed form clean to dirty, it will corrupt the
2155                  * sp's access: allow writable in the read-only sp,
2156                  * so we should update the spte at this point to get
2157                  * a new sp with the correct access.
2158                  */
2159                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2160                 if (child->role.access == direct_access)
2161                         return;
2162
2163                 drop_parent_pte(child, sptep);
2164                 kvm_flush_remote_tlbs(vcpu->kvm);
2165         }
2166 }
2167
2168 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2169                              u64 *spte)
2170 {
2171         u64 pte;
2172         struct kvm_mmu_page *child;
2173
2174         pte = *spte;
2175         if (is_shadow_present_pte(pte)) {
2176                 if (is_last_spte(pte, sp->role.level)) {
2177                         drop_spte(kvm, spte);
2178                         if (is_large_pte(pte))
2179                                 --kvm->stat.lpages;
2180                 } else {
2181                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2182                         drop_parent_pte(child, spte);
2183                 }
2184                 return true;
2185         }
2186
2187         if (is_mmio_spte(pte))
2188                 mmu_spte_clear_no_track(spte);
2189
2190         return false;
2191 }
2192
2193 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2194                                          struct kvm_mmu_page *sp)
2195 {
2196         unsigned i;
2197
2198         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2199                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2200 }
2201
2202 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2203 {
2204         mmu_page_remove_parent_pte(sp, parent_pte);
2205 }
2206
2207 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2208 {
2209         u64 *sptep;
2210         struct rmap_iterator iter;
2211
2212         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2213                 drop_parent_pte(sp, sptep);
2214 }
2215
2216 static int mmu_zap_unsync_children(struct kvm *kvm,
2217                                    struct kvm_mmu_page *parent,
2218                                    struct list_head *invalid_list)
2219 {
2220         int i, zapped = 0;
2221         struct mmu_page_path parents;
2222         struct kvm_mmu_pages pages;
2223
2224         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2225                 return 0;
2226
2227         kvm_mmu_pages_init(parent, &parents, &pages);
2228         while (mmu_unsync_walk(parent, &pages)) {
2229                 struct kvm_mmu_page *sp;
2230
2231                 for_each_sp(pages, sp, parents, i) {
2232                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2233                         mmu_pages_clear_parents(&parents);
2234                         zapped++;
2235                 }
2236                 kvm_mmu_pages_init(parent, &parents, &pages);
2237         }
2238
2239         return zapped;
2240 }
2241
2242 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2243                                     struct list_head *invalid_list)
2244 {
2245         int ret;
2246
2247         trace_kvm_mmu_prepare_zap_page(sp);
2248         ++kvm->stat.mmu_shadow_zapped;
2249         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2250         kvm_mmu_page_unlink_children(kvm, sp);
2251         kvm_mmu_unlink_parents(kvm, sp);
2252
2253         if (!sp->role.invalid && !sp->role.direct)
2254                 unaccount_shadowed(kvm, sp->gfn);
2255
2256         if (sp->unsync)
2257                 kvm_unlink_unsync_page(kvm, sp);
2258         if (!sp->root_count) {
2259                 /* Count self */
2260                 ret++;
2261                 list_move(&sp->link, invalid_list);
2262                 kvm_mod_used_mmu_pages(kvm, -1);
2263         } else {
2264                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2265
2266                 /*
2267                  * The obsolete pages can not be used on any vcpus.
2268                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2269                  */
2270                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2271                         kvm_reload_remote_mmus(kvm);
2272         }
2273
2274         sp->role.invalid = 1;
2275         return ret;
2276 }
2277
2278 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2279                                     struct list_head *invalid_list)
2280 {
2281         struct kvm_mmu_page *sp, *nsp;
2282
2283         if (list_empty(invalid_list))
2284                 return;
2285
2286         /*
2287          * wmb: make sure everyone sees our modifications to the page tables
2288          * rmb: make sure we see changes to vcpu->mode
2289          */
2290         smp_mb();
2291
2292         /*
2293          * Wait for all vcpus to exit guest mode and/or lockless shadow
2294          * page table walks.
2295          */
2296         kvm_flush_remote_tlbs(kvm);
2297
2298         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2299                 WARN_ON(!sp->role.invalid || sp->root_count);
2300                 kvm_mmu_free_page(sp);
2301         }
2302 }
2303
2304 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2305                                         struct list_head *invalid_list)
2306 {
2307         struct kvm_mmu_page *sp;
2308
2309         if (list_empty(&kvm->arch.active_mmu_pages))
2310                 return false;
2311
2312         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2313                         struct kvm_mmu_page, link);
2314         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2315
2316         return true;
2317 }
2318
2319 /*
2320  * Changing the number of mmu pages allocated to the vm
2321  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2322  */
2323 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2324 {
2325         LIST_HEAD(invalid_list);
2326
2327         spin_lock(&kvm->mmu_lock);
2328
2329         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2330                 /* Need to free some mmu pages to achieve the goal. */
2331                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2332                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2333                                 break;
2334
2335                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2336                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2337         }
2338
2339         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2340
2341         spin_unlock(&kvm->mmu_lock);
2342 }
2343
2344 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2345 {
2346         struct kvm_mmu_page *sp;
2347         LIST_HEAD(invalid_list);
2348         int r;
2349
2350         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2351         r = 0;
2352         spin_lock(&kvm->mmu_lock);
2353         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2354                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2355                          sp->role.word);
2356                 r = 1;
2357                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2358         }
2359         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2360         spin_unlock(&kvm->mmu_lock);
2361
2362         return r;
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2365
2366 /*
2367  * The function is based on mtrr_type_lookup() in
2368  * arch/x86/kernel/cpu/mtrr/generic.c
2369  */
2370 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2371                          u64 start, u64 end)
2372 {
2373         int i;
2374         u64 base, mask;
2375         u8 prev_match, curr_match;
2376         int num_var_ranges = KVM_NR_VAR_MTRR;
2377
2378         if (!mtrr_state->enabled)
2379                 return 0xFF;
2380
2381         /* Make end inclusive end, instead of exclusive */
2382         end--;
2383
2384         /* Look in fixed ranges. Just return the type as per start */
2385         if (mtrr_state->have_fixed && (start < 0x100000)) {
2386                 int idx;
2387
2388                 if (start < 0x80000) {
2389                         idx = 0;
2390                         idx += (start >> 16);
2391                         return mtrr_state->fixed_ranges[idx];
2392                 } else if (start < 0xC0000) {
2393                         idx = 1 * 8;
2394                         idx += ((start - 0x80000) >> 14);
2395                         return mtrr_state->fixed_ranges[idx];
2396                 } else if (start < 0x1000000) {
2397                         idx = 3 * 8;
2398                         idx += ((start - 0xC0000) >> 12);
2399                         return mtrr_state->fixed_ranges[idx];
2400                 }
2401         }
2402
2403         /*
2404          * Look in variable ranges
2405          * Look of multiple ranges matching this address and pick type
2406          * as per MTRR precedence
2407          */
2408         if (!(mtrr_state->enabled & 2))
2409                 return mtrr_state->def_type;
2410
2411         prev_match = 0xFF;
2412         for (i = 0; i < num_var_ranges; ++i) {
2413                 unsigned short start_state, end_state;
2414
2415                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2416                         continue;
2417
2418                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2419                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2420                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2421                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2422
2423                 start_state = ((start & mask) == (base & mask));
2424                 end_state = ((end & mask) == (base & mask));
2425                 if (start_state != end_state)
2426                         return 0xFE;
2427
2428                 if ((start & mask) != (base & mask))
2429                         continue;
2430
2431                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2432                 if (prev_match == 0xFF) {
2433                         prev_match = curr_match;
2434                         continue;
2435                 }
2436
2437                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2438                     curr_match == MTRR_TYPE_UNCACHABLE)
2439                         return MTRR_TYPE_UNCACHABLE;
2440
2441                 if ((prev_match == MTRR_TYPE_WRBACK &&
2442                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2443                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2444                      curr_match == MTRR_TYPE_WRBACK)) {
2445                         prev_match = MTRR_TYPE_WRTHROUGH;
2446                         curr_match = MTRR_TYPE_WRTHROUGH;
2447                 }
2448
2449                 if (prev_match != curr_match)
2450                         return MTRR_TYPE_UNCACHABLE;
2451         }
2452
2453         if (prev_match != 0xFF)
2454                 return prev_match;
2455
2456         return mtrr_state->def_type;
2457 }
2458
2459 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2460 {
2461         u8 mtrr;
2462
2463         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2464                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2465         if (mtrr == 0xfe || mtrr == 0xff)
2466                 mtrr = MTRR_TYPE_WRBACK;
2467         return mtrr;
2468 }
2469 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2470
2471 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2472 {
2473         trace_kvm_mmu_unsync_page(sp);
2474         ++vcpu->kvm->stat.mmu_unsync;
2475         sp->unsync = 1;
2476
2477         kvm_mmu_mark_parents_unsync(sp);
2478 }
2479
2480 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2481 {
2482         struct kvm_mmu_page *s;
2483
2484         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2485                 if (s->unsync)
2486                         continue;
2487                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2488                 __kvm_unsync_page(vcpu, s);
2489         }
2490 }
2491
2492 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2493                                   bool can_unsync)
2494 {
2495         struct kvm_mmu_page *s;
2496         bool need_unsync = false;
2497
2498         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2499                 if (!can_unsync)
2500                         return 1;
2501
2502                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2503                         return 1;
2504
2505                 if (!s->unsync)
2506                         need_unsync = true;
2507         }
2508         if (need_unsync)
2509                 kvm_unsync_pages(vcpu, gfn);
2510         return 0;
2511 }
2512
2513 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2514                     unsigned pte_access, int level,
2515                     gfn_t gfn, pfn_t pfn, bool speculative,
2516                     bool can_unsync, bool host_writable)
2517 {
2518         u64 spte;
2519         int ret = 0;
2520
2521         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2522                 return 0;
2523
2524         spte = PT_PRESENT_MASK;
2525         if (!speculative)
2526                 spte |= shadow_accessed_mask;
2527
2528         if (pte_access & ACC_EXEC_MASK)
2529                 spte |= shadow_x_mask;
2530         else
2531                 spte |= shadow_nx_mask;
2532
2533         if (pte_access & ACC_USER_MASK)
2534                 spte |= shadow_user_mask;
2535
2536         if (level > PT_PAGE_TABLE_LEVEL)
2537                 spte |= PT_PAGE_SIZE_MASK;
2538         if (tdp_enabled)
2539                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2540                         kvm_is_reserved_pfn(pfn));
2541
2542         if (host_writable)
2543                 spte |= SPTE_HOST_WRITEABLE;
2544         else
2545                 pte_access &= ~ACC_WRITE_MASK;
2546
2547         spte |= (u64)pfn << PAGE_SHIFT;
2548
2549         if (pte_access & ACC_WRITE_MASK) {
2550
2551                 /*
2552                  * Other vcpu creates new sp in the window between
2553                  * mapping_level() and acquiring mmu-lock. We can
2554                  * allow guest to retry the access, the mapping can
2555                  * be fixed if guest refault.
2556                  */
2557                 if (level > PT_PAGE_TABLE_LEVEL &&
2558                     has_wrprotected_page(vcpu->kvm, gfn, level))
2559                         goto done;
2560
2561                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2562
2563                 /*
2564                  * Optimization: for pte sync, if spte was writable the hash
2565                  * lookup is unnecessary (and expensive). Write protection
2566                  * is responsibility of mmu_get_page / kvm_sync_page.
2567                  * Same reasoning can be applied to dirty page accounting.
2568                  */
2569                 if (!can_unsync && is_writable_pte(*sptep))
2570                         goto set_pte;
2571
2572                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2573                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2574                                  __func__, gfn);
2575                         ret = 1;
2576                         pte_access &= ~ACC_WRITE_MASK;
2577                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2578                 }
2579         }
2580
2581         if (pte_access & ACC_WRITE_MASK) {
2582                 mark_page_dirty(vcpu->kvm, gfn);
2583                 spte |= shadow_dirty_mask;
2584         }
2585
2586 set_pte:
2587         if (mmu_spte_update(sptep, spte))
2588                 kvm_flush_remote_tlbs(vcpu->kvm);
2589 done:
2590         return ret;
2591 }
2592
2593 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2594                          unsigned pte_access, int write_fault, int *emulate,
2595                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2596                          bool host_writable)
2597 {
2598         int was_rmapped = 0;
2599         int rmap_count;
2600
2601         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2602                  *sptep, write_fault, gfn);
2603
2604         if (is_rmap_spte(*sptep)) {
2605                 /*
2606                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2607                  * the parent of the now unreachable PTE.
2608                  */
2609                 if (level > PT_PAGE_TABLE_LEVEL &&
2610                     !is_large_pte(*sptep)) {
2611                         struct kvm_mmu_page *child;
2612                         u64 pte = *sptep;
2613
2614                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2615                         drop_parent_pte(child, sptep);
2616                         kvm_flush_remote_tlbs(vcpu->kvm);
2617                 } else if (pfn != spte_to_pfn(*sptep)) {
2618                         pgprintk("hfn old %llx new %llx\n",
2619                                  spte_to_pfn(*sptep), pfn);
2620                         drop_spte(vcpu->kvm, sptep);
2621                         kvm_flush_remote_tlbs(vcpu->kvm);
2622                 } else
2623                         was_rmapped = 1;
2624         }
2625
2626         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2627               true, host_writable)) {
2628                 if (write_fault)
2629                         *emulate = 1;
2630                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2631         }
2632
2633         if (unlikely(is_mmio_spte(*sptep) && emulate))
2634                 *emulate = 1;
2635
2636         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2637         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2638                  is_large_pte(*sptep)? "2MB" : "4kB",
2639                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2640                  *sptep, sptep);
2641         if (!was_rmapped && is_large_pte(*sptep))
2642                 ++vcpu->kvm->stat.lpages;
2643
2644         if (is_shadow_present_pte(*sptep)) {
2645                 if (!was_rmapped) {
2646                         rmap_count = rmap_add(vcpu, sptep, gfn);
2647                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2648                                 rmap_recycle(vcpu, sptep, gfn);
2649                 }
2650         }
2651
2652         kvm_release_pfn_clean(pfn);
2653 }
2654
2655 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2656                                      bool no_dirty_log)
2657 {
2658         struct kvm_memory_slot *slot;
2659
2660         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2661         if (!slot)
2662                 return KVM_PFN_ERR_FAULT;
2663
2664         return gfn_to_pfn_memslot_atomic(slot, gfn);
2665 }
2666
2667 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2668                                     struct kvm_mmu_page *sp,
2669                                     u64 *start, u64 *end)
2670 {
2671         struct page *pages[PTE_PREFETCH_NUM];
2672         unsigned access = sp->role.access;
2673         int i, ret;
2674         gfn_t gfn;
2675
2676         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2677         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2678                 return -1;
2679
2680         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2681         if (ret <= 0)
2682                 return -1;
2683
2684         for (i = 0; i < ret; i++, gfn++, start++)
2685                 mmu_set_spte(vcpu, start, access, 0, NULL,
2686                              sp->role.level, gfn, page_to_pfn(pages[i]),
2687                              true, true);
2688
2689         return 0;
2690 }
2691
2692 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2693                                   struct kvm_mmu_page *sp, u64 *sptep)
2694 {
2695         u64 *spte, *start = NULL;
2696         int i;
2697
2698         WARN_ON(!sp->role.direct);
2699
2700         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2701         spte = sp->spt + i;
2702
2703         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2704                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2705                         if (!start)
2706                                 continue;
2707                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2708                                 break;
2709                         start = NULL;
2710                 } else if (!start)
2711                         start = spte;
2712         }
2713 }
2714
2715 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2716 {
2717         struct kvm_mmu_page *sp;
2718
2719         /*
2720          * Since it's no accessed bit on EPT, it's no way to
2721          * distinguish between actually accessed translations
2722          * and prefetched, so disable pte prefetch if EPT is
2723          * enabled.
2724          */
2725         if (!shadow_accessed_mask)
2726                 return;
2727
2728         sp = page_header(__pa(sptep));
2729         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2730                 return;
2731
2732         __direct_pte_prefetch(vcpu, sp, sptep);
2733 }
2734
2735 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2736                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2737                         bool prefault)
2738 {
2739         struct kvm_shadow_walk_iterator iterator;
2740         struct kvm_mmu_page *sp;
2741         int emulate = 0;
2742         gfn_t pseudo_gfn;
2743
2744         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2745                 return 0;
2746
2747         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2748                 if (iterator.level == level) {
2749                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2750                                      write, &emulate, level, gfn, pfn,
2751                                      prefault, map_writable);
2752                         direct_pte_prefetch(vcpu, iterator.sptep);
2753                         ++vcpu->stat.pf_fixed;
2754                         break;
2755                 }
2756
2757                 drop_large_spte(vcpu, iterator.sptep);
2758                 if (!is_shadow_present_pte(*iterator.sptep)) {
2759                         u64 base_addr = iterator.addr;
2760
2761                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2762                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2763                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2764                                               iterator.level - 1,
2765                                               1, ACC_ALL, iterator.sptep);
2766
2767                         link_shadow_page(iterator.sptep, sp, true);
2768                 }
2769         }
2770         return emulate;
2771 }
2772
2773 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2774 {
2775         siginfo_t info;
2776
2777         info.si_signo   = SIGBUS;
2778         info.si_errno   = 0;
2779         info.si_code    = BUS_MCEERR_AR;
2780         info.si_addr    = (void __user *)address;
2781         info.si_addr_lsb = PAGE_SHIFT;
2782
2783         send_sig_info(SIGBUS, &info, tsk);
2784 }
2785
2786 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2787 {
2788         /*
2789          * Do not cache the mmio info caused by writing the readonly gfn
2790          * into the spte otherwise read access on readonly gfn also can
2791          * caused mmio page fault and treat it as mmio access.
2792          * Return 1 to tell kvm to emulate it.
2793          */
2794         if (pfn == KVM_PFN_ERR_RO_FAULT)
2795                 return 1;
2796
2797         if (pfn == KVM_PFN_ERR_HWPOISON) {
2798                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2799                 return 0;
2800         }
2801
2802         return -EFAULT;
2803 }
2804
2805 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2806                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2807 {
2808         pfn_t pfn = *pfnp;
2809         gfn_t gfn = *gfnp;
2810         int level = *levelp;
2811
2812         /*
2813          * Check if it's a transparent hugepage. If this would be an
2814          * hugetlbfs page, level wouldn't be set to
2815          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2816          * here.
2817          */
2818         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2819             level == PT_PAGE_TABLE_LEVEL &&
2820             PageTransCompound(pfn_to_page(pfn)) &&
2821             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2822                 unsigned long mask;
2823                 /*
2824                  * mmu_notifier_retry was successful and we hold the
2825                  * mmu_lock here, so the pmd can't become splitting
2826                  * from under us, and in turn
2827                  * __split_huge_page_refcount() can't run from under
2828                  * us and we can safely transfer the refcount from
2829                  * PG_tail to PG_head as we switch the pfn to tail to
2830                  * head.
2831                  */
2832                 *levelp = level = PT_DIRECTORY_LEVEL;
2833                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2834                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2835                 if (pfn & mask) {
2836                         gfn &= ~mask;
2837                         *gfnp = gfn;
2838                         kvm_release_pfn_clean(pfn);
2839                         pfn &= ~mask;
2840                         kvm_get_pfn(pfn);
2841                         *pfnp = pfn;
2842                 }
2843         }
2844 }
2845
2846 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2847                                 pfn_t pfn, unsigned access, int *ret_val)
2848 {
2849         bool ret = true;
2850
2851         /* The pfn is invalid, report the error! */
2852         if (unlikely(is_error_pfn(pfn))) {
2853                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2854                 goto exit;
2855         }
2856
2857         if (unlikely(is_noslot_pfn(pfn)))
2858                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2859
2860         ret = false;
2861 exit:
2862         return ret;
2863 }
2864
2865 static bool page_fault_can_be_fast(u32 error_code)
2866 {
2867         /*
2868          * Do not fix the mmio spte with invalid generation number which
2869          * need to be updated by slow page fault path.
2870          */
2871         if (unlikely(error_code & PFERR_RSVD_MASK))
2872                 return false;
2873
2874         /*
2875          * #PF can be fast only if the shadow page table is present and it
2876          * is caused by write-protect, that means we just need change the
2877          * W bit of the spte which can be done out of mmu-lock.
2878          */
2879         if (!(error_code & PFERR_PRESENT_MASK) ||
2880               !(error_code & PFERR_WRITE_MASK))
2881                 return false;
2882
2883         return true;
2884 }
2885
2886 static bool
2887 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2888                         u64 *sptep, u64 spte)
2889 {
2890         gfn_t gfn;
2891
2892         WARN_ON(!sp->role.direct);
2893
2894         /*
2895          * The gfn of direct spte is stable since it is calculated
2896          * by sp->gfn.
2897          */
2898         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2899
2900         /*
2901          * Theoretically we could also set dirty bit (and flush TLB) here in
2902          * order to eliminate unnecessary PML logging. See comments in
2903          * set_spte. But fast_page_fault is very unlikely to happen with PML
2904          * enabled, so we do not do this. This might result in the same GPA
2905          * to be logged in PML buffer again when the write really happens, and
2906          * eventually to be called by mark_page_dirty twice. But it's also no
2907          * harm. This also avoids the TLB flush needed after setting dirty bit
2908          * so non-PML cases won't be impacted.
2909          *
2910          * Compare with set_spte where instead shadow_dirty_mask is set.
2911          */
2912         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2913                 mark_page_dirty(vcpu->kvm, gfn);
2914
2915         return true;
2916 }
2917
2918 /*
2919  * Return value:
2920  * - true: let the vcpu to access on the same address again.
2921  * - false: let the real page fault path to fix it.
2922  */
2923 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2924                             u32 error_code)
2925 {
2926         struct kvm_shadow_walk_iterator iterator;
2927         struct kvm_mmu_page *sp;
2928         bool ret = false;
2929         u64 spte = 0ull;
2930
2931         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2932                 return false;
2933
2934         if (!page_fault_can_be_fast(error_code))
2935                 return false;
2936
2937         walk_shadow_page_lockless_begin(vcpu);
2938         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2939                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2940                         break;
2941
2942         /*
2943          * If the mapping has been changed, let the vcpu fault on the
2944          * same address again.
2945          */
2946         if (!is_rmap_spte(spte)) {
2947                 ret = true;
2948                 goto exit;
2949         }
2950
2951         sp = page_header(__pa(iterator.sptep));
2952         if (!is_last_spte(spte, sp->role.level))
2953                 goto exit;
2954
2955         /*
2956          * Check if it is a spurious fault caused by TLB lazily flushed.
2957          *
2958          * Need not check the access of upper level table entries since
2959          * they are always ACC_ALL.
2960          */
2961          if (is_writable_pte(spte)) {
2962                 ret = true;
2963                 goto exit;
2964         }
2965
2966         /*
2967          * Currently, to simplify the code, only the spte write-protected
2968          * by dirty-log can be fast fixed.
2969          */
2970         if (!spte_is_locklessly_modifiable(spte))
2971                 goto exit;
2972
2973         /*
2974          * Do not fix write-permission on the large spte since we only dirty
2975          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2976          * that means other pages are missed if its slot is dirty-logged.
2977          *
2978          * Instead, we let the slow page fault path create a normal spte to
2979          * fix the access.
2980          *
2981          * See the comments in kvm_arch_commit_memory_region().
2982          */
2983         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2984                 goto exit;
2985
2986         /*
2987          * Currently, fast page fault only works for direct mapping since
2988          * the gfn is not stable for indirect shadow page.
2989          * See Documentation/virtual/kvm/locking.txt to get more detail.
2990          */
2991         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2992 exit:
2993         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2994                               spte, ret);
2995         walk_shadow_page_lockless_end(vcpu);
2996
2997         return ret;
2998 }
2999
3000 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3001                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
3002 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3003
3004 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3005                          gfn_t gfn, bool prefault)
3006 {
3007         int r;
3008         int level;
3009         int force_pt_level;
3010         pfn_t pfn;
3011         unsigned long mmu_seq;
3012         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3013
3014         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3015         if (likely(!force_pt_level)) {
3016                 level = mapping_level(vcpu, gfn);
3017                 /*
3018                  * This path builds a PAE pagetable - so we can map
3019                  * 2mb pages at maximum. Therefore check if the level
3020                  * is larger than that.
3021                  */
3022                 if (level > PT_DIRECTORY_LEVEL)
3023                         level = PT_DIRECTORY_LEVEL;
3024
3025                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3026         } else
3027                 level = PT_PAGE_TABLE_LEVEL;
3028
3029         if (fast_page_fault(vcpu, v, level, error_code))
3030                 return 0;
3031
3032         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3033         smp_rmb();
3034
3035         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3036                 return 0;
3037
3038         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3039                 return r;
3040
3041         spin_lock(&vcpu->kvm->mmu_lock);
3042         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3043                 goto out_unlock;
3044         make_mmu_pages_available(vcpu);
3045         if (likely(!force_pt_level))
3046                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3047         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3048                          prefault);
3049         spin_unlock(&vcpu->kvm->mmu_lock);
3050
3051
3052         return r;
3053
3054 out_unlock:
3055         spin_unlock(&vcpu->kvm->mmu_lock);
3056         kvm_release_pfn_clean(pfn);
3057         return 0;
3058 }
3059
3060
3061 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3062 {
3063         int i;
3064         struct kvm_mmu_page *sp;
3065         LIST_HEAD(invalid_list);
3066
3067         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3068                 return;
3069
3070         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3071             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3072              vcpu->arch.mmu.direct_map)) {
3073                 hpa_t root = vcpu->arch.mmu.root_hpa;
3074
3075                 spin_lock(&vcpu->kvm->mmu_lock);
3076                 sp = page_header(root);
3077                 --sp->root_count;
3078                 if (!sp->root_count && sp->role.invalid) {
3079                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3080                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3081                 }
3082                 spin_unlock(&vcpu->kvm->mmu_lock);
3083                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3084                 return;
3085         }
3086
3087         spin_lock(&vcpu->kvm->mmu_lock);
3088         for (i = 0; i < 4; ++i) {
3089                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3090
3091                 if (root) {
3092                         root &= PT64_BASE_ADDR_MASK;
3093                         sp = page_header(root);
3094                         --sp->root_count;
3095                         if (!sp->root_count && sp->role.invalid)
3096                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3097                                                          &invalid_list);
3098                 }
3099                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3100         }
3101         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3102         spin_unlock(&vcpu->kvm->mmu_lock);
3103         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3104 }
3105
3106 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3107 {
3108         int ret = 0;
3109
3110         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3111                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3112                 ret = 1;
3113         }
3114
3115         return ret;
3116 }
3117
3118 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3119 {
3120         struct kvm_mmu_page *sp;
3121         unsigned i;
3122
3123         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3124                 spin_lock(&vcpu->kvm->mmu_lock);
3125                 make_mmu_pages_available(vcpu);
3126                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3127                                       1, ACC_ALL, NULL);
3128                 ++sp->root_count;
3129                 spin_unlock(&vcpu->kvm->mmu_lock);
3130                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3131         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3132                 for (i = 0; i < 4; ++i) {
3133                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3134
3135                         MMU_WARN_ON(VALID_PAGE(root));
3136                         spin_lock(&vcpu->kvm->mmu_lock);
3137                         make_mmu_pages_available(vcpu);
3138                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3139                                               i << 30,
3140                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3141                                               NULL);
3142                         root = __pa(sp->spt);
3143                         ++sp->root_count;
3144                         spin_unlock(&vcpu->kvm->mmu_lock);
3145                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3146                 }
3147                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3148         } else
3149                 BUG();
3150
3151         return 0;
3152 }
3153
3154 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3155 {
3156         struct kvm_mmu_page *sp;
3157         u64 pdptr, pm_mask;
3158         gfn_t root_gfn;
3159         int i;
3160
3161         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3162
3163         if (mmu_check_root(vcpu, root_gfn))
3164                 return 1;
3165
3166         /*
3167          * Do we shadow a long mode page table? If so we need to
3168          * write-protect the guests page table root.
3169          */
3170         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3171                 hpa_t root = vcpu->arch.mmu.root_hpa;
3172
3173                 MMU_WARN_ON(VALID_PAGE(root));
3174
3175                 spin_lock(&vcpu->kvm->mmu_lock);
3176                 make_mmu_pages_available(vcpu);
3177                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3178                                       0, ACC_ALL, NULL);
3179                 root = __pa(sp->spt);
3180                 ++sp->root_count;
3181                 spin_unlock(&vcpu->kvm->mmu_lock);
3182                 vcpu->arch.mmu.root_hpa = root;
3183                 return 0;
3184         }
3185
3186         /*
3187          * We shadow a 32 bit page table. This may be a legacy 2-level
3188          * or a PAE 3-level page table. In either case we need to be aware that
3189          * the shadow page table may be a PAE or a long mode page table.
3190          */
3191         pm_mask = PT_PRESENT_MASK;
3192         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3193                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3194
3195         for (i = 0; i < 4; ++i) {
3196                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3197
3198                 MMU_WARN_ON(VALID_PAGE(root));
3199                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3200                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3201                         if (!is_present_gpte(pdptr)) {
3202                                 vcpu->arch.mmu.pae_root[i] = 0;
3203                                 continue;
3204                         }
3205                         root_gfn = pdptr >> PAGE_SHIFT;
3206                         if (mmu_check_root(vcpu, root_gfn))
3207                                 return 1;
3208                 }
3209                 spin_lock(&vcpu->kvm->mmu_lock);
3210                 make_mmu_pages_available(vcpu);
3211                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3212                                       PT32_ROOT_LEVEL, 0,
3213                                       ACC_ALL, NULL);
3214                 root = __pa(sp->spt);
3215                 ++sp->root_count;
3216                 spin_unlock(&vcpu->kvm->mmu_lock);
3217
3218                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3219         }
3220         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3221
3222         /*
3223          * If we shadow a 32 bit page table with a long mode page
3224          * table we enter this path.
3225          */
3226         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3227                 if (vcpu->arch.mmu.lm_root == NULL) {
3228                         /*
3229                          * The additional page necessary for this is only
3230                          * allocated on demand.
3231                          */
3232
3233                         u64 *lm_root;
3234
3235                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3236                         if (lm_root == NULL)
3237                                 return 1;
3238
3239                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3240
3241                         vcpu->arch.mmu.lm_root = lm_root;
3242                 }
3243
3244                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3245         }
3246
3247         return 0;
3248 }
3249
3250 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3251 {
3252         if (vcpu->arch.mmu.direct_map)
3253                 return mmu_alloc_direct_roots(vcpu);
3254         else
3255                 return mmu_alloc_shadow_roots(vcpu);
3256 }
3257
3258 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3259 {
3260         int i;
3261         struct kvm_mmu_page *sp;
3262
3263         if (vcpu->arch.mmu.direct_map)
3264                 return;
3265
3266         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3267                 return;
3268
3269         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3270         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3271         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3272                 hpa_t root = vcpu->arch.mmu.root_hpa;
3273                 sp = page_header(root);
3274                 mmu_sync_children(vcpu, sp);
3275                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3276                 return;
3277         }
3278         for (i = 0; i < 4; ++i) {
3279                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3280
3281                 if (root && VALID_PAGE(root)) {
3282                         root &= PT64_BASE_ADDR_MASK;
3283                         sp = page_header(root);
3284                         mmu_sync_children(vcpu, sp);
3285                 }
3286         }
3287         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3288 }
3289
3290 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3291 {
3292         spin_lock(&vcpu->kvm->mmu_lock);
3293         mmu_sync_roots(vcpu);
3294         spin_unlock(&vcpu->kvm->mmu_lock);
3295 }
3296 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3297
3298 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3299                                   u32 access, struct x86_exception *exception)
3300 {
3301         if (exception)
3302                 exception->error_code = 0;
3303         return vaddr;
3304 }
3305
3306 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3307                                          u32 access,
3308                                          struct x86_exception *exception)
3309 {
3310         if (exception)
3311                 exception->error_code = 0;
3312         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3313 }
3314
3315 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3316 {
3317         if (direct)
3318                 return vcpu_match_mmio_gpa(vcpu, addr);
3319
3320         return vcpu_match_mmio_gva(vcpu, addr);
3321 }
3322
3323 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3324 {
3325         struct kvm_shadow_walk_iterator iterator;
3326         u64 spte = 0ull;
3327
3328         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3329                 return spte;
3330
3331         walk_shadow_page_lockless_begin(vcpu);
3332         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3333                 if (!is_shadow_present_pte(spte))
3334                         break;
3335         walk_shadow_page_lockless_end(vcpu);
3336
3337         return spte;
3338 }
3339
3340 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3341 {
3342         u64 spte;
3343
3344         if (quickly_check_mmio_pf(vcpu, addr, direct))
3345                 return RET_MMIO_PF_EMULATE;
3346
3347         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3348
3349         if (is_mmio_spte(spte)) {
3350                 gfn_t gfn = get_mmio_spte_gfn(spte);
3351                 unsigned access = get_mmio_spte_access(spte);
3352
3353                 if (!check_mmio_spte(vcpu->kvm, spte))
3354                         return RET_MMIO_PF_INVALID;
3355
3356                 if (direct)
3357                         addr = 0;
3358
3359                 trace_handle_mmio_page_fault(addr, gfn, access);
3360                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3361                 return RET_MMIO_PF_EMULATE;
3362         }
3363
3364         /*
3365          * If the page table is zapped by other cpus, let CPU fault again on
3366          * the address.
3367          */
3368         return RET_MMIO_PF_RETRY;
3369 }
3370 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3371
3372 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3373                                   u32 error_code, bool direct)
3374 {
3375         int ret;
3376
3377         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3378         WARN_ON(ret == RET_MMIO_PF_BUG);
3379         return ret;
3380 }
3381
3382 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3383                                 u32 error_code, bool prefault)
3384 {
3385         gfn_t gfn;
3386         int r;
3387
3388         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3389
3390         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3391                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3392
3393                 if (likely(r != RET_MMIO_PF_INVALID))
3394                         return r;
3395         }
3396
3397         r = mmu_topup_memory_caches(vcpu);
3398         if (r)
3399                 return r;
3400
3401         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3402
3403         gfn = gva >> PAGE_SHIFT;
3404
3405         return nonpaging_map(vcpu, gva & PAGE_MASK,
3406                              error_code, gfn, prefault);
3407 }
3408
3409 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3410 {
3411         struct kvm_arch_async_pf arch;
3412
3413         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3414         arch.gfn = gfn;
3415         arch.direct_map = vcpu->arch.mmu.direct_map;
3416         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3417
3418         return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3419 }
3420
3421 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3422 {
3423         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3424                      kvm_event_needs_reinjection(vcpu)))
3425                 return false;
3426
3427         return kvm_x86_ops->interrupt_allowed(vcpu);
3428 }
3429
3430 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3431                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3432 {
3433         bool async;
3434
3435         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3436
3437         if (!async)
3438                 return false; /* *pfn has correct page already */
3439
3440         if (!prefault && can_do_async_pf(vcpu)) {
3441                 trace_kvm_try_async_get_page(gva, gfn);
3442                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3443                         trace_kvm_async_pf_doublefault(gva, gfn);
3444                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3445                         return true;
3446                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3447                         return true;
3448         }
3449
3450         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3451
3452         return false;
3453 }
3454
3455 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3456                           bool prefault)
3457 {
3458         pfn_t pfn;
3459         int r;
3460         int level;
3461         int force_pt_level;
3462         gfn_t gfn = gpa >> PAGE_SHIFT;
3463         unsigned long mmu_seq;
3464         int write = error_code & PFERR_WRITE_MASK;
3465         bool map_writable;
3466
3467         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3468
3469         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3470                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3471
3472                 if (likely(r != RET_MMIO_PF_INVALID))
3473                         return r;
3474         }
3475
3476         r = mmu_topup_memory_caches(vcpu);
3477         if (r)
3478                 return r;
3479
3480         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3481         if (likely(!force_pt_level)) {
3482                 level = mapping_level(vcpu, gfn);
3483                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3484         } else
3485                 level = PT_PAGE_TABLE_LEVEL;
3486
3487         if (fast_page_fault(vcpu, gpa, level, error_code))
3488                 return 0;
3489
3490         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3491         smp_rmb();
3492
3493         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3494                 return 0;
3495
3496         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3497                 return r;
3498
3499         spin_lock(&vcpu->kvm->mmu_lock);
3500         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3501                 goto out_unlock;
3502         make_mmu_pages_available(vcpu);
3503         if (likely(!force_pt_level))
3504                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3505         r = __direct_map(vcpu, gpa, write, map_writable,
3506                          level, gfn, pfn, prefault);
3507         spin_unlock(&vcpu->kvm->mmu_lock);
3508
3509         return r;
3510
3511 out_unlock:
3512         spin_unlock(&vcpu->kvm->mmu_lock);
3513         kvm_release_pfn_clean(pfn);
3514         return 0;
3515 }
3516
3517 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3518                                    struct kvm_mmu *context)
3519 {
3520         context->page_fault = nonpaging_page_fault;
3521         context->gva_to_gpa = nonpaging_gva_to_gpa;
3522         context->sync_page = nonpaging_sync_page;
3523         context->invlpg = nonpaging_invlpg;
3524         context->update_pte = nonpaging_update_pte;
3525         context->root_level = 0;
3526         context->shadow_root_level = PT32E_ROOT_LEVEL;
3527         context->root_hpa = INVALID_PAGE;
3528         context->direct_map = true;
3529         context->nx = false;
3530 }
3531
3532 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3533 {
3534         mmu_free_roots(vcpu);
3535 }
3536
3537 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3538 {
3539         return kvm_read_cr3(vcpu);
3540 }
3541
3542 static void inject_page_fault(struct kvm_vcpu *vcpu,
3543                               struct x86_exception *fault)
3544 {
3545         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3546 }
3547
3548 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3549                            unsigned access, int *nr_present)
3550 {
3551         if (unlikely(is_mmio_spte(*sptep))) {
3552                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3553                         mmu_spte_clear_no_track(sptep);
3554                         return true;
3555                 }
3556
3557                 (*nr_present)++;
3558                 mark_mmio_spte(kvm, sptep, gfn, access);
3559                 return true;
3560         }
3561
3562         return false;
3563 }
3564
3565 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3566 {
3567         unsigned index;
3568
3569         index = level - 1;
3570         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3571         return mmu->last_pte_bitmap & (1 << index);
3572 }
3573
3574 #define PTTYPE_EPT 18 /* arbitrary */
3575 #define PTTYPE PTTYPE_EPT
3576 #include "paging_tmpl.h"
3577 #undef PTTYPE
3578
3579 #define PTTYPE 64
3580 #include "paging_tmpl.h"
3581 #undef PTTYPE
3582
3583 #define PTTYPE 32
3584 #include "paging_tmpl.h"
3585 #undef PTTYPE
3586
3587 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3588                                   struct kvm_mmu *context)
3589 {
3590         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3591         u64 exb_bit_rsvd = 0;
3592         u64 gbpages_bit_rsvd = 0;
3593         u64 nonleaf_bit8_rsvd = 0;
3594
3595         context->bad_mt_xwr = 0;
3596
3597         if (!context->nx)
3598                 exb_bit_rsvd = rsvd_bits(63, 63);
3599         if (!guest_cpuid_has_gbpages(vcpu))
3600                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3601
3602         /*
3603          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3604          * leaf entries) on AMD CPUs only.
3605          */
3606         if (guest_cpuid_is_amd(vcpu))
3607                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3608
3609         switch (context->root_level) {
3610         case PT32_ROOT_LEVEL:
3611                 /* no rsvd bits for 2 level 4K page table entries */
3612                 context->rsvd_bits_mask[0][1] = 0;
3613                 context->rsvd_bits_mask[0][0] = 0;
3614                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3615
3616                 if (!is_pse(vcpu)) {
3617                         context->rsvd_bits_mask[1][1] = 0;
3618                         break;
3619                 }
3620
3621                 if (is_cpuid_PSE36())
3622                         /* 36bits PSE 4MB page */
3623                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3624                 else
3625                         /* 32 bits PSE 4MB page */
3626                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3627                 break;
3628         case PT32E_ROOT_LEVEL:
3629                 context->rsvd_bits_mask[0][2] =
3630                         rsvd_bits(maxphyaddr, 63) |
3631                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3632                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3633                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3634                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3635                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3636                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3637                         rsvd_bits(maxphyaddr, 62) |
3638                         rsvd_bits(13, 20);              /* large page */
3639                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3640                 break;
3641         case PT64_ROOT_LEVEL:
3642                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3643                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3644                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3645                         nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3646                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3647                         rsvd_bits(maxphyaddr, 51);
3648                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3649                         rsvd_bits(maxphyaddr, 51);
3650                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3651                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3652                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3653                         rsvd_bits(13, 29);
3654                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3655                         rsvd_bits(maxphyaddr, 51) |
3656                         rsvd_bits(13, 20);              /* large page */
3657                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3658                 break;
3659         }
3660 }
3661
3662 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3663                 struct kvm_mmu *context, bool execonly)
3664 {
3665         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3666         int pte;
3667
3668         context->rsvd_bits_mask[0][3] =
3669                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3670         context->rsvd_bits_mask[0][2] =
3671                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3672         context->rsvd_bits_mask[0][1] =
3673                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3674         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3675
3676         /* large page */
3677         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3678         context->rsvd_bits_mask[1][2] =
3679                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3680         context->rsvd_bits_mask[1][1] =
3681                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3682         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3683
3684         for (pte = 0; pte < 64; pte++) {
3685                 int rwx_bits = pte & 7;
3686                 int mt = pte >> 3;
3687                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3688                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3689                                 (rwx_bits == 0x4 && !execonly))
3690                         context->bad_mt_xwr |= (1ull << pte);
3691         }
3692 }
3693
3694 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3695                                       struct kvm_mmu *mmu, bool ept)
3696 {
3697         unsigned bit, byte, pfec;
3698         u8 map;
3699         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3700
3701         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3702         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3703         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3704                 pfec = byte << 1;
3705                 map = 0;
3706                 wf = pfec & PFERR_WRITE_MASK;
3707                 uf = pfec & PFERR_USER_MASK;
3708                 ff = pfec & PFERR_FETCH_MASK;
3709                 /*
3710                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3711                  * subject to SMAP restrictions, and cleared otherwise. The
3712                  * bit is only meaningful if the SMAP bit is set in CR4.
3713                  */
3714                 smapf = !(pfec & PFERR_RSVD_MASK);
3715                 for (bit = 0; bit < 8; ++bit) {
3716                         x = bit & ACC_EXEC_MASK;
3717                         w = bit & ACC_WRITE_MASK;
3718                         u = bit & ACC_USER_MASK;
3719
3720                         if (!ept) {
3721                                 /* Not really needed: !nx will cause pte.nx to fault */
3722                                 x |= !mmu->nx;
3723                                 /* Allow supervisor writes if !cr0.wp */
3724                                 w |= !is_write_protection(vcpu) && !uf;
3725                                 /* Disallow supervisor fetches of user code if cr4.smep */
3726                                 x &= !(cr4_smep && u && !uf);
3727
3728                                 /*
3729                                  * SMAP:kernel-mode data accesses from user-mode
3730                                  * mappings should fault. A fault is considered
3731                                  * as a SMAP violation if all of the following
3732                                  * conditions are ture:
3733                                  *   - X86_CR4_SMAP is set in CR4
3734                                  *   - An user page is accessed
3735                                  *   - Page fault in kernel mode
3736                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3737                                  *
3738                                  *   Here, we cover the first three conditions.
3739                                  *   The fourth is computed dynamically in
3740                                  *   permission_fault() and is in smapf.
3741                                  *
3742                                  *   Also, SMAP does not affect instruction
3743                                  *   fetches, add the !ff check here to make it
3744                                  *   clearer.
3745                                  */
3746                                 smap = cr4_smap && u && !uf && !ff;
3747                         } else
3748                                 /* Not really needed: no U/S accesses on ept  */
3749                                 u = 1;
3750
3751                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3752                                 (smapf && smap);
3753                         map |= fault << bit;
3754                 }
3755                 mmu->permissions[byte] = map;
3756         }
3757 }
3758
3759 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3760 {
3761         u8 map;
3762         unsigned level, root_level = mmu->root_level;
3763         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3764
3765         if (root_level == PT32E_ROOT_LEVEL)
3766                 --root_level;
3767         /* PT_PAGE_TABLE_LEVEL always terminates */
3768         map = 1 | (1 << ps_set_index);
3769         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3770                 if (level <= PT_PDPE_LEVEL
3771                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3772                         map |= 1 << (ps_set_index | (level - 1));
3773         }
3774         mmu->last_pte_bitmap = map;
3775 }
3776
3777 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3778                                          struct kvm_mmu *context,
3779                                          int level)
3780 {
3781         context->nx = is_nx(vcpu);
3782         context->root_level = level;
3783
3784         reset_rsvds_bits_mask(vcpu, context);
3785         update_permission_bitmask(vcpu, context, false);
3786         update_last_pte_bitmap(vcpu, context);
3787
3788         MMU_WARN_ON(!is_pae(vcpu));
3789         context->page_fault = paging64_page_fault;
3790         context->gva_to_gpa = paging64_gva_to_gpa;
3791         context->sync_page = paging64_sync_page;
3792         context->invlpg = paging64_invlpg;
3793         context->update_pte = paging64_update_pte;
3794         context->shadow_root_level = level;
3795         context->root_hpa = INVALID_PAGE;
3796         context->direct_map = false;
3797 }
3798
3799 static void paging64_init_context(struct kvm_vcpu *vcpu,
3800                                   struct kvm_mmu *context)
3801 {
3802         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3803 }
3804
3805 static void paging32_init_context(struct kvm_vcpu *vcpu,
3806                                   struct kvm_mmu *context)
3807 {
3808         context->nx = false;
3809         context->root_level = PT32_ROOT_LEVEL;
3810
3811         reset_rsvds_bits_mask(vcpu, context);
3812         update_permission_bitmask(vcpu, context, false);
3813         update_last_pte_bitmap(vcpu, context);
3814
3815         context->page_fault = paging32_page_fault;
3816         context->gva_to_gpa = paging32_gva_to_gpa;
3817         context->sync_page = paging32_sync_page;
3818         context->invlpg = paging32_invlpg;
3819         context->update_pte = paging32_update_pte;
3820         context->shadow_root_level = PT32E_ROOT_LEVEL;
3821         context->root_hpa = INVALID_PAGE;
3822         context->direct_map = false;
3823 }
3824
3825 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3826                                    struct kvm_mmu *context)
3827 {
3828         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3829 }
3830
3831 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3832 {
3833         struct kvm_mmu *context = &vcpu->arch.mmu;
3834
3835         context->base_role.word = 0;
3836         context->page_fault = tdp_page_fault;
3837         context->sync_page = nonpaging_sync_page;
3838         context->invlpg = nonpaging_invlpg;
3839         context->update_pte = nonpaging_update_pte;
3840         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3841         context->root_hpa = INVALID_PAGE;
3842         context->direct_map = true;
3843         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3844         context->get_cr3 = get_cr3;
3845         context->get_pdptr = kvm_pdptr_read;
3846         context->inject_page_fault = kvm_inject_page_fault;
3847
3848         if (!is_paging(vcpu)) {
3849                 context->nx = false;
3850                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3851                 context->root_level = 0;
3852         } else if (is_long_mode(vcpu)) {
3853                 context->nx = is_nx(vcpu);
3854                 context->root_level = PT64_ROOT_LEVEL;
3855                 reset_rsvds_bits_mask(vcpu, context);
3856                 context->gva_to_gpa = paging64_gva_to_gpa;
3857         } else if (is_pae(vcpu)) {
3858                 context->nx = is_nx(vcpu);
3859                 context->root_level = PT32E_ROOT_LEVEL;
3860                 reset_rsvds_bits_mask(vcpu, context);
3861                 context->gva_to_gpa = paging64_gva_to_gpa;
3862         } else {
3863                 context->nx = false;
3864                 context->root_level = PT32_ROOT_LEVEL;
3865                 reset_rsvds_bits_mask(vcpu, context);
3866                 context->gva_to_gpa = paging32_gva_to_gpa;
3867         }
3868
3869         update_permission_bitmask(vcpu, context, false);
3870         update_last_pte_bitmap(vcpu, context);
3871 }
3872
3873 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3874 {
3875         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3876         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3877         struct kvm_mmu *context = &vcpu->arch.mmu;
3878
3879         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3880
3881         if (!is_paging(vcpu))
3882                 nonpaging_init_context(vcpu, context);
3883         else if (is_long_mode(vcpu))
3884                 paging64_init_context(vcpu, context);
3885         else if (is_pae(vcpu))
3886                 paging32E_init_context(vcpu, context);
3887         else
3888                 paging32_init_context(vcpu, context);
3889
3890         context->base_role.nxe = is_nx(vcpu);
3891         context->base_role.cr4_pae = !!is_pae(vcpu);
3892         context->base_role.cr0_wp  = is_write_protection(vcpu);
3893         context->base_role.smep_andnot_wp
3894                 = smep && !is_write_protection(vcpu);
3895         context->base_role.smap_andnot_wp
3896                 = smap && !is_write_protection(vcpu);
3897 }
3898 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3899
3900 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
3901 {
3902         struct kvm_mmu *context = &vcpu->arch.mmu;
3903
3904         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3905
3906         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3907
3908         context->nx = true;
3909         context->page_fault = ept_page_fault;
3910         context->gva_to_gpa = ept_gva_to_gpa;
3911         context->sync_page = ept_sync_page;
3912         context->invlpg = ept_invlpg;
3913         context->update_pte = ept_update_pte;
3914         context->root_level = context->shadow_root_level;
3915         context->root_hpa = INVALID_PAGE;
3916         context->direct_map = false;
3917
3918         update_permission_bitmask(vcpu, context, true);
3919         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3922
3923 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3924 {
3925         struct kvm_mmu *context = &vcpu->arch.mmu;
3926
3927         kvm_init_shadow_mmu(vcpu);
3928         context->set_cr3           = kvm_x86_ops->set_cr3;
3929         context->get_cr3           = get_cr3;
3930         context->get_pdptr         = kvm_pdptr_read;
3931         context->inject_page_fault = kvm_inject_page_fault;
3932 }
3933
3934 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3935 {
3936         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3937
3938         g_context->get_cr3           = get_cr3;
3939         g_context->get_pdptr         = kvm_pdptr_read;
3940         g_context->inject_page_fault = kvm_inject_page_fault;
3941
3942         /*
3943          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3944          * translation of l2_gpa to l1_gpa addresses is done using the
3945          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3946          * functions between mmu and nested_mmu are swapped.
3947          */
3948         if (!is_paging(vcpu)) {
3949                 g_context->nx = false;
3950                 g_context->root_level = 0;
3951                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3952         } else if (is_long_mode(vcpu)) {
3953                 g_context->nx = is_nx(vcpu);
3954                 g_context->root_level = PT64_ROOT_LEVEL;
3955                 reset_rsvds_bits_mask(vcpu, g_context);
3956                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3957         } else if (is_pae(vcpu)) {
3958                 g_context->nx = is_nx(vcpu);
3959                 g_context->root_level = PT32E_ROOT_LEVEL;
3960                 reset_rsvds_bits_mask(vcpu, g_context);
3961                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3962         } else {
3963                 g_context->nx = false;
3964                 g_context->root_level = PT32_ROOT_LEVEL;
3965                 reset_rsvds_bits_mask(vcpu, g_context);
3966                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3967         }
3968
3969         update_permission_bitmask(vcpu, g_context, false);
3970         update_last_pte_bitmap(vcpu, g_context);
3971 }
3972
3973 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3974 {
3975         if (mmu_is_nested(vcpu))
3976                 init_kvm_nested_mmu(vcpu);
3977         else if (tdp_enabled)
3978                 init_kvm_tdp_mmu(vcpu);
3979         else
3980                 init_kvm_softmmu(vcpu);
3981 }
3982
3983 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3984 {
3985         kvm_mmu_unload(vcpu);
3986         init_kvm_mmu(vcpu);
3987 }
3988 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3989
3990 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3991 {
3992         int r;
3993
3994         r = mmu_topup_memory_caches(vcpu);
3995         if (r)
3996                 goto out;
3997         r = mmu_alloc_roots(vcpu);
3998         kvm_mmu_sync_roots(vcpu);
3999         if (r)
4000                 goto out;
4001         /* set_cr3() should ensure TLB has been flushed */
4002         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4003 out:
4004         return r;
4005 }
4006 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4007
4008 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4009 {
4010         mmu_free_roots(vcpu);
4011         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4012 }
4013 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4014
4015 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4016                                   struct kvm_mmu_page *sp, u64 *spte,
4017                                   const void *new)
4018 {
4019         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4020                 ++vcpu->kvm->stat.mmu_pde_zapped;
4021                 return;
4022         }
4023
4024         ++vcpu->kvm->stat.mmu_pte_updated;
4025         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4026 }
4027
4028 static bool need_remote_flush(u64 old, u64 new)
4029 {
4030         if (!is_shadow_present_pte(old))
4031                 return false;
4032         if (!is_shadow_present_pte(new))
4033                 return true;
4034         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4035                 return true;
4036         old ^= shadow_nx_mask;
4037         new ^= shadow_nx_mask;
4038         return (old & ~new & PT64_PERM_MASK) != 0;
4039 }
4040
4041 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4042                                     bool remote_flush, bool local_flush)
4043 {
4044         if (zap_page)
4045                 return;
4046
4047         if (remote_flush)
4048                 kvm_flush_remote_tlbs(vcpu->kvm);
4049         else if (local_flush)
4050                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4051 }
4052
4053 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4054                                     const u8 *new, int *bytes)
4055 {
4056         u64 gentry;
4057         int r;
4058
4059         /*
4060          * Assume that the pte write on a page table of the same type
4061          * as the current vcpu paging mode since we update the sptes only
4062          * when they have the same mode.
4063          */
4064         if (is_pae(vcpu) && *bytes == 4) {
4065                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4066                 *gpa &= ~(gpa_t)7;
4067                 *bytes = 8;
4068                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4069                 if (r)
4070                         gentry = 0;
4071                 new = (const u8 *)&gentry;
4072         }
4073
4074         switch (*bytes) {
4075         case 4:
4076                 gentry = *(const u32 *)new;
4077                 break;
4078         case 8:
4079                 gentry = *(const u64 *)new;
4080                 break;
4081         default:
4082                 gentry = 0;
4083                 break;
4084         }
4085
4086         return gentry;
4087 }
4088
4089 /*
4090  * If we're seeing too many writes to a page, it may no longer be a page table,
4091  * or we may be forking, in which case it is better to unmap the page.
4092  */
4093 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4094 {
4095         /*
4096          * Skip write-flooding detected for the sp whose level is 1, because
4097          * it can become unsync, then the guest page is not write-protected.
4098          */
4099         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4100                 return false;
4101
4102         return ++sp->write_flooding_count >= 3;
4103 }
4104
4105 /*
4106  * Misaligned accesses are too much trouble to fix up; also, they usually
4107  * indicate a page is not used as a page table.
4108  */
4109 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4110                                     int bytes)
4111 {
4112         unsigned offset, pte_size, misaligned;
4113
4114         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4115                  gpa, bytes, sp->role.word);
4116
4117         offset = offset_in_page(gpa);
4118         pte_size = sp->role.cr4_pae ? 8 : 4;
4119
4120         /*
4121          * Sometimes, the OS only writes the last one bytes to update status
4122          * bits, for example, in linux, andb instruction is used in clear_bit().
4123          */
4124         if (!(offset & (pte_size - 1)) && bytes == 1)
4125                 return false;
4126
4127         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4128         misaligned |= bytes < 4;
4129
4130         return misaligned;
4131 }
4132
4133 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4134 {
4135         unsigned page_offset, quadrant;
4136         u64 *spte;
4137         int level;
4138
4139         page_offset = offset_in_page(gpa);
4140         level = sp->role.level;
4141         *nspte = 1;
4142         if (!sp->role.cr4_pae) {
4143                 page_offset <<= 1;      /* 32->64 */
4144                 /*
4145                  * A 32-bit pde maps 4MB while the shadow pdes map
4146                  * only 2MB.  So we need to double the offset again
4147                  * and zap two pdes instead of one.
4148                  */
4149                 if (level == PT32_ROOT_LEVEL) {
4150                         page_offset &= ~7; /* kill rounding error */
4151                         page_offset <<= 1;
4152                         *nspte = 2;
4153                 }
4154                 quadrant = page_offset >> PAGE_SHIFT;
4155                 page_offset &= ~PAGE_MASK;
4156                 if (quadrant != sp->role.quadrant)
4157                         return NULL;
4158         }
4159
4160         spte = &sp->spt[page_offset / sizeof(*spte)];
4161         return spte;
4162 }
4163
4164 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4165                        const u8 *new, int bytes)
4166 {
4167         gfn_t gfn = gpa >> PAGE_SHIFT;
4168         struct kvm_mmu_page *sp;
4169         LIST_HEAD(invalid_list);
4170         u64 entry, gentry, *spte;
4171         int npte;
4172         bool remote_flush, local_flush, zap_page;
4173         union kvm_mmu_page_role mask = { };
4174
4175         mask.cr0_wp = 1;
4176         mask.cr4_pae = 1;
4177         mask.nxe = 1;
4178         mask.smep_andnot_wp = 1;
4179         mask.smap_andnot_wp = 1;
4180
4181         /*
4182          * If we don't have indirect shadow pages, it means no page is
4183          * write-protected, so we can exit simply.
4184          */
4185         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4186                 return;
4187
4188         zap_page = remote_flush = local_flush = false;
4189
4190         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4191
4192         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4193
4194         /*
4195          * No need to care whether allocation memory is successful
4196          * or not since pte prefetch is skiped if it does not have
4197          * enough objects in the cache.
4198          */
4199         mmu_topup_memory_caches(vcpu);
4200
4201         spin_lock(&vcpu->kvm->mmu_lock);
4202         ++vcpu->kvm->stat.mmu_pte_write;
4203         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4204
4205         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4206                 if (detect_write_misaligned(sp, gpa, bytes) ||
4207                       detect_write_flooding(sp)) {
4208                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4209                                                      &invalid_list);
4210                         ++vcpu->kvm->stat.mmu_flooded;
4211                         continue;
4212                 }
4213
4214                 spte = get_written_sptes(sp, gpa, &npte);
4215                 if (!spte)
4216                         continue;
4217
4218                 local_flush = true;
4219                 while (npte--) {
4220                         entry = *spte;
4221                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4222                         if (gentry &&
4223                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4224                               & mask.word) && rmap_can_add(vcpu))
4225                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4226                         if (need_remote_flush(entry, *spte))
4227                                 remote_flush = true;
4228                         ++spte;
4229                 }
4230         }
4231         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4232         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4233         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4234         spin_unlock(&vcpu->kvm->mmu_lock);
4235 }
4236
4237 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4238 {
4239         gpa_t gpa;
4240         int r;
4241
4242         if (vcpu->arch.mmu.direct_map)
4243                 return 0;
4244
4245         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4246
4247         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4248
4249         return r;
4250 }
4251 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4252
4253 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4254 {
4255         LIST_HEAD(invalid_list);
4256
4257         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4258                 return;
4259
4260         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4261                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4262                         break;
4263
4264                 ++vcpu->kvm->stat.mmu_recycled;
4265         }
4266         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4267 }
4268
4269 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4270 {
4271         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4272                 return vcpu_match_mmio_gpa(vcpu, addr);
4273
4274         return vcpu_match_mmio_gva(vcpu, addr);
4275 }
4276
4277 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4278                        void *insn, int insn_len)
4279 {
4280         int r, emulation_type = EMULTYPE_RETRY;
4281         enum emulation_result er;
4282
4283         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4284         if (r < 0)
4285                 goto out;
4286
4287         if (!r) {
4288                 r = 1;
4289                 goto out;
4290         }
4291
4292         if (is_mmio_page_fault(vcpu, cr2))
4293                 emulation_type = 0;
4294
4295         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4296
4297         switch (er) {
4298         case EMULATE_DONE:
4299                 return 1;
4300         case EMULATE_USER_EXIT:
4301                 ++vcpu->stat.mmio_exits;
4302                 /* fall through */
4303         case EMULATE_FAIL:
4304                 return 0;
4305         default:
4306                 BUG();
4307         }
4308 out:
4309         return r;
4310 }
4311 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4312
4313 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4314 {
4315         vcpu->arch.mmu.invlpg(vcpu, gva);
4316         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4317         ++vcpu->stat.invlpg;
4318 }
4319 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4320
4321 void kvm_enable_tdp(void)
4322 {
4323         tdp_enabled = true;
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4326
4327 void kvm_disable_tdp(void)
4328 {
4329         tdp_enabled = false;
4330 }
4331 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4332
4333 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4334 {
4335         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4336         if (vcpu->arch.mmu.lm_root != NULL)
4337                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4338 }
4339
4340 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4341 {
4342         struct page *page;
4343         int i;
4344
4345         /*
4346          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4347          * Therefore we need to allocate shadow page tables in the first
4348          * 4GB of memory, which happens to fit the DMA32 zone.
4349          */
4350         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4351         if (!page)
4352                 return -ENOMEM;
4353
4354         vcpu->arch.mmu.pae_root = page_address(page);
4355         for (i = 0; i < 4; ++i)
4356                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4357
4358         return 0;
4359 }
4360
4361 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4362 {
4363         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4364         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4365         vcpu->arch.mmu.translate_gpa = translate_gpa;
4366         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4367
4368         return alloc_mmu_pages(vcpu);
4369 }
4370
4371 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4372 {
4373         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4374
4375         init_kvm_mmu(vcpu);
4376 }
4377
4378 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4379                                       struct kvm_memory_slot *memslot)
4380 {
4381         gfn_t last_gfn;
4382         int i;
4383         bool flush = false;
4384
4385         last_gfn = memslot->base_gfn + memslot->npages - 1;
4386
4387         spin_lock(&kvm->mmu_lock);
4388
4389         for (i = PT_PAGE_TABLE_LEVEL;
4390              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4391                 unsigned long *rmapp;
4392                 unsigned long last_index, index;
4393
4394                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4395                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4396
4397                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4398                         if (*rmapp)
4399                                 flush |= __rmap_write_protect(kvm, rmapp,
4400                                                 false);
4401
4402                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4403                                 cond_resched_lock(&kvm->mmu_lock);
4404                 }
4405         }
4406
4407         spin_unlock(&kvm->mmu_lock);
4408
4409         /*
4410          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4411          * which do tlb flush out of mmu-lock should be serialized by
4412          * kvm->slots_lock otherwise tlb flush would be missed.
4413          */
4414         lockdep_assert_held(&kvm->slots_lock);
4415
4416         /*
4417          * We can flush all the TLBs out of the mmu lock without TLB
4418          * corruption since we just change the spte from writable to
4419          * readonly so that we only need to care the case of changing
4420          * spte from present to present (changing the spte from present
4421          * to nonpresent will flush all the TLBs immediately), in other
4422          * words, the only case we care is mmu_spte_update() where we
4423          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4424          * instead of PT_WRITABLE_MASK, that means it does not depend
4425          * on PT_WRITABLE_MASK anymore.
4426          */
4427         if (flush)
4428                 kvm_flush_remote_tlbs(kvm);
4429 }
4430
4431 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4432                 unsigned long *rmapp)
4433 {
4434         u64 *sptep;
4435         struct rmap_iterator iter;
4436         int need_tlb_flush = 0;
4437         pfn_t pfn;
4438         struct kvm_mmu_page *sp;
4439
4440         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
4441                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
4442
4443                 sp = page_header(__pa(sptep));
4444                 pfn = spte_to_pfn(*sptep);
4445
4446                 /*
4447                  * We cannot do huge page mapping for indirect shadow pages,
4448                  * which are found on the last rmap (level = 1) when not using
4449                  * tdp; such shadow pages are synced with the page table in
4450                  * the guest, and the guest page table is using 4K page size
4451                  * mapping if the indirect sp has level = 1.
4452                  */
4453                 if (sp->role.direct &&
4454                         !kvm_is_reserved_pfn(pfn) &&
4455                         PageTransCompound(pfn_to_page(pfn))) {
4456                         drop_spte(kvm, sptep);
4457                         sptep = rmap_get_first(*rmapp, &iter);
4458                         need_tlb_flush = 1;
4459                 } else
4460                         sptep = rmap_get_next(&iter);
4461         }
4462
4463         return need_tlb_flush;
4464 }
4465
4466 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4467                         struct kvm_memory_slot *memslot)
4468 {
4469         bool flush = false;
4470         unsigned long *rmapp;
4471         unsigned long last_index, index;
4472
4473         spin_lock(&kvm->mmu_lock);
4474
4475         rmapp = memslot->arch.rmap[0];
4476         last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1,
4477                                 memslot->base_gfn, PT_PAGE_TABLE_LEVEL);
4478
4479         for (index = 0; index <= last_index; ++index, ++rmapp) {
4480                 if (*rmapp)
4481                         flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp);
4482
4483                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4484                         if (flush) {
4485                                 kvm_flush_remote_tlbs(kvm);
4486                                 flush = false;
4487                         }
4488                         cond_resched_lock(&kvm->mmu_lock);
4489                 }
4490         }
4491
4492         if (flush)
4493                 kvm_flush_remote_tlbs(kvm);
4494
4495         spin_unlock(&kvm->mmu_lock);
4496 }
4497
4498 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4499                                    struct kvm_memory_slot *memslot)
4500 {
4501         gfn_t last_gfn;
4502         unsigned long *rmapp;
4503         unsigned long last_index, index;
4504         bool flush = false;
4505
4506         last_gfn = memslot->base_gfn + memslot->npages - 1;
4507
4508         spin_lock(&kvm->mmu_lock);
4509
4510         rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
4511         last_index = gfn_to_index(last_gfn, memslot->base_gfn,
4512                         PT_PAGE_TABLE_LEVEL);
4513
4514         for (index = 0; index <= last_index; ++index, ++rmapp) {
4515                 if (*rmapp)
4516                         flush |= __rmap_clear_dirty(kvm, rmapp);
4517
4518                 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4519                         cond_resched_lock(&kvm->mmu_lock);
4520         }
4521
4522         spin_unlock(&kvm->mmu_lock);
4523
4524         lockdep_assert_held(&kvm->slots_lock);
4525
4526         /*
4527          * It's also safe to flush TLBs out of mmu lock here as currently this
4528          * function is only used for dirty logging, in which case flushing TLB
4529          * out of mmu lock also guarantees no dirty pages will be lost in
4530          * dirty_bitmap.
4531          */
4532         if (flush)
4533                 kvm_flush_remote_tlbs(kvm);
4534 }
4535 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4536
4537 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4538                                         struct kvm_memory_slot *memslot)
4539 {
4540         gfn_t last_gfn;
4541         int i;
4542         bool flush = false;
4543
4544         last_gfn = memslot->base_gfn + memslot->npages - 1;
4545
4546         spin_lock(&kvm->mmu_lock);
4547
4548         for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */
4549              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4550                 unsigned long *rmapp;
4551                 unsigned long last_index, index;
4552
4553                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4554                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4555
4556                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4557                         if (*rmapp)
4558                                 flush |= __rmap_write_protect(kvm, rmapp,
4559                                                 false);
4560
4561                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4562                                 cond_resched_lock(&kvm->mmu_lock);
4563                 }
4564         }
4565         spin_unlock(&kvm->mmu_lock);
4566
4567         /* see kvm_mmu_slot_remove_write_access */
4568         lockdep_assert_held(&kvm->slots_lock);
4569
4570         if (flush)
4571                 kvm_flush_remote_tlbs(kvm);
4572 }
4573 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4574
4575 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4576                             struct kvm_memory_slot *memslot)
4577 {
4578         gfn_t last_gfn;
4579         int i;
4580         bool flush = false;
4581
4582         last_gfn = memslot->base_gfn + memslot->npages - 1;
4583
4584         spin_lock(&kvm->mmu_lock);
4585
4586         for (i = PT_PAGE_TABLE_LEVEL;
4587              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4588                 unsigned long *rmapp;
4589                 unsigned long last_index, index;
4590
4591                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4592                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4593
4594                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4595                         if (*rmapp)
4596                                 flush |= __rmap_set_dirty(kvm, rmapp);
4597
4598                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4599                                 cond_resched_lock(&kvm->mmu_lock);
4600                 }
4601         }
4602
4603         spin_unlock(&kvm->mmu_lock);
4604
4605         lockdep_assert_held(&kvm->slots_lock);
4606
4607         /* see kvm_mmu_slot_leaf_clear_dirty */
4608         if (flush)
4609                 kvm_flush_remote_tlbs(kvm);
4610 }
4611 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4612
4613 #define BATCH_ZAP_PAGES 10
4614 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4615 {
4616         struct kvm_mmu_page *sp, *node;
4617         int batch = 0;
4618
4619 restart:
4620         list_for_each_entry_safe_reverse(sp, node,
4621               &kvm->arch.active_mmu_pages, link) {
4622                 int ret;
4623
4624                 /*
4625                  * No obsolete page exists before new created page since
4626                  * active_mmu_pages is the FIFO list.
4627                  */
4628                 if (!is_obsolete_sp(kvm, sp))
4629                         break;
4630
4631                 /*
4632                  * Since we are reversely walking the list and the invalid
4633                  * list will be moved to the head, skip the invalid page
4634                  * can help us to avoid the infinity list walking.
4635                  */
4636                 if (sp->role.invalid)
4637                         continue;
4638
4639                 /*
4640                  * Need not flush tlb since we only zap the sp with invalid
4641                  * generation number.
4642                  */
4643                 if (batch >= BATCH_ZAP_PAGES &&
4644                       cond_resched_lock(&kvm->mmu_lock)) {
4645                         batch = 0;
4646                         goto restart;
4647                 }
4648
4649                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4650                                 &kvm->arch.zapped_obsolete_pages);
4651                 batch += ret;
4652
4653                 if (ret)
4654                         goto restart;
4655         }
4656
4657         /*
4658          * Should flush tlb before free page tables since lockless-walking
4659          * may use the pages.
4660          */
4661         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4662 }
4663
4664 /*
4665  * Fast invalidate all shadow pages and use lock-break technique
4666  * to zap obsolete pages.
4667  *
4668  * It's required when memslot is being deleted or VM is being
4669  * destroyed, in these cases, we should ensure that KVM MMU does
4670  * not use any resource of the being-deleted slot or all slots
4671  * after calling the function.
4672  */
4673 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4674 {
4675         spin_lock(&kvm->mmu_lock);
4676         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4677         kvm->arch.mmu_valid_gen++;
4678
4679         /*
4680          * Notify all vcpus to reload its shadow page table
4681          * and flush TLB. Then all vcpus will switch to new
4682          * shadow page table with the new mmu_valid_gen.
4683          *
4684          * Note: we should do this under the protection of
4685          * mmu-lock, otherwise, vcpu would purge shadow page
4686          * but miss tlb flush.
4687          */
4688         kvm_reload_remote_mmus(kvm);
4689
4690         kvm_zap_obsolete_pages(kvm);
4691         spin_unlock(&kvm->mmu_lock);
4692 }
4693
4694 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4695 {
4696         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4697 }
4698
4699 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4700 {
4701         /*
4702          * The very rare case: if the generation-number is round,
4703          * zap all shadow pages.
4704          */
4705         if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4706                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4707                 kvm_mmu_invalidate_zap_all_pages(kvm);
4708         }
4709 }
4710
4711 static unsigned long
4712 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4713 {
4714         struct kvm *kvm;
4715         int nr_to_scan = sc->nr_to_scan;
4716         unsigned long freed = 0;
4717
4718         spin_lock(&kvm_lock);
4719
4720         list_for_each_entry(kvm, &vm_list, vm_list) {
4721                 int idx;
4722                 LIST_HEAD(invalid_list);
4723
4724                 /*
4725                  * Never scan more than sc->nr_to_scan VM instances.
4726                  * Will not hit this condition practically since we do not try
4727                  * to shrink more than one VM and it is very unlikely to see
4728                  * !n_used_mmu_pages so many times.
4729                  */
4730                 if (!nr_to_scan--)
4731                         break;
4732                 /*
4733                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4734                  * here. We may skip a VM instance errorneosly, but we do not
4735                  * want to shrink a VM that only started to populate its MMU
4736                  * anyway.
4737                  */
4738                 if (!kvm->arch.n_used_mmu_pages &&
4739                       !kvm_has_zapped_obsolete_pages(kvm))
4740                         continue;
4741
4742                 idx = srcu_read_lock(&kvm->srcu);
4743                 spin_lock(&kvm->mmu_lock);
4744
4745                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4746                         kvm_mmu_commit_zap_page(kvm,
4747                               &kvm->arch.zapped_obsolete_pages);
4748                         goto unlock;
4749                 }
4750
4751                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4752                         freed++;
4753                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4754
4755 unlock:
4756                 spin_unlock(&kvm->mmu_lock);
4757                 srcu_read_unlock(&kvm->srcu, idx);
4758
4759                 /*
4760                  * unfair on small ones
4761                  * per-vm shrinkers cry out
4762                  * sadness comes quickly
4763                  */
4764                 list_move_tail(&kvm->vm_list, &vm_list);
4765                 break;
4766         }
4767
4768         spin_unlock(&kvm_lock);
4769         return freed;
4770 }
4771
4772 static unsigned long
4773 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4774 {
4775         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4776 }
4777
4778 static struct shrinker mmu_shrinker = {
4779         .count_objects = mmu_shrink_count,
4780         .scan_objects = mmu_shrink_scan,
4781         .seeks = DEFAULT_SEEKS * 10,
4782 };
4783
4784 static void mmu_destroy_caches(void)
4785 {
4786         if (pte_list_desc_cache)
4787                 kmem_cache_destroy(pte_list_desc_cache);
4788         if (mmu_page_header_cache)
4789                 kmem_cache_destroy(mmu_page_header_cache);
4790 }
4791
4792 int kvm_mmu_module_init(void)
4793 {
4794         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4795                                             sizeof(struct pte_list_desc),
4796                                             0, 0, NULL);
4797         if (!pte_list_desc_cache)
4798                 goto nomem;
4799
4800         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4801                                                   sizeof(struct kvm_mmu_page),
4802                                                   0, 0, NULL);
4803         if (!mmu_page_header_cache)
4804                 goto nomem;
4805
4806         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4807                 goto nomem;
4808
4809         register_shrinker(&mmu_shrinker);
4810
4811         return 0;
4812
4813 nomem:
4814         mmu_destroy_caches();
4815         return -ENOMEM;
4816 }
4817
4818 /*
4819  * Caculate mmu pages needed for kvm.
4820  */
4821 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4822 {
4823         unsigned int nr_mmu_pages;
4824         unsigned int  nr_pages = 0;
4825         struct kvm_memslots *slots;
4826         struct kvm_memory_slot *memslot;
4827
4828         slots = kvm_memslots(kvm);
4829
4830         kvm_for_each_memslot(memslot, slots)
4831                 nr_pages += memslot->npages;
4832
4833         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4834         nr_mmu_pages = max(nr_mmu_pages,
4835                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4836
4837         return nr_mmu_pages;
4838 }
4839
4840 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4841 {
4842         struct kvm_shadow_walk_iterator iterator;
4843         u64 spte;
4844         int nr_sptes = 0;
4845
4846         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4847                 return nr_sptes;
4848
4849         walk_shadow_page_lockless_begin(vcpu);
4850         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4851                 sptes[iterator.level-1] = spte;
4852                 nr_sptes++;
4853                 if (!is_shadow_present_pte(spte))
4854                         break;
4855         }
4856         walk_shadow_page_lockless_end(vcpu);
4857
4858         return nr_sptes;
4859 }
4860 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4861
4862 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4863 {
4864         kvm_mmu_unload(vcpu);
4865         free_mmu_pages(vcpu);
4866         mmu_free_memory_caches(vcpu);
4867 }
4868
4869 void kvm_mmu_module_exit(void)
4870 {
4871         mmu_destroy_caches();
4872         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4873         unregister_shrinker(&mmu_shrinker);
4874         mmu_audit_disable();
4875 }