Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / x86 / kernel / irq.c
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
24
25 atomic_t irq_err_count;
26
27 /* Function pointer for generic interrupt vector handling */
28 void (*x86_platform_ipi_callback)(void) = NULL;
29
30 /*
31  * 'what should we do if we get a hw irq event on an illegal vector'.
32  * each architecture has to answer this themselves.
33  */
34 void ack_bad_irq(unsigned int irq)
35 {
36         if (printk_ratelimit())
37                 pr_err("unexpected IRQ trap at vector %02x\n", irq);
38
39         /*
40          * Currently unexpected vectors happen only on SMP and APIC.
41          * We _must_ ack these because every local APIC has only N
42          * irq slots per priority level, and a 'hanging, unacked' IRQ
43          * holds up an irq slot - in excessive cases (when multiple
44          * unexpected vectors occur) that might lock up the APIC
45          * completely.
46          * But only ack when the APIC is enabled -AK
47          */
48         ack_APIC_irq();
49 }
50
51 #define irq_stats(x)            (&per_cpu(irq_stat, x))
52 /*
53  * /proc/interrupts printing for arch specific interrupts
54  */
55 int arch_show_interrupts(struct seq_file *p, int prec)
56 {
57         int j;
58
59         seq_printf(p, "%*s: ", prec, "NMI");
60         for_each_online_cpu(j)
61                 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
62         seq_puts(p, "  Non-maskable interrupts\n");
63 #ifdef CONFIG_X86_LOCAL_APIC
64         seq_printf(p, "%*s: ", prec, "LOC");
65         for_each_online_cpu(j)
66                 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
67         seq_puts(p, "  Local timer interrupts\n");
68
69         seq_printf(p, "%*s: ", prec, "SPU");
70         for_each_online_cpu(j)
71                 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
72         seq_puts(p, "  Spurious interrupts\n");
73         seq_printf(p, "%*s: ", prec, "PMI");
74         for_each_online_cpu(j)
75                 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
76         seq_puts(p, "  Performance monitoring interrupts\n");
77         seq_printf(p, "%*s: ", prec, "IWI");
78         for_each_online_cpu(j)
79                 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
80         seq_puts(p, "  IRQ work interrupts\n");
81         seq_printf(p, "%*s: ", prec, "RTR");
82         for_each_online_cpu(j)
83                 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
84         seq_puts(p, "  APIC ICR read retries\n");
85 #endif
86         if (x86_platform_ipi_callback) {
87                 seq_printf(p, "%*s: ", prec, "PLT");
88                 for_each_online_cpu(j)
89                         seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
90                 seq_puts(p, "  Platform interrupts\n");
91         }
92 #ifdef CONFIG_SMP
93         seq_printf(p, "%*s: ", prec, "RES");
94         for_each_online_cpu(j)
95                 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
96         seq_puts(p, "  Rescheduling interrupts\n");
97         seq_printf(p, "%*s: ", prec, "CAL");
98         for_each_online_cpu(j)
99                 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
100                                         irq_stats(j)->irq_tlb_count);
101         seq_puts(p, "  Function call interrupts\n");
102         seq_printf(p, "%*s: ", prec, "TLB");
103         for_each_online_cpu(j)
104                 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
105         seq_puts(p, "  TLB shootdowns\n");
106 #endif
107 #ifdef CONFIG_X86_THERMAL_VECTOR
108         seq_printf(p, "%*s: ", prec, "TRM");
109         for_each_online_cpu(j)
110                 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
111         seq_puts(p, "  Thermal event interrupts\n");
112 #endif
113 #ifdef CONFIG_X86_MCE_THRESHOLD
114         seq_printf(p, "%*s: ", prec, "THR");
115         for_each_online_cpu(j)
116                 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
117         seq_puts(p, "  Threshold APIC interrupts\n");
118 #endif
119 #ifdef CONFIG_X86_MCE
120         seq_printf(p, "%*s: ", prec, "MCE");
121         for_each_online_cpu(j)
122                 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
123         seq_puts(p, "  Machine check exceptions\n");
124         seq_printf(p, "%*s: ", prec, "MCP");
125         for_each_online_cpu(j)
126                 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
127         seq_puts(p, "  Machine check polls\n");
128 #endif
129 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
130         seq_printf(p, "%*s: ", prec, "HYP");
131         for_each_online_cpu(j)
132                 seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count);
133         seq_puts(p, "  Hypervisor callback interrupts\n");
134 #endif
135         seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
136 #if defined(CONFIG_X86_IO_APIC)
137         seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
138 #endif
139         return 0;
140 }
141
142 /*
143  * /proc/stat helpers
144  */
145 u64 arch_irq_stat_cpu(unsigned int cpu)
146 {
147         u64 sum = irq_stats(cpu)->__nmi_count;
148
149 #ifdef CONFIG_X86_LOCAL_APIC
150         sum += irq_stats(cpu)->apic_timer_irqs;
151         sum += irq_stats(cpu)->irq_spurious_count;
152         sum += irq_stats(cpu)->apic_perf_irqs;
153         sum += irq_stats(cpu)->apic_irq_work_irqs;
154         sum += irq_stats(cpu)->icr_read_retry_count;
155 #endif
156         if (x86_platform_ipi_callback)
157                 sum += irq_stats(cpu)->x86_platform_ipis;
158 #ifdef CONFIG_SMP
159         sum += irq_stats(cpu)->irq_resched_count;
160         sum += irq_stats(cpu)->irq_call_count;
161 #endif
162 #ifdef CONFIG_X86_THERMAL_VECTOR
163         sum += irq_stats(cpu)->irq_thermal_count;
164 #endif
165 #ifdef CONFIG_X86_MCE_THRESHOLD
166         sum += irq_stats(cpu)->irq_threshold_count;
167 #endif
168 #ifdef CONFIG_X86_MCE
169         sum += per_cpu(mce_exception_count, cpu);
170         sum += per_cpu(mce_poll_count, cpu);
171 #endif
172         return sum;
173 }
174
175 u64 arch_irq_stat(void)
176 {
177         u64 sum = atomic_read(&irq_err_count);
178         return sum;
179 }
180
181
182 /*
183  * do_IRQ handles all normal device IRQ's (the special
184  * SMP cross-CPU interrupts have their own specific
185  * handlers).
186  */
187 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
188 {
189         struct pt_regs *old_regs = set_irq_regs(regs);
190
191         /* high bit used in ret_from_ code  */
192         unsigned vector = ~regs->orig_ax;
193         unsigned irq;
194
195         irq_enter();
196         exit_idle();
197
198         irq = __this_cpu_read(vector_irq[vector]);
199
200         if (!handle_irq(irq, regs)) {
201                 ack_APIC_irq();
202
203                 if (irq != VECTOR_RETRIGGERED) {
204                         pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n",
205                                              __func__, smp_processor_id(),
206                                              vector, irq);
207                 } else {
208                         __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
209                 }
210         }
211
212         irq_exit();
213
214         set_irq_regs(old_regs);
215         return 1;
216 }
217
218 /*
219  * Handler for X86_PLATFORM_IPI_VECTOR.
220  */
221 void __smp_x86_platform_ipi(void)
222 {
223         inc_irq_stat(x86_platform_ipis);
224
225         if (x86_platform_ipi_callback)
226                 x86_platform_ipi_callback();
227 }
228
229 __visible void smp_x86_platform_ipi(struct pt_regs *regs)
230 {
231         struct pt_regs *old_regs = set_irq_regs(regs);
232
233         entering_ack_irq();
234         __smp_x86_platform_ipi();
235         exiting_irq();
236         set_irq_regs(old_regs);
237 }
238
239 #ifdef CONFIG_HAVE_KVM
240 /*
241  * Handler for POSTED_INTERRUPT_VECTOR.
242  */
243 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
244 {
245         struct pt_regs *old_regs = set_irq_regs(regs);
246
247         ack_APIC_irq();
248
249         irq_enter();
250
251         exit_idle();
252
253         inc_irq_stat(kvm_posted_intr_ipis);
254
255         irq_exit();
256
257         set_irq_regs(old_regs);
258 }
259 #endif
260
261 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
262 {
263         struct pt_regs *old_regs = set_irq_regs(regs);
264
265         entering_ack_irq();
266         trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
267         __smp_x86_platform_ipi();
268         trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
269         exiting_irq();
270         set_irq_regs(old_regs);
271 }
272
273 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
274
275 #ifdef CONFIG_HOTPLUG_CPU
276
277 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
278  * below, which is protected by stop_machine().  Putting them on the stack
279  * results in a stack frame overflow.  Dynamically allocating could result in a
280  * failure so declare these two cpumasks as global.
281  */
282 static struct cpumask affinity_new, online_new;
283
284 /*
285  * This cpu is going to be removed and its vectors migrated to the remaining
286  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
287  * This function is protected by stop_machine().
288  */
289 int check_irq_vectors_for_cpu_disable(void)
290 {
291         int irq, cpu;
292         unsigned int this_cpu, vector, this_count, count;
293         struct irq_desc *desc;
294         struct irq_data *data;
295
296         this_cpu = smp_processor_id();
297         cpumask_copy(&online_new, cpu_online_mask);
298         cpumask_clear_cpu(this_cpu, &online_new);
299
300         this_count = 0;
301         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
302                 irq = __this_cpu_read(vector_irq[vector]);
303                 if (irq >= 0) {
304                         desc = irq_to_desc(irq);
305                         if (!desc)
306                                 continue;
307
308                         data = irq_desc_get_irq_data(desc);
309                         cpumask_copy(&affinity_new, data->affinity);
310                         cpumask_clear_cpu(this_cpu, &affinity_new);
311
312                         /* Do not count inactive or per-cpu irqs. */
313                         if (!irq_has_action(irq) || irqd_is_per_cpu(data))
314                                 continue;
315
316                         /*
317                          * A single irq may be mapped to multiple
318                          * cpu's vector_irq[] (for example IOAPIC cluster
319                          * mode).  In this case we have two
320                          * possibilities:
321                          *
322                          * 1) the resulting affinity mask is empty; that is
323                          * this the down'd cpu is the last cpu in the irq's
324                          * affinity mask, or
325                          *
326                          * 2) the resulting affinity mask is no longer
327                          * a subset of the online cpus but the affinity
328                          * mask is not zero; that is the down'd cpu is the
329                          * last online cpu in a user set affinity mask.
330                          */
331                         if (cpumask_empty(&affinity_new) ||
332                             !cpumask_subset(&affinity_new, &online_new))
333                                 this_count++;
334                 }
335         }
336
337         count = 0;
338         for_each_online_cpu(cpu) {
339                 if (cpu == this_cpu)
340                         continue;
341                 /*
342                  * We scan from FIRST_EXTERNAL_VECTOR to first system
343                  * vector. If the vector is marked in the used vectors
344                  * bitmap or an irq is assigned to it, we don't count
345                  * it as available.
346                  */
347                 for (vector = FIRST_EXTERNAL_VECTOR;
348                      vector < first_system_vector; vector++) {
349                         if (!test_bit(vector, used_vectors) &&
350                             per_cpu(vector_irq, cpu)[vector] < 0)
351                                         count++;
352                 }
353         }
354
355         if (count < this_count) {
356                 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
357                         this_cpu, this_count, count);
358                 return -ERANGE;
359         }
360         return 0;
361 }
362
363 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
364 void fixup_irqs(void)
365 {
366         unsigned int irq, vector;
367         static int warned;
368         struct irq_desc *desc;
369         struct irq_data *data;
370         struct irq_chip *chip;
371         int ret;
372
373         for_each_irq_desc(irq, desc) {
374                 int break_affinity = 0;
375                 int set_affinity = 1;
376                 const struct cpumask *affinity;
377
378                 if (!desc)
379                         continue;
380                 if (irq == 2)
381                         continue;
382
383                 /* interrupt's are disabled at this point */
384                 raw_spin_lock(&desc->lock);
385
386                 data = irq_desc_get_irq_data(desc);
387                 affinity = data->affinity;
388                 if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
389                     cpumask_subset(affinity, cpu_online_mask)) {
390                         raw_spin_unlock(&desc->lock);
391                         continue;
392                 }
393
394                 /*
395                  * Complete the irq move. This cpu is going down and for
396                  * non intr-remapping case, we can't wait till this interrupt
397                  * arrives at this cpu before completing the irq move.
398                  */
399                 irq_force_complete_move(irq);
400
401                 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
402                         break_affinity = 1;
403                         affinity = cpu_online_mask;
404                 }
405
406                 chip = irq_data_get_irq_chip(data);
407                 if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
408                         chip->irq_mask(data);
409
410                 if (chip->irq_set_affinity) {
411                         ret = chip->irq_set_affinity(data, affinity, true);
412                         if (ret == -ENOSPC)
413                                 pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
414                 } else {
415                         if (!(warned++))
416                                 set_affinity = 0;
417                 }
418
419                 /*
420                  * We unmask if the irq was not marked masked by the
421                  * core code. That respects the lazy irq disable
422                  * behaviour.
423                  */
424                 if (!irqd_can_move_in_process_context(data) &&
425                     !irqd_irq_masked(data) && chip->irq_unmask)
426                         chip->irq_unmask(data);
427
428                 raw_spin_unlock(&desc->lock);
429
430                 if (break_affinity && set_affinity)
431                         pr_notice("Broke affinity for irq %i\n", irq);
432                 else if (!set_affinity)
433                         pr_notice("Cannot set affinity for irq %i\n", irq);
434         }
435
436         /*
437          * We can remove mdelay() and then send spuriuous interrupts to
438          * new cpu targets for all the irqs that were handled previously by
439          * this cpu. While it works, I have seen spurious interrupt messages
440          * (nothing wrong but still...).
441          *
442          * So for now, retain mdelay(1) and check the IRR and then send those
443          * interrupts to new targets as this cpu is already offlined...
444          */
445         mdelay(1);
446
447         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
448                 unsigned int irr;
449
450                 if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED)
451                         continue;
452
453                 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
454                 if (irr  & (1 << (vector % 32))) {
455                         irq = __this_cpu_read(vector_irq[vector]);
456
457                         desc = irq_to_desc(irq);
458                         data = irq_desc_get_irq_data(desc);
459                         chip = irq_data_get_irq_chip(data);
460                         raw_spin_lock(&desc->lock);
461                         if (chip->irq_retrigger) {
462                                 chip->irq_retrigger(data);
463                                 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
464                         }
465                         raw_spin_unlock(&desc->lock);
466                 }
467                 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
468                         __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
469         }
470 }
471 #endif