Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
18
19 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
20
21 /* FSEC = 10^-15
22    NSEC = 10^-9 */
23 #define FSEC_PER_NSEC                   1000000L
24
25 #define HPET_DEV_USED_BIT               2
26 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID                  0x8
28 #define HPET_DEV_FSB_CAP                0x1000
29 #define HPET_DEV_PERI_CAP               0x2000
30
31 #define HPET_MIN_CYCLES                 128
32 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
33
34 /*
35  * HPET address is set in acpi/boot.c, when an ACPI entry exists
36  */
37 unsigned long                           hpet_address;
38 u8                                      hpet_blockid; /* OS timer block num */
39 u8                                      hpet_msi_disable;
40
41 #ifdef CONFIG_PCI_MSI
42 static unsigned long                    hpet_num_timers;
43 #endif
44 static void __iomem                     *hpet_virt_address;
45
46 struct hpet_dev {
47         struct clock_event_device       evt;
48         unsigned int                    num;
49         int                             cpu;
50         unsigned int                    irq;
51         unsigned int                    flags;
52         char                            name[10];
53 };
54
55 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
56 {
57         return container_of(evtdev, struct hpet_dev, evt);
58 }
59
60 inline unsigned int hpet_readl(unsigned int a)
61 {
62         return readl(hpet_virt_address + a);
63 }
64
65 static inline void hpet_writel(unsigned int d, unsigned int a)
66 {
67         writel(d, hpet_virt_address + a);
68 }
69
70 #ifdef CONFIG_X86_64
71 #include <asm/pgtable.h>
72 #endif
73
74 static inline void hpet_set_mapping(void)
75 {
76         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
77 }
78
79 static inline void hpet_clear_mapping(void)
80 {
81         iounmap(hpet_virt_address);
82         hpet_virt_address = NULL;
83 }
84
85 /*
86  * HPET command line enable / disable
87  */
88 int boot_hpet_disable;
89 int hpet_force_user;
90 static int hpet_verbose;
91
92 static int __init hpet_setup(char *str)
93 {
94         while (str) {
95                 char *next = strchr(str, ',');
96
97                 if (next)
98                         *next++ = 0;
99                 if (!strncmp("disable", str, 7))
100                         boot_hpet_disable = 1;
101                 if (!strncmp("force", str, 5))
102                         hpet_force_user = 1;
103                 if (!strncmp("verbose", str, 7))
104                         hpet_verbose = 1;
105                 str = next;
106         }
107         return 1;
108 }
109 __setup("hpet=", hpet_setup);
110
111 static int __init disable_hpet(char *str)
112 {
113         boot_hpet_disable = 1;
114         return 1;
115 }
116 __setup("nohpet", disable_hpet);
117
118 static inline int is_hpet_capable(void)
119 {
120         return !boot_hpet_disable && hpet_address;
121 }
122
123 /*
124  * HPET timer interrupt enable / disable
125  */
126 static int hpet_legacy_int_enabled;
127
128 /**
129  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
130  */
131 int is_hpet_enabled(void)
132 {
133         return is_hpet_capable() && hpet_legacy_int_enabled;
134 }
135 EXPORT_SYMBOL_GPL(is_hpet_enabled);
136
137 static void _hpet_print_config(const char *function, int line)
138 {
139         u32 i, timers, l, h;
140         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
141         l = hpet_readl(HPET_ID);
142         h = hpet_readl(HPET_PERIOD);
143         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
144         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
145         l = hpet_readl(HPET_CFG);
146         h = hpet_readl(HPET_STATUS);
147         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
148         l = hpet_readl(HPET_COUNTER);
149         h = hpet_readl(HPET_COUNTER+4);
150         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
151
152         for (i = 0; i < timers; i++) {
153                 l = hpet_readl(HPET_Tn_CFG(i));
154                 h = hpet_readl(HPET_Tn_CFG(i)+4);
155                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
156                        i, l, h);
157                 l = hpet_readl(HPET_Tn_CMP(i));
158                 h = hpet_readl(HPET_Tn_CMP(i)+4);
159                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
160                        i, l, h);
161                 l = hpet_readl(HPET_Tn_ROUTE(i));
162                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
163                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
164                        i, l, h);
165         }
166 }
167
168 #define hpet_print_config()                                     \
169 do {                                                            \
170         if (hpet_verbose)                                       \
171                 _hpet_print_config(__func__, __LINE__); \
172 } while (0)
173
174 /*
175  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
176  * timer 0 and timer 1 in case of RTC emulation.
177  */
178 #ifdef CONFIG_HPET
179
180 static void hpet_reserve_msi_timers(struct hpet_data *hd);
181
182 static void hpet_reserve_platform_timers(unsigned int id)
183 {
184         struct hpet __iomem *hpet = hpet_virt_address;
185         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
186         unsigned int nrtimers, i;
187         struct hpet_data hd;
188
189         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
190
191         memset(&hd, 0, sizeof(hd));
192         hd.hd_phys_address      = hpet_address;
193         hd.hd_address           = hpet;
194         hd.hd_nirqs             = nrtimers;
195         hpet_reserve_timer(&hd, 0);
196
197 #ifdef CONFIG_HPET_EMULATE_RTC
198         hpet_reserve_timer(&hd, 1);
199 #endif
200
201         /*
202          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
203          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
204          * don't bother configuring *any* comparator interrupts.
205          */
206         hd.hd_irq[0] = HPET_LEGACY_8254;
207         hd.hd_irq[1] = HPET_LEGACY_RTC;
208
209         for (i = 2; i < nrtimers; timer++, i++) {
210                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
211                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
212         }
213
214         hpet_reserve_msi_timers(&hd);
215
216         hpet_alloc(&hd);
217
218 }
219 #else
220 static void hpet_reserve_platform_timers(unsigned int id) { }
221 #endif
222
223 /*
224  * Common hpet info
225  */
226 static unsigned long hpet_freq;
227
228 static void hpet_legacy_set_mode(enum clock_event_mode mode,
229                           struct clock_event_device *evt);
230 static int hpet_legacy_next_event(unsigned long delta,
231                            struct clock_event_device *evt);
232
233 /*
234  * The hpet clock event device
235  */
236 static struct clock_event_device hpet_clockevent = {
237         .name           = "hpet",
238         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
239         .set_mode       = hpet_legacy_set_mode,
240         .set_next_event = hpet_legacy_next_event,
241         .irq            = 0,
242         .rating         = 50,
243 };
244
245 static void hpet_stop_counter(void)
246 {
247         unsigned long cfg = hpet_readl(HPET_CFG);
248         cfg &= ~HPET_CFG_ENABLE;
249         hpet_writel(cfg, HPET_CFG);
250 }
251
252 static void hpet_reset_counter(void)
253 {
254         hpet_writel(0, HPET_COUNTER);
255         hpet_writel(0, HPET_COUNTER + 4);
256 }
257
258 static void hpet_start_counter(void)
259 {
260         unsigned int cfg = hpet_readl(HPET_CFG);
261         cfg |= HPET_CFG_ENABLE;
262         hpet_writel(cfg, HPET_CFG);
263 }
264
265 static void hpet_restart_counter(void)
266 {
267         hpet_stop_counter();
268         hpet_reset_counter();
269         hpet_start_counter();
270 }
271
272 static void hpet_resume_device(void)
273 {
274         force_hpet_resume();
275 }
276
277 static void hpet_resume_counter(struct clocksource *cs)
278 {
279         hpet_resume_device();
280         hpet_restart_counter();
281 }
282
283 static void hpet_enable_legacy_int(void)
284 {
285         unsigned int cfg = hpet_readl(HPET_CFG);
286
287         cfg |= HPET_CFG_LEGACY;
288         hpet_writel(cfg, HPET_CFG);
289         hpet_legacy_int_enabled = 1;
290 }
291
292 static void hpet_legacy_clockevent_register(void)
293 {
294         /* Start HPET legacy interrupts */
295         hpet_enable_legacy_int();
296
297         /*
298          * Start hpet with the boot cpu mask and make it
299          * global after the IO_APIC has been initialized.
300          */
301         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
302         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
303                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
304         global_clock_event = &hpet_clockevent;
305         printk(KERN_DEBUG "hpet clockevent registered\n");
306 }
307
308 static int hpet_setup_msi_irq(unsigned int irq);
309
310 static void hpet_set_mode(enum clock_event_mode mode,
311                           struct clock_event_device *evt, int timer)
312 {
313         unsigned int cfg, cmp, now;
314         uint64_t delta;
315
316         switch (mode) {
317         case CLOCK_EVT_MODE_PERIODIC:
318                 hpet_stop_counter();
319                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
320                 delta >>= evt->shift;
321                 now = hpet_readl(HPET_COUNTER);
322                 cmp = now + (unsigned int) delta;
323                 cfg = hpet_readl(HPET_Tn_CFG(timer));
324                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
325                        HPET_TN_SETVAL | HPET_TN_32BIT;
326                 hpet_writel(cfg, HPET_Tn_CFG(timer));
327                 hpet_writel(cmp, HPET_Tn_CMP(timer));
328                 udelay(1);
329                 /*
330                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
331                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
332                  * bit is automatically cleared after the first write.
333                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
334                  * Publication # 24674)
335                  */
336                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
337                 hpet_start_counter();
338                 hpet_print_config();
339                 break;
340
341         case CLOCK_EVT_MODE_ONESHOT:
342                 cfg = hpet_readl(HPET_Tn_CFG(timer));
343                 cfg &= ~HPET_TN_PERIODIC;
344                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
345                 hpet_writel(cfg, HPET_Tn_CFG(timer));
346                 break;
347
348         case CLOCK_EVT_MODE_UNUSED:
349         case CLOCK_EVT_MODE_SHUTDOWN:
350                 cfg = hpet_readl(HPET_Tn_CFG(timer));
351                 cfg &= ~HPET_TN_ENABLE;
352                 hpet_writel(cfg, HPET_Tn_CFG(timer));
353                 break;
354
355         case CLOCK_EVT_MODE_RESUME:
356                 if (timer == 0) {
357                         hpet_enable_legacy_int();
358                 } else {
359                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
360                         hpet_setup_msi_irq(hdev->irq);
361                         disable_irq(hdev->irq);
362                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
363                         enable_irq(hdev->irq);
364                 }
365                 hpet_print_config();
366                 break;
367         }
368 }
369
370 static int hpet_next_event(unsigned long delta,
371                            struct clock_event_device *evt, int timer)
372 {
373         u32 cnt;
374         s32 res;
375
376         cnt = hpet_readl(HPET_COUNTER);
377         cnt += (u32) delta;
378         hpet_writel(cnt, HPET_Tn_CMP(timer));
379
380         /*
381          * HPETs are a complete disaster. The compare register is
382          * based on a equal comparison and neither provides a less
383          * than or equal functionality (which would require to take
384          * the wraparound into account) nor a simple count down event
385          * mode. Further the write to the comparator register is
386          * delayed internally up to two HPET clock cycles in certain
387          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
388          * longer delays. We worked around that by reading back the
389          * compare register, but that required another workaround for
390          * ICH9,10 chips where the first readout after write can
391          * return the old stale value. We already had a minimum
392          * programming delta of 5us enforced, but a NMI or SMI hitting
393          * between the counter readout and the comparator write can
394          * move us behind that point easily. Now instead of reading
395          * the compare register back several times, we make the ETIME
396          * decision based on the following: Return ETIME if the
397          * counter value after the write is less than HPET_MIN_CYCLES
398          * away from the event or if the counter is already ahead of
399          * the event. The minimum programming delta for the generic
400          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
401          */
402         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
403
404         return res < HPET_MIN_CYCLES ? -ETIME : 0;
405 }
406
407 static void hpet_legacy_set_mode(enum clock_event_mode mode,
408                         struct clock_event_device *evt)
409 {
410         hpet_set_mode(mode, evt, 0);
411 }
412
413 static int hpet_legacy_next_event(unsigned long delta,
414                         struct clock_event_device *evt)
415 {
416         return hpet_next_event(delta, evt, 0);
417 }
418
419 /*
420  * HPET MSI Support
421  */
422 #ifdef CONFIG_PCI_MSI
423
424 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
425 static struct hpet_dev  *hpet_devs;
426
427 void hpet_msi_unmask(struct irq_data *data)
428 {
429         struct hpet_dev *hdev = data->handler_data;
430         unsigned int cfg;
431
432         /* unmask it */
433         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
434         cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
435         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
436 }
437
438 void hpet_msi_mask(struct irq_data *data)
439 {
440         struct hpet_dev *hdev = data->handler_data;
441         unsigned int cfg;
442
443         /* mask it */
444         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
445         cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
446         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
447 }
448
449 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
450 {
451         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
452         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
453 }
454
455 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
456 {
457         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
458         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
459         msg->address_hi = 0;
460 }
461
462 static void hpet_msi_set_mode(enum clock_event_mode mode,
463                                 struct clock_event_device *evt)
464 {
465         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
466         hpet_set_mode(mode, evt, hdev->num);
467 }
468
469 static int hpet_msi_next_event(unsigned long delta,
470                                 struct clock_event_device *evt)
471 {
472         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
473         return hpet_next_event(delta, evt, hdev->num);
474 }
475
476 static int hpet_setup_msi_irq(unsigned int irq)
477 {
478         if (x86_msi.setup_hpet_msi(irq, hpet_blockid)) {
479                 irq_free_hwirq(irq);
480                 return -EINVAL;
481         }
482         return 0;
483 }
484
485 static int hpet_assign_irq(struct hpet_dev *dev)
486 {
487         unsigned int irq = irq_alloc_hwirq(-1);
488
489         if (!irq)
490                 return -EINVAL;
491
492         irq_set_handler_data(irq, dev);
493
494         if (hpet_setup_msi_irq(irq))
495                 return -EINVAL;
496
497         dev->irq = irq;
498         return 0;
499 }
500
501 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
502 {
503         struct hpet_dev *dev = (struct hpet_dev *)data;
504         struct clock_event_device *hevt = &dev->evt;
505
506         if (!hevt->event_handler) {
507                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
508                                 dev->num);
509                 return IRQ_HANDLED;
510         }
511
512         hevt->event_handler(hevt);
513         return IRQ_HANDLED;
514 }
515
516 static int hpet_setup_irq(struct hpet_dev *dev)
517 {
518
519         if (request_irq(dev->irq, hpet_interrupt_handler,
520                         IRQF_TIMER | IRQF_NOBALANCING,
521                         dev->name, dev))
522                 return -1;
523
524         disable_irq(dev->irq);
525         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
526         enable_irq(dev->irq);
527
528         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
529                          dev->name, dev->irq);
530
531         return 0;
532 }
533
534 /* This should be called in specific @cpu */
535 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
536 {
537         struct clock_event_device *evt = &hdev->evt;
538
539         WARN_ON(cpu != smp_processor_id());
540         if (!(hdev->flags & HPET_DEV_VALID))
541                 return;
542
543         if (hpet_setup_msi_irq(hdev->irq))
544                 return;
545
546         hdev->cpu = cpu;
547         per_cpu(cpu_hpet_dev, cpu) = hdev;
548         evt->name = hdev->name;
549         hpet_setup_irq(hdev);
550         evt->irq = hdev->irq;
551
552         evt->rating = 110;
553         evt->features = CLOCK_EVT_FEAT_ONESHOT;
554         if (hdev->flags & HPET_DEV_PERI_CAP)
555                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
556
557         evt->set_mode = hpet_msi_set_mode;
558         evt->set_next_event = hpet_msi_next_event;
559         evt->cpumask = cpumask_of(hdev->cpu);
560
561         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
562                                         0x7FFFFFFF);
563 }
564
565 #ifdef CONFIG_HPET
566 /* Reserve at least one timer for userspace (/dev/hpet) */
567 #define RESERVE_TIMERS 1
568 #else
569 #define RESERVE_TIMERS 0
570 #endif
571
572 static void hpet_msi_capability_lookup(unsigned int start_timer)
573 {
574         unsigned int id;
575         unsigned int num_timers;
576         unsigned int num_timers_used = 0;
577         int i;
578
579         if (hpet_msi_disable)
580                 return;
581
582         if (boot_cpu_has(X86_FEATURE_ARAT))
583                 return;
584         id = hpet_readl(HPET_ID);
585
586         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
587         num_timers++; /* Value read out starts from 0 */
588         hpet_print_config();
589
590         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
591         if (!hpet_devs)
592                 return;
593
594         hpet_num_timers = num_timers;
595
596         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
597                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
598                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
599
600                 /* Only consider HPET timer with MSI support */
601                 if (!(cfg & HPET_TN_FSB_CAP))
602                         continue;
603
604                 hdev->flags = 0;
605                 if (cfg & HPET_TN_PERIODIC_CAP)
606                         hdev->flags |= HPET_DEV_PERI_CAP;
607                 hdev->num = i;
608
609                 sprintf(hdev->name, "hpet%d", i);
610                 if (hpet_assign_irq(hdev))
611                         continue;
612
613                 hdev->flags |= HPET_DEV_FSB_CAP;
614                 hdev->flags |= HPET_DEV_VALID;
615                 num_timers_used++;
616                 if (num_timers_used == num_possible_cpus())
617                         break;
618         }
619
620         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
621                 num_timers, num_timers_used);
622 }
623
624 #ifdef CONFIG_HPET
625 static void hpet_reserve_msi_timers(struct hpet_data *hd)
626 {
627         int i;
628
629         if (!hpet_devs)
630                 return;
631
632         for (i = 0; i < hpet_num_timers; i++) {
633                 struct hpet_dev *hdev = &hpet_devs[i];
634
635                 if (!(hdev->flags & HPET_DEV_VALID))
636                         continue;
637
638                 hd->hd_irq[hdev->num] = hdev->irq;
639                 hpet_reserve_timer(hd, hdev->num);
640         }
641 }
642 #endif
643
644 static struct hpet_dev *hpet_get_unused_timer(void)
645 {
646         int i;
647
648         if (!hpet_devs)
649                 return NULL;
650
651         for (i = 0; i < hpet_num_timers; i++) {
652                 struct hpet_dev *hdev = &hpet_devs[i];
653
654                 if (!(hdev->flags & HPET_DEV_VALID))
655                         continue;
656                 if (test_and_set_bit(HPET_DEV_USED_BIT,
657                         (unsigned long *)&hdev->flags))
658                         continue;
659                 return hdev;
660         }
661         return NULL;
662 }
663
664 struct hpet_work_struct {
665         struct delayed_work work;
666         struct completion complete;
667 };
668
669 static void hpet_work(struct work_struct *w)
670 {
671         struct hpet_dev *hdev;
672         int cpu = smp_processor_id();
673         struct hpet_work_struct *hpet_work;
674
675         hpet_work = container_of(w, struct hpet_work_struct, work.work);
676
677         hdev = hpet_get_unused_timer();
678         if (hdev)
679                 init_one_hpet_msi_clockevent(hdev, cpu);
680
681         complete(&hpet_work->complete);
682 }
683
684 static int hpet_cpuhp_notify(struct notifier_block *n,
685                 unsigned long action, void *hcpu)
686 {
687         unsigned long cpu = (unsigned long)hcpu;
688         struct hpet_work_struct work;
689         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
690
691         switch (action & 0xf) {
692         case CPU_ONLINE:
693                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
694                 init_completion(&work.complete);
695                 /* FIXME: add schedule_work_on() */
696                 schedule_delayed_work_on(cpu, &work.work, 0);
697                 wait_for_completion(&work.complete);
698                 destroy_delayed_work_on_stack(&work.work);
699                 break;
700         case CPU_DEAD:
701                 if (hdev) {
702                         free_irq(hdev->irq, hdev);
703                         hdev->flags &= ~HPET_DEV_USED;
704                         per_cpu(cpu_hpet_dev, cpu) = NULL;
705                 }
706                 break;
707         }
708         return NOTIFY_OK;
709 }
710 #else
711
712 static int hpet_setup_msi_irq(unsigned int irq)
713 {
714         return 0;
715 }
716 static void hpet_msi_capability_lookup(unsigned int start_timer)
717 {
718         return;
719 }
720
721 #ifdef CONFIG_HPET
722 static void hpet_reserve_msi_timers(struct hpet_data *hd)
723 {
724         return;
725 }
726 #endif
727
728 static int hpet_cpuhp_notify(struct notifier_block *n,
729                 unsigned long action, void *hcpu)
730 {
731         return NOTIFY_OK;
732 }
733
734 #endif
735
736 /*
737  * Clock source related code
738  */
739 static cycle_t read_hpet(struct clocksource *cs)
740 {
741         return (cycle_t)hpet_readl(HPET_COUNTER);
742 }
743
744 static struct clocksource clocksource_hpet = {
745         .name           = "hpet",
746         .rating         = 250,
747         .read           = read_hpet,
748         .mask           = HPET_MASK,
749         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
750         .resume         = hpet_resume_counter,
751         .archdata       = { .vclock_mode = VCLOCK_HPET },
752 };
753
754 static int hpet_clocksource_register(void)
755 {
756         u64 start, now;
757         cycle_t t1;
758
759         /* Start the counter */
760         hpet_restart_counter();
761
762         /* Verify whether hpet counter works */
763         t1 = hpet_readl(HPET_COUNTER);
764         rdtscll(start);
765
766         /*
767          * We don't know the TSC frequency yet, but waiting for
768          * 200000 TSC cycles is safe:
769          * 4 GHz == 50us
770          * 1 GHz == 200us
771          */
772         do {
773                 rep_nop();
774                 rdtscll(now);
775         } while ((now - start) < 200000UL);
776
777         if (t1 == hpet_readl(HPET_COUNTER)) {
778                 printk(KERN_WARNING
779                        "HPET counter not counting. HPET disabled\n");
780                 return -ENODEV;
781         }
782
783         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
784         return 0;
785 }
786
787 static u32 *hpet_boot_cfg;
788
789 /**
790  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
791  */
792 int __init hpet_enable(void)
793 {
794         u32 hpet_period, cfg, id;
795         u64 freq;
796         unsigned int i, last;
797
798         if (!is_hpet_capable())
799                 return 0;
800
801         hpet_set_mapping();
802
803         /*
804          * Read the period and check for a sane value:
805          */
806         hpet_period = hpet_readl(HPET_PERIOD);
807
808         /*
809          * AMD SB700 based systems with spread spectrum enabled use a
810          * SMM based HPET emulation to provide proper frequency
811          * setting. The SMM code is initialized with the first HPET
812          * register access and takes some time to complete. During
813          * this time the config register reads 0xffffffff. We check
814          * for max. 1000 loops whether the config register reads a non
815          * 0xffffffff value to make sure that HPET is up and running
816          * before we go further. A counting loop is safe, as the HPET
817          * access takes thousands of CPU cycles. On non SB700 based
818          * machines this check is only done once and has no side
819          * effects.
820          */
821         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
822                 if (i == 1000) {
823                         printk(KERN_WARNING
824                                "HPET config register value = 0xFFFFFFFF. "
825                                "Disabling HPET\n");
826                         goto out_nohpet;
827                 }
828         }
829
830         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
831                 goto out_nohpet;
832
833         /*
834          * The period is a femto seconds value. Convert it to a
835          * frequency.
836          */
837         freq = FSEC_PER_SEC;
838         do_div(freq, hpet_period);
839         hpet_freq = freq;
840
841         /*
842          * Read the HPET ID register to retrieve the IRQ routing
843          * information and the number of channels
844          */
845         id = hpet_readl(HPET_ID);
846         hpet_print_config();
847
848         last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
849
850 #ifdef CONFIG_HPET_EMULATE_RTC
851         /*
852          * The legacy routing mode needs at least two channels, tick timer
853          * and the rtc emulation channel.
854          */
855         if (!last)
856                 goto out_nohpet;
857 #endif
858
859         cfg = hpet_readl(HPET_CFG);
860         hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
861                                 GFP_KERNEL);
862         if (hpet_boot_cfg)
863                 *hpet_boot_cfg = cfg;
864         else
865                 pr_warn("HPET initial state will not be saved\n");
866         cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
867         hpet_writel(cfg, HPET_CFG);
868         if (cfg)
869                 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
870                         cfg);
871
872         for (i = 0; i <= last; ++i) {
873                 cfg = hpet_readl(HPET_Tn_CFG(i));
874                 if (hpet_boot_cfg)
875                         hpet_boot_cfg[i + 1] = cfg;
876                 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
877                 hpet_writel(cfg, HPET_Tn_CFG(i));
878                 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
879                          | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
880                          | HPET_TN_FSB | HPET_TN_FSB_CAP);
881                 if (cfg)
882                         pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
883                                 cfg, i);
884         }
885         hpet_print_config();
886
887         if (hpet_clocksource_register())
888                 goto out_nohpet;
889
890         if (id & HPET_ID_LEGSUP) {
891                 hpet_legacy_clockevent_register();
892                 return 1;
893         }
894         return 0;
895
896 out_nohpet:
897         hpet_clear_mapping();
898         hpet_address = 0;
899         return 0;
900 }
901
902 /*
903  * Needs to be late, as the reserve_timer code calls kalloc !
904  *
905  * Not a problem on i386 as hpet_enable is called from late_time_init,
906  * but on x86_64 it is necessary !
907  */
908 static __init int hpet_late_init(void)
909 {
910         int cpu;
911
912         if (boot_hpet_disable)
913                 return -ENODEV;
914
915         if (!hpet_address) {
916                 if (!force_hpet_address)
917                         return -ENODEV;
918
919                 hpet_address = force_hpet_address;
920                 hpet_enable();
921         }
922
923         if (!hpet_virt_address)
924                 return -ENODEV;
925
926         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
927                 hpet_msi_capability_lookup(2);
928         else
929                 hpet_msi_capability_lookup(0);
930
931         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
932         hpet_print_config();
933
934         if (hpet_msi_disable)
935                 return 0;
936
937         if (boot_cpu_has(X86_FEATURE_ARAT))
938                 return 0;
939
940         cpu_notifier_register_begin();
941         for_each_online_cpu(cpu) {
942                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
943         }
944
945         /* This notifier should be called after workqueue is ready */
946         __hotcpu_notifier(hpet_cpuhp_notify, -20);
947         cpu_notifier_register_done();
948
949         return 0;
950 }
951 fs_initcall(hpet_late_init);
952
953 void hpet_disable(void)
954 {
955         if (is_hpet_capable() && hpet_virt_address) {
956                 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
957
958                 if (hpet_boot_cfg)
959                         cfg = *hpet_boot_cfg;
960                 else if (hpet_legacy_int_enabled) {
961                         cfg &= ~HPET_CFG_LEGACY;
962                         hpet_legacy_int_enabled = 0;
963                 }
964                 cfg &= ~HPET_CFG_ENABLE;
965                 hpet_writel(cfg, HPET_CFG);
966
967                 if (!hpet_boot_cfg)
968                         return;
969
970                 id = hpet_readl(HPET_ID);
971                 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
972
973                 for (id = 0; id <= last; ++id)
974                         hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
975
976                 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
977                         hpet_writel(*hpet_boot_cfg, HPET_CFG);
978         }
979 }
980
981 #ifdef CONFIG_HPET_EMULATE_RTC
982
983 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
984  * is enabled, we support RTC interrupt functionality in software.
985  * RTC has 3 kinds of interrupts:
986  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
987  *    is updated
988  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
989  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
990  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
991  * (1) and (2) above are implemented using polling at a frequency of
992  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
993  * overhead. (DEFAULT_RTC_INT_FREQ)
994  * For (3), we use interrupts at 64Hz or user specified periodic
995  * frequency, whichever is higher.
996  */
997 #include <linux/mc146818rtc.h>
998 #include <linux/rtc.h>
999 #include <asm/rtc.h>
1000
1001 #define DEFAULT_RTC_INT_FREQ    64
1002 #define DEFAULT_RTC_SHIFT       6
1003 #define RTC_NUM_INTS            1
1004
1005 static unsigned long hpet_rtc_flags;
1006 static int hpet_prev_update_sec;
1007 static struct rtc_time hpet_alarm_time;
1008 static unsigned long hpet_pie_count;
1009 static u32 hpet_t1_cmp;
1010 static u32 hpet_default_delta;
1011 static u32 hpet_pie_delta;
1012 static unsigned long hpet_pie_limit;
1013
1014 static rtc_irq_handler irq_handler;
1015
1016 /*
1017  * Check that the hpet counter c1 is ahead of the c2
1018  */
1019 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1020 {
1021         return (s32)(c2 - c1) < 0;
1022 }
1023
1024 /*
1025  * Registers a IRQ handler.
1026  */
1027 int hpet_register_irq_handler(rtc_irq_handler handler)
1028 {
1029         if (!is_hpet_enabled())
1030                 return -ENODEV;
1031         if (irq_handler)
1032                 return -EBUSY;
1033
1034         irq_handler = handler;
1035
1036         return 0;
1037 }
1038 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1039
1040 /*
1041  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1042  * and does cleanup.
1043  */
1044 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1045 {
1046         if (!is_hpet_enabled())
1047                 return;
1048
1049         irq_handler = NULL;
1050         hpet_rtc_flags = 0;
1051 }
1052 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1053
1054 /*
1055  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1056  * is not supported by all HPET implementations for timer 1.
1057  *
1058  * hpet_rtc_timer_init() is called when the rtc is initialized.
1059  */
1060 int hpet_rtc_timer_init(void)
1061 {
1062         unsigned int cfg, cnt, delta;
1063         unsigned long flags;
1064
1065         if (!is_hpet_enabled())
1066                 return 0;
1067
1068         if (!hpet_default_delta) {
1069                 uint64_t clc;
1070
1071                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1072                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1073                 hpet_default_delta = clc;
1074         }
1075
1076         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1077                 delta = hpet_default_delta;
1078         else
1079                 delta = hpet_pie_delta;
1080
1081         local_irq_save(flags);
1082
1083         cnt = delta + hpet_readl(HPET_COUNTER);
1084         hpet_writel(cnt, HPET_T1_CMP);
1085         hpet_t1_cmp = cnt;
1086
1087         cfg = hpet_readl(HPET_T1_CFG);
1088         cfg &= ~HPET_TN_PERIODIC;
1089         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1090         hpet_writel(cfg, HPET_T1_CFG);
1091
1092         local_irq_restore(flags);
1093
1094         return 1;
1095 }
1096 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1097
1098 static void hpet_disable_rtc_channel(void)
1099 {
1100         unsigned long cfg;
1101         cfg = hpet_readl(HPET_T1_CFG);
1102         cfg &= ~HPET_TN_ENABLE;
1103         hpet_writel(cfg, HPET_T1_CFG);
1104 }
1105
1106 /*
1107  * The functions below are called from rtc driver.
1108  * Return 0 if HPET is not being used.
1109  * Otherwise do the necessary changes and return 1.
1110  */
1111 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1112 {
1113         if (!is_hpet_enabled())
1114                 return 0;
1115
1116         hpet_rtc_flags &= ~bit_mask;
1117         if (unlikely(!hpet_rtc_flags))
1118                 hpet_disable_rtc_channel();
1119
1120         return 1;
1121 }
1122 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1123
1124 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1125 {
1126         unsigned long oldbits = hpet_rtc_flags;
1127
1128         if (!is_hpet_enabled())
1129                 return 0;
1130
1131         hpet_rtc_flags |= bit_mask;
1132
1133         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1134                 hpet_prev_update_sec = -1;
1135
1136         if (!oldbits)
1137                 hpet_rtc_timer_init();
1138
1139         return 1;
1140 }
1141 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1142
1143 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1144                         unsigned char sec)
1145 {
1146         if (!is_hpet_enabled())
1147                 return 0;
1148
1149         hpet_alarm_time.tm_hour = hrs;
1150         hpet_alarm_time.tm_min = min;
1151         hpet_alarm_time.tm_sec = sec;
1152
1153         return 1;
1154 }
1155 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1156
1157 int hpet_set_periodic_freq(unsigned long freq)
1158 {
1159         uint64_t clc;
1160
1161         if (!is_hpet_enabled())
1162                 return 0;
1163
1164         if (freq <= DEFAULT_RTC_INT_FREQ)
1165                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1166         else {
1167                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1168                 do_div(clc, freq);
1169                 clc >>= hpet_clockevent.shift;
1170                 hpet_pie_delta = clc;
1171                 hpet_pie_limit = 0;
1172         }
1173         return 1;
1174 }
1175 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1176
1177 int hpet_rtc_dropped_irq(void)
1178 {
1179         return is_hpet_enabled();
1180 }
1181 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1182
1183 static void hpet_rtc_timer_reinit(void)
1184 {
1185         unsigned int delta;
1186         int lost_ints = -1;
1187
1188         if (unlikely(!hpet_rtc_flags))
1189                 hpet_disable_rtc_channel();
1190
1191         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1192                 delta = hpet_default_delta;
1193         else
1194                 delta = hpet_pie_delta;
1195
1196         /*
1197          * Increment the comparator value until we are ahead of the
1198          * current count.
1199          */
1200         do {
1201                 hpet_t1_cmp += delta;
1202                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1203                 lost_ints++;
1204         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1205
1206         if (lost_ints) {
1207                 if (hpet_rtc_flags & RTC_PIE)
1208                         hpet_pie_count += lost_ints;
1209                 if (printk_ratelimit())
1210                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1211                                 lost_ints);
1212         }
1213 }
1214
1215 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1216 {
1217         struct rtc_time curr_time;
1218         unsigned long rtc_int_flag = 0;
1219
1220         hpet_rtc_timer_reinit();
1221         memset(&curr_time, 0, sizeof(struct rtc_time));
1222
1223         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1224                 get_rtc_time(&curr_time);
1225
1226         if (hpet_rtc_flags & RTC_UIE &&
1227             curr_time.tm_sec != hpet_prev_update_sec) {
1228                 if (hpet_prev_update_sec >= 0)
1229                         rtc_int_flag = RTC_UF;
1230                 hpet_prev_update_sec = curr_time.tm_sec;
1231         }
1232
1233         if (hpet_rtc_flags & RTC_PIE &&
1234             ++hpet_pie_count >= hpet_pie_limit) {
1235                 rtc_int_flag |= RTC_PF;
1236                 hpet_pie_count = 0;
1237         }
1238
1239         if (hpet_rtc_flags & RTC_AIE &&
1240             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1241             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1242             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1243                         rtc_int_flag |= RTC_AF;
1244
1245         if (rtc_int_flag) {
1246                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1247                 if (irq_handler)
1248                         irq_handler(rtc_int_flag, dev_id);
1249         }
1250         return IRQ_HANDLED;
1251 }
1252 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1253 #endif