These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / x86 / kernel / cpu / perf_event_intel_cqm.c
1 /*
2  * Intel Cache Quality-of-Service Monitoring (CQM) support.
3  *
4  * Based very, very heavily on work by Peter Zijlstra.
5  */
6
7 #include <linux/perf_event.h>
8 #include <linux/slab.h>
9 #include <asm/cpu_device_id.h>
10 #include "perf_event.h"
11
12 #define MSR_IA32_PQR_ASSOC      0x0c8f
13 #define MSR_IA32_QM_CTR         0x0c8e
14 #define MSR_IA32_QM_EVTSEL      0x0c8d
15
16 static u32 cqm_max_rmid = -1;
17 static unsigned int cqm_l3_scale; /* supposedly cacheline size */
18
19 /**
20  * struct intel_pqr_state - State cache for the PQR MSR
21  * @rmid:               The cached Resource Monitoring ID
22  * @closid:             The cached Class Of Service ID
23  * @rmid_usecnt:        The usage counter for rmid
24  *
25  * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
26  * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
27  * contains both parts, so we need to cache them.
28  *
29  * The cache also helps to avoid pointless updates if the value does
30  * not change.
31  */
32 struct intel_pqr_state {
33         u32                     rmid;
34         u32                     closid;
35         int                     rmid_usecnt;
36 };
37
38 /*
39  * The cached intel_pqr_state is strictly per CPU and can never be
40  * updated from a remote CPU. Both functions which modify the state
41  * (intel_cqm_event_start and intel_cqm_event_stop) are called with
42  * interrupts disabled, which is sufficient for the protection.
43  */
44 static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
45
46 /*
47  * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
48  * Also protects event->hw.cqm_rmid
49  *
50  * Hold either for stability, both for modification of ->hw.cqm_rmid.
51  */
52 static DEFINE_MUTEX(cache_mutex);
53 static DEFINE_RAW_SPINLOCK(cache_lock);
54
55 /*
56  * Groups of events that have the same target(s), one RMID per group.
57  */
58 static LIST_HEAD(cache_groups);
59
60 /*
61  * Mask of CPUs for reading CQM values. We only need one per-socket.
62  */
63 static cpumask_t cqm_cpumask;
64
65 #define RMID_VAL_ERROR          (1ULL << 63)
66 #define RMID_VAL_UNAVAIL        (1ULL << 62)
67
68 #define QOS_L3_OCCUP_EVENT_ID   (1 << 0)
69
70 #define QOS_EVENT_MASK  QOS_L3_OCCUP_EVENT_ID
71
72 /*
73  * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
74  *
75  * This rmid is always free and is guaranteed to have an associated
76  * near-zero occupancy value, i.e. no cachelines are tagged with this
77  * RMID, once __intel_cqm_rmid_rotate() returns.
78  */
79 static u32 intel_cqm_rotation_rmid;
80
81 #define INVALID_RMID            (-1)
82
83 /*
84  * Is @rmid valid for programming the hardware?
85  *
86  * rmid 0 is reserved by the hardware for all non-monitored tasks, which
87  * means that we should never come across an rmid with that value.
88  * Likewise, an rmid value of -1 is used to indicate "no rmid currently
89  * assigned" and is used as part of the rotation code.
90  */
91 static inline bool __rmid_valid(u32 rmid)
92 {
93         if (!rmid || rmid == INVALID_RMID)
94                 return false;
95
96         return true;
97 }
98
99 static u64 __rmid_read(u32 rmid)
100 {
101         u64 val;
102
103         /*
104          * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
105          * it just says that to increase confusion.
106          */
107         wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
108         rdmsrl(MSR_IA32_QM_CTR, val);
109
110         /*
111          * Aside from the ERROR and UNAVAIL bits, assume this thing returns
112          * the number of cachelines tagged with @rmid.
113          */
114         return val;
115 }
116
117 enum rmid_recycle_state {
118         RMID_YOUNG = 0,
119         RMID_AVAILABLE,
120         RMID_DIRTY,
121 };
122
123 struct cqm_rmid_entry {
124         u32 rmid;
125         enum rmid_recycle_state state;
126         struct list_head list;
127         unsigned long queue_time;
128 };
129
130 /*
131  * cqm_rmid_free_lru - A least recently used list of RMIDs.
132  *
133  * Oldest entry at the head, newest (most recently used) entry at the
134  * tail. This list is never traversed, it's only used to keep track of
135  * the lru order. That is, we only pick entries of the head or insert
136  * them on the tail.
137  *
138  * All entries on the list are 'free', and their RMIDs are not currently
139  * in use. To mark an RMID as in use, remove its entry from the lru
140  * list.
141  *
142  *
143  * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
144  *
145  * This list is contains RMIDs that no one is currently using but that
146  * may have a non-zero occupancy value associated with them. The
147  * rotation worker moves RMIDs from the limbo list to the free list once
148  * the occupancy value drops below __intel_cqm_threshold.
149  *
150  * Both lists are protected by cache_mutex.
151  */
152 static LIST_HEAD(cqm_rmid_free_lru);
153 static LIST_HEAD(cqm_rmid_limbo_lru);
154
155 /*
156  * We use a simple array of pointers so that we can lookup a struct
157  * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
158  * and __put_rmid() from having to worry about dealing with struct
159  * cqm_rmid_entry - they just deal with rmids, i.e. integers.
160  *
161  * Once this array is initialized it is read-only. No locks are required
162  * to access it.
163  *
164  * All entries for all RMIDs can be looked up in the this array at all
165  * times.
166  */
167 static struct cqm_rmid_entry **cqm_rmid_ptrs;
168
169 static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
170 {
171         struct cqm_rmid_entry *entry;
172
173         entry = cqm_rmid_ptrs[rmid];
174         WARN_ON(entry->rmid != rmid);
175
176         return entry;
177 }
178
179 /*
180  * Returns < 0 on fail.
181  *
182  * We expect to be called with cache_mutex held.
183  */
184 static u32 __get_rmid(void)
185 {
186         struct cqm_rmid_entry *entry;
187
188         lockdep_assert_held(&cache_mutex);
189
190         if (list_empty(&cqm_rmid_free_lru))
191                 return INVALID_RMID;
192
193         entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
194         list_del(&entry->list);
195
196         return entry->rmid;
197 }
198
199 static void __put_rmid(u32 rmid)
200 {
201         struct cqm_rmid_entry *entry;
202
203         lockdep_assert_held(&cache_mutex);
204
205         WARN_ON(!__rmid_valid(rmid));
206         entry = __rmid_entry(rmid);
207
208         entry->queue_time = jiffies;
209         entry->state = RMID_YOUNG;
210
211         list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
212 }
213
214 static int intel_cqm_setup_rmid_cache(void)
215 {
216         struct cqm_rmid_entry *entry;
217         unsigned int nr_rmids;
218         int r = 0;
219
220         nr_rmids = cqm_max_rmid + 1;
221         cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) *
222                                 nr_rmids, GFP_KERNEL);
223         if (!cqm_rmid_ptrs)
224                 return -ENOMEM;
225
226         for (; r <= cqm_max_rmid; r++) {
227                 struct cqm_rmid_entry *entry;
228
229                 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
230                 if (!entry)
231                         goto fail;
232
233                 INIT_LIST_HEAD(&entry->list);
234                 entry->rmid = r;
235                 cqm_rmid_ptrs[r] = entry;
236
237                 list_add_tail(&entry->list, &cqm_rmid_free_lru);
238         }
239
240         /*
241          * RMID 0 is special and is always allocated. It's used for all
242          * tasks that are not monitored.
243          */
244         entry = __rmid_entry(0);
245         list_del(&entry->list);
246
247         mutex_lock(&cache_mutex);
248         intel_cqm_rotation_rmid = __get_rmid();
249         mutex_unlock(&cache_mutex);
250
251         return 0;
252 fail:
253         while (r--)
254                 kfree(cqm_rmid_ptrs[r]);
255
256         kfree(cqm_rmid_ptrs);
257         return -ENOMEM;
258 }
259
260 /*
261  * Determine if @a and @b measure the same set of tasks.
262  *
263  * If @a and @b measure the same set of tasks then we want to share a
264  * single RMID.
265  */
266 static bool __match_event(struct perf_event *a, struct perf_event *b)
267 {
268         /* Per-cpu and task events don't mix */
269         if ((a->attach_state & PERF_ATTACH_TASK) !=
270             (b->attach_state & PERF_ATTACH_TASK))
271                 return false;
272
273 #ifdef CONFIG_CGROUP_PERF
274         if (a->cgrp != b->cgrp)
275                 return false;
276 #endif
277
278         /* If not task event, we're machine wide */
279         if (!(b->attach_state & PERF_ATTACH_TASK))
280                 return true;
281
282         /*
283          * Events that target same task are placed into the same cache group.
284          */
285         if (a->hw.target == b->hw.target)
286                 return true;
287
288         /*
289          * Are we an inherited event?
290          */
291         if (b->parent == a)
292                 return true;
293
294         return false;
295 }
296
297 #ifdef CONFIG_CGROUP_PERF
298 static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
299 {
300         if (event->attach_state & PERF_ATTACH_TASK)
301                 return perf_cgroup_from_task(event->hw.target, event->ctx);
302
303         return event->cgrp;
304 }
305 #endif
306
307 /*
308  * Determine if @a's tasks intersect with @b's tasks
309  *
310  * There are combinations of events that we explicitly prohibit,
311  *
312  *                 PROHIBITS
313  *     system-wide    ->        cgroup and task
314  *     cgroup         ->        system-wide
315  *                    ->        task in cgroup
316  *     task           ->        system-wide
317  *                    ->        task in cgroup
318  *
319  * Call this function before allocating an RMID.
320  */
321 static bool __conflict_event(struct perf_event *a, struct perf_event *b)
322 {
323 #ifdef CONFIG_CGROUP_PERF
324         /*
325          * We can have any number of cgroups but only one system-wide
326          * event at a time.
327          */
328         if (a->cgrp && b->cgrp) {
329                 struct perf_cgroup *ac = a->cgrp;
330                 struct perf_cgroup *bc = b->cgrp;
331
332                 /*
333                  * This condition should have been caught in
334                  * __match_event() and we should be sharing an RMID.
335                  */
336                 WARN_ON_ONCE(ac == bc);
337
338                 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
339                     cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
340                         return true;
341
342                 return false;
343         }
344
345         if (a->cgrp || b->cgrp) {
346                 struct perf_cgroup *ac, *bc;
347
348                 /*
349                  * cgroup and system-wide events are mutually exclusive
350                  */
351                 if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
352                     (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
353                         return true;
354
355                 /*
356                  * Ensure neither event is part of the other's cgroup
357                  */
358                 ac = event_to_cgroup(a);
359                 bc = event_to_cgroup(b);
360                 if (ac == bc)
361                         return true;
362
363                 /*
364                  * Must have cgroup and non-intersecting task events.
365                  */
366                 if (!ac || !bc)
367                         return false;
368
369                 /*
370                  * We have cgroup and task events, and the task belongs
371                  * to a cgroup. Check for for overlap.
372                  */
373                 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
374                     cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
375                         return true;
376
377                 return false;
378         }
379 #endif
380         /*
381          * If one of them is not a task, same story as above with cgroups.
382          */
383         if (!(a->attach_state & PERF_ATTACH_TASK) ||
384             !(b->attach_state & PERF_ATTACH_TASK))
385                 return true;
386
387         /*
388          * Must be non-overlapping.
389          */
390         return false;
391 }
392
393 struct rmid_read {
394         u32 rmid;
395         atomic64_t value;
396 };
397
398 static void __intel_cqm_event_count(void *info);
399
400 /*
401  * Exchange the RMID of a group of events.
402  */
403 static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
404 {
405         struct perf_event *event;
406         struct list_head *head = &group->hw.cqm_group_entry;
407         u32 old_rmid = group->hw.cqm_rmid;
408
409         lockdep_assert_held(&cache_mutex);
410
411         /*
412          * If our RMID is being deallocated, perform a read now.
413          */
414         if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
415                 struct rmid_read rr = {
416                         .value = ATOMIC64_INIT(0),
417                         .rmid = old_rmid,
418                 };
419
420                 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
421                                  &rr, 1);
422                 local64_set(&group->count, atomic64_read(&rr.value));
423         }
424
425         raw_spin_lock_irq(&cache_lock);
426
427         group->hw.cqm_rmid = rmid;
428         list_for_each_entry(event, head, hw.cqm_group_entry)
429                 event->hw.cqm_rmid = rmid;
430
431         raw_spin_unlock_irq(&cache_lock);
432
433         return old_rmid;
434 }
435
436 /*
437  * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
438  * cachelines are still tagged with RMIDs in limbo, we progressively
439  * increment the threshold until we find an RMID in limbo with <=
440  * __intel_cqm_threshold lines tagged. This is designed to mitigate the
441  * problem where cachelines tagged with an RMID are not steadily being
442  * evicted.
443  *
444  * On successful rotations we decrease the threshold back towards zero.
445  *
446  * __intel_cqm_max_threshold provides an upper bound on the threshold,
447  * and is measured in bytes because it's exposed to userland.
448  */
449 static unsigned int __intel_cqm_threshold;
450 static unsigned int __intel_cqm_max_threshold;
451
452 /*
453  * Test whether an RMID has a zero occupancy value on this cpu.
454  */
455 static void intel_cqm_stable(void *arg)
456 {
457         struct cqm_rmid_entry *entry;
458
459         list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
460                 if (entry->state != RMID_AVAILABLE)
461                         break;
462
463                 if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
464                         entry->state = RMID_DIRTY;
465         }
466 }
467
468 /*
469  * If we have group events waiting for an RMID that don't conflict with
470  * events already running, assign @rmid.
471  */
472 static bool intel_cqm_sched_in_event(u32 rmid)
473 {
474         struct perf_event *leader, *event;
475
476         lockdep_assert_held(&cache_mutex);
477
478         leader = list_first_entry(&cache_groups, struct perf_event,
479                                   hw.cqm_groups_entry);
480         event = leader;
481
482         list_for_each_entry_continue(event, &cache_groups,
483                                      hw.cqm_groups_entry) {
484                 if (__rmid_valid(event->hw.cqm_rmid))
485                         continue;
486
487                 if (__conflict_event(event, leader))
488                         continue;
489
490                 intel_cqm_xchg_rmid(event, rmid);
491                 return true;
492         }
493
494         return false;
495 }
496
497 /*
498  * Initially use this constant for both the limbo queue time and the
499  * rotation timer interval, pmu::hrtimer_interval_ms.
500  *
501  * They don't need to be the same, but the two are related since if you
502  * rotate faster than you recycle RMIDs, you may run out of available
503  * RMIDs.
504  */
505 #define RMID_DEFAULT_QUEUE_TIME 250     /* ms */
506
507 static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
508
509 /*
510  * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
511  * @nr_available: number of freeable RMIDs on the limbo list
512  *
513  * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
514  * cachelines are tagged with those RMIDs. After this we can reuse them
515  * and know that the current set of active RMIDs is stable.
516  *
517  * Return %true or %false depending on whether stabilization needs to be
518  * reattempted.
519  *
520  * If we return %true then @nr_available is updated to indicate the
521  * number of RMIDs on the limbo list that have been queued for the
522  * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
523  * are above __intel_cqm_threshold.
524  */
525 static bool intel_cqm_rmid_stabilize(unsigned int *available)
526 {
527         struct cqm_rmid_entry *entry, *tmp;
528
529         lockdep_assert_held(&cache_mutex);
530
531         *available = 0;
532         list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
533                 unsigned long min_queue_time;
534                 unsigned long now = jiffies;
535
536                 /*
537                  * We hold RMIDs placed into limbo for a minimum queue
538                  * time. Before the minimum queue time has elapsed we do
539                  * not recycle RMIDs.
540                  *
541                  * The reasoning is that until a sufficient time has
542                  * passed since we stopped using an RMID, any RMID
543                  * placed onto the limbo list will likely still have
544                  * data tagged in the cache, which means we'll probably
545                  * fail to recycle it anyway.
546                  *
547                  * We can save ourselves an expensive IPI by skipping
548                  * any RMIDs that have not been queued for the minimum
549                  * time.
550                  */
551                 min_queue_time = entry->queue_time +
552                         msecs_to_jiffies(__rmid_queue_time_ms);
553
554                 if (time_after(min_queue_time, now))
555                         break;
556
557                 entry->state = RMID_AVAILABLE;
558                 (*available)++;
559         }
560
561         /*
562          * Fast return if none of the RMIDs on the limbo list have been
563          * sitting on the queue for the minimum queue time.
564          */
565         if (!*available)
566                 return false;
567
568         /*
569          * Test whether an RMID is free for each package.
570          */
571         on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
572
573         list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
574                 /*
575                  * Exhausted all RMIDs that have waited min queue time.
576                  */
577                 if (entry->state == RMID_YOUNG)
578                         break;
579
580                 if (entry->state == RMID_DIRTY)
581                         continue;
582
583                 list_del(&entry->list); /* remove from limbo */
584
585                 /*
586                  * The rotation RMID gets priority if it's
587                  * currently invalid. In which case, skip adding
588                  * the RMID to the the free lru.
589                  */
590                 if (!__rmid_valid(intel_cqm_rotation_rmid)) {
591                         intel_cqm_rotation_rmid = entry->rmid;
592                         continue;
593                 }
594
595                 /*
596                  * If we have groups waiting for RMIDs, hand
597                  * them one now provided they don't conflict.
598                  */
599                 if (intel_cqm_sched_in_event(entry->rmid))
600                         continue;
601
602                 /*
603                  * Otherwise place it onto the free list.
604                  */
605                 list_add_tail(&entry->list, &cqm_rmid_free_lru);
606         }
607
608
609         return __rmid_valid(intel_cqm_rotation_rmid);
610 }
611
612 /*
613  * Pick a victim group and move it to the tail of the group list.
614  * @next: The first group without an RMID
615  */
616 static void __intel_cqm_pick_and_rotate(struct perf_event *next)
617 {
618         struct perf_event *rotor;
619         u32 rmid;
620
621         lockdep_assert_held(&cache_mutex);
622
623         rotor = list_first_entry(&cache_groups, struct perf_event,
624                                  hw.cqm_groups_entry);
625
626         /*
627          * The group at the front of the list should always have a valid
628          * RMID. If it doesn't then no groups have RMIDs assigned and we
629          * don't need to rotate the list.
630          */
631         if (next == rotor)
632                 return;
633
634         rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
635         __put_rmid(rmid);
636
637         list_rotate_left(&cache_groups);
638 }
639
640 /*
641  * Deallocate the RMIDs from any events that conflict with @event, and
642  * place them on the back of the group list.
643  */
644 static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
645 {
646         struct perf_event *group, *g;
647         u32 rmid;
648
649         lockdep_assert_held(&cache_mutex);
650
651         list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
652                 if (group == event)
653                         continue;
654
655                 rmid = group->hw.cqm_rmid;
656
657                 /*
658                  * Skip events that don't have a valid RMID.
659                  */
660                 if (!__rmid_valid(rmid))
661                         continue;
662
663                 /*
664                  * No conflict? No problem! Leave the event alone.
665                  */
666                 if (!__conflict_event(group, event))
667                         continue;
668
669                 intel_cqm_xchg_rmid(group, INVALID_RMID);
670                 __put_rmid(rmid);
671         }
672 }
673
674 /*
675  * Attempt to rotate the groups and assign new RMIDs.
676  *
677  * We rotate for two reasons,
678  *   1. To handle the scheduling of conflicting events
679  *   2. To recycle RMIDs
680  *
681  * Rotating RMIDs is complicated because the hardware doesn't give us
682  * any clues.
683  *
684  * There's problems with the hardware interface; when you change the
685  * task:RMID map cachelines retain their 'old' tags, giving a skewed
686  * picture. In order to work around this, we must always keep one free
687  * RMID - intel_cqm_rotation_rmid.
688  *
689  * Rotation works by taking away an RMID from a group (the old RMID),
690  * and assigning the free RMID to another group (the new RMID). We must
691  * then wait for the old RMID to not be used (no cachelines tagged).
692  * This ensure that all cachelines are tagged with 'active' RMIDs. At
693  * this point we can start reading values for the new RMID and treat the
694  * old RMID as the free RMID for the next rotation.
695  *
696  * Return %true or %false depending on whether we did any rotating.
697  */
698 static bool __intel_cqm_rmid_rotate(void)
699 {
700         struct perf_event *group, *start = NULL;
701         unsigned int threshold_limit;
702         unsigned int nr_needed = 0;
703         unsigned int nr_available;
704         bool rotated = false;
705
706         mutex_lock(&cache_mutex);
707
708 again:
709         /*
710          * Fast path through this function if there are no groups and no
711          * RMIDs that need cleaning.
712          */
713         if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
714                 goto out;
715
716         list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
717                 if (!__rmid_valid(group->hw.cqm_rmid)) {
718                         if (!start)
719                                 start = group;
720                         nr_needed++;
721                 }
722         }
723
724         /*
725          * We have some event groups, but they all have RMIDs assigned
726          * and no RMIDs need cleaning.
727          */
728         if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
729                 goto out;
730
731         if (!nr_needed)
732                 goto stabilize;
733
734         /*
735          * We have more event groups without RMIDs than available RMIDs,
736          * or we have event groups that conflict with the ones currently
737          * scheduled.
738          *
739          * We force deallocate the rmid of the group at the head of
740          * cache_groups. The first event group without an RMID then gets
741          * assigned intel_cqm_rotation_rmid. This ensures we always make
742          * forward progress.
743          *
744          * Rotate the cache_groups list so the previous head is now the
745          * tail.
746          */
747         __intel_cqm_pick_and_rotate(start);
748
749         /*
750          * If the rotation is going to succeed, reduce the threshold so
751          * that we don't needlessly reuse dirty RMIDs.
752          */
753         if (__rmid_valid(intel_cqm_rotation_rmid)) {
754                 intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
755                 intel_cqm_rotation_rmid = __get_rmid();
756
757                 intel_cqm_sched_out_conflicting_events(start);
758
759                 if (__intel_cqm_threshold)
760                         __intel_cqm_threshold--;
761         }
762
763         rotated = true;
764
765 stabilize:
766         /*
767          * We now need to stablize the RMID we freed above (if any) to
768          * ensure that the next time we rotate we have an RMID with zero
769          * occupancy value.
770          *
771          * Alternatively, if we didn't need to perform any rotation,
772          * we'll have a bunch of RMIDs in limbo that need stabilizing.
773          */
774         threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
775
776         while (intel_cqm_rmid_stabilize(&nr_available) &&
777                __intel_cqm_threshold < threshold_limit) {
778                 unsigned int steal_limit;
779
780                 /*
781                  * Don't spin if nobody is actively waiting for an RMID,
782                  * the rotation worker will be kicked as soon as an
783                  * event needs an RMID anyway.
784                  */
785                 if (!nr_needed)
786                         break;
787
788                 /* Allow max 25% of RMIDs to be in limbo. */
789                 steal_limit = (cqm_max_rmid + 1) / 4;
790
791                 /*
792                  * We failed to stabilize any RMIDs so our rotation
793                  * logic is now stuck. In order to make forward progress
794                  * we have a few options:
795                  *
796                  *   1. rotate ("steal") another RMID
797                  *   2. increase the threshold
798                  *   3. do nothing
799                  *
800                  * We do both of 1. and 2. until we hit the steal limit.
801                  *
802                  * The steal limit prevents all RMIDs ending up on the
803                  * limbo list. This can happen if every RMID has a
804                  * non-zero occupancy above threshold_limit, and the
805                  * occupancy values aren't dropping fast enough.
806                  *
807                  * Note that there is prioritisation at work here - we'd
808                  * rather increase the number of RMIDs on the limbo list
809                  * than increase the threshold, because increasing the
810                  * threshold skews the event data (because we reuse
811                  * dirty RMIDs) - threshold bumps are a last resort.
812                  */
813                 if (nr_available < steal_limit)
814                         goto again;
815
816                 __intel_cqm_threshold++;
817         }
818
819 out:
820         mutex_unlock(&cache_mutex);
821         return rotated;
822 }
823
824 static void intel_cqm_rmid_rotate(struct work_struct *work);
825
826 static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
827
828 static struct pmu intel_cqm_pmu;
829
830 static void intel_cqm_rmid_rotate(struct work_struct *work)
831 {
832         unsigned long delay;
833
834         __intel_cqm_rmid_rotate();
835
836         delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
837         schedule_delayed_work(&intel_cqm_rmid_work, delay);
838 }
839
840 /*
841  * Find a group and setup RMID.
842  *
843  * If we're part of a group, we use the group's RMID.
844  */
845 static void intel_cqm_setup_event(struct perf_event *event,
846                                   struct perf_event **group)
847 {
848         struct perf_event *iter;
849         bool conflict = false;
850         u32 rmid;
851
852         list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
853                 rmid = iter->hw.cqm_rmid;
854
855                 if (__match_event(iter, event)) {
856                         /* All tasks in a group share an RMID */
857                         event->hw.cqm_rmid = rmid;
858                         *group = iter;
859                         return;
860                 }
861
862                 /*
863                  * We only care about conflicts for events that are
864                  * actually scheduled in (and hence have a valid RMID).
865                  */
866                 if (__conflict_event(iter, event) && __rmid_valid(rmid))
867                         conflict = true;
868         }
869
870         if (conflict)
871                 rmid = INVALID_RMID;
872         else
873                 rmid = __get_rmid();
874
875         event->hw.cqm_rmid = rmid;
876 }
877
878 static void intel_cqm_event_read(struct perf_event *event)
879 {
880         unsigned long flags;
881         u32 rmid;
882         u64 val;
883
884         /*
885          * Task events are handled by intel_cqm_event_count().
886          */
887         if (event->cpu == -1)
888                 return;
889
890         raw_spin_lock_irqsave(&cache_lock, flags);
891         rmid = event->hw.cqm_rmid;
892
893         if (!__rmid_valid(rmid))
894                 goto out;
895
896         val = __rmid_read(rmid);
897
898         /*
899          * Ignore this reading on error states and do not update the value.
900          */
901         if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
902                 goto out;
903
904         local64_set(&event->count, val);
905 out:
906         raw_spin_unlock_irqrestore(&cache_lock, flags);
907 }
908
909 static void __intel_cqm_event_count(void *info)
910 {
911         struct rmid_read *rr = info;
912         u64 val;
913
914         val = __rmid_read(rr->rmid);
915
916         if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
917                 return;
918
919         atomic64_add(val, &rr->value);
920 }
921
922 static inline bool cqm_group_leader(struct perf_event *event)
923 {
924         return !list_empty(&event->hw.cqm_groups_entry);
925 }
926
927 static u64 intel_cqm_event_count(struct perf_event *event)
928 {
929         unsigned long flags;
930         struct rmid_read rr = {
931                 .value = ATOMIC64_INIT(0),
932         };
933
934         /*
935          * We only need to worry about task events. System-wide events
936          * are handled like usual, i.e. entirely with
937          * intel_cqm_event_read().
938          */
939         if (event->cpu != -1)
940                 return __perf_event_count(event);
941
942         /*
943          * Only the group leader gets to report values. This stops us
944          * reporting duplicate values to userspace, and gives us a clear
945          * rule for which task gets to report the values.
946          *
947          * Note that it is impossible to attribute these values to
948          * specific packages - we forfeit that ability when we create
949          * task events.
950          */
951         if (!cqm_group_leader(event))
952                 return 0;
953
954         /*
955          * Getting up-to-date values requires an SMP IPI which is not
956          * possible if we're being called in interrupt context. Return
957          * the cached values instead.
958          */
959         if (unlikely(in_interrupt()))
960                 goto out;
961
962         /*
963          * Notice that we don't perform the reading of an RMID
964          * atomically, because we can't hold a spin lock across the
965          * IPIs.
966          *
967          * Speculatively perform the read, since @event might be
968          * assigned a different (possibly invalid) RMID while we're
969          * busying performing the IPI calls. It's therefore necessary to
970          * check @event's RMID afterwards, and if it has changed,
971          * discard the result of the read.
972          */
973         rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
974
975         if (!__rmid_valid(rr.rmid))
976                 goto out;
977
978         on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
979
980         raw_spin_lock_irqsave(&cache_lock, flags);
981         if (event->hw.cqm_rmid == rr.rmid)
982                 local64_set(&event->count, atomic64_read(&rr.value));
983         raw_spin_unlock_irqrestore(&cache_lock, flags);
984 out:
985         return __perf_event_count(event);
986 }
987
988 static void intel_cqm_event_start(struct perf_event *event, int mode)
989 {
990         struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
991         u32 rmid = event->hw.cqm_rmid;
992
993         if (!(event->hw.cqm_state & PERF_HES_STOPPED))
994                 return;
995
996         event->hw.cqm_state &= ~PERF_HES_STOPPED;
997
998         if (state->rmid_usecnt++) {
999                 if (!WARN_ON_ONCE(state->rmid != rmid))
1000                         return;
1001         } else {
1002                 WARN_ON_ONCE(state->rmid);
1003         }
1004
1005         state->rmid = rmid;
1006         wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
1007 }
1008
1009 static void intel_cqm_event_stop(struct perf_event *event, int mode)
1010 {
1011         struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1012
1013         if (event->hw.cqm_state & PERF_HES_STOPPED)
1014                 return;
1015
1016         event->hw.cqm_state |= PERF_HES_STOPPED;
1017
1018         intel_cqm_event_read(event);
1019
1020         if (!--state->rmid_usecnt) {
1021                 state->rmid = 0;
1022                 wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
1023         } else {
1024                 WARN_ON_ONCE(!state->rmid);
1025         }
1026 }
1027
1028 static int intel_cqm_event_add(struct perf_event *event, int mode)
1029 {
1030         unsigned long flags;
1031         u32 rmid;
1032
1033         raw_spin_lock_irqsave(&cache_lock, flags);
1034
1035         event->hw.cqm_state = PERF_HES_STOPPED;
1036         rmid = event->hw.cqm_rmid;
1037
1038         if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1039                 intel_cqm_event_start(event, mode);
1040
1041         raw_spin_unlock_irqrestore(&cache_lock, flags);
1042
1043         return 0;
1044 }
1045
1046 static void intel_cqm_event_destroy(struct perf_event *event)
1047 {
1048         struct perf_event *group_other = NULL;
1049
1050         mutex_lock(&cache_mutex);
1051
1052         /*
1053          * If there's another event in this group...
1054          */
1055         if (!list_empty(&event->hw.cqm_group_entry)) {
1056                 group_other = list_first_entry(&event->hw.cqm_group_entry,
1057                                                struct perf_event,
1058                                                hw.cqm_group_entry);
1059                 list_del(&event->hw.cqm_group_entry);
1060         }
1061
1062         /*
1063          * And we're the group leader..
1064          */
1065         if (cqm_group_leader(event)) {
1066                 /*
1067                  * If there was a group_other, make that leader, otherwise
1068                  * destroy the group and return the RMID.
1069                  */
1070                 if (group_other) {
1071                         list_replace(&event->hw.cqm_groups_entry,
1072                                      &group_other->hw.cqm_groups_entry);
1073                 } else {
1074                         u32 rmid = event->hw.cqm_rmid;
1075
1076                         if (__rmid_valid(rmid))
1077                                 __put_rmid(rmid);
1078                         list_del(&event->hw.cqm_groups_entry);
1079                 }
1080         }
1081
1082         mutex_unlock(&cache_mutex);
1083 }
1084
1085 static int intel_cqm_event_init(struct perf_event *event)
1086 {
1087         struct perf_event *group = NULL;
1088         bool rotate = false;
1089
1090         if (event->attr.type != intel_cqm_pmu.type)
1091                 return -ENOENT;
1092
1093         if (event->attr.config & ~QOS_EVENT_MASK)
1094                 return -EINVAL;
1095
1096         /* unsupported modes and filters */
1097         if (event->attr.exclude_user   ||
1098             event->attr.exclude_kernel ||
1099             event->attr.exclude_hv     ||
1100             event->attr.exclude_idle   ||
1101             event->attr.exclude_host   ||
1102             event->attr.exclude_guest  ||
1103             event->attr.sample_period) /* no sampling */
1104                 return -EINVAL;
1105
1106         INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1107         INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1108
1109         event->destroy = intel_cqm_event_destroy;
1110
1111         mutex_lock(&cache_mutex);
1112
1113         /* Will also set rmid */
1114         intel_cqm_setup_event(event, &group);
1115
1116         if (group) {
1117                 list_add_tail(&event->hw.cqm_group_entry,
1118                               &group->hw.cqm_group_entry);
1119         } else {
1120                 list_add_tail(&event->hw.cqm_groups_entry,
1121                               &cache_groups);
1122
1123                 /*
1124                  * All RMIDs are either in use or have recently been
1125                  * used. Kick the rotation worker to clean/free some.
1126                  *
1127                  * We only do this for the group leader, rather than for
1128                  * every event in a group to save on needless work.
1129                  */
1130                 if (!__rmid_valid(event->hw.cqm_rmid))
1131                         rotate = true;
1132         }
1133
1134         mutex_unlock(&cache_mutex);
1135
1136         if (rotate)
1137                 schedule_delayed_work(&intel_cqm_rmid_work, 0);
1138
1139         return 0;
1140 }
1141
1142 EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1143 EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1144 EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1145 EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1146 EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1147
1148 static struct attribute *intel_cqm_events_attr[] = {
1149         EVENT_PTR(intel_cqm_llc),
1150         EVENT_PTR(intel_cqm_llc_pkg),
1151         EVENT_PTR(intel_cqm_llc_unit),
1152         EVENT_PTR(intel_cqm_llc_scale),
1153         EVENT_PTR(intel_cqm_llc_snapshot),
1154         NULL,
1155 };
1156
1157 static struct attribute_group intel_cqm_events_group = {
1158         .name = "events",
1159         .attrs = intel_cqm_events_attr,
1160 };
1161
1162 PMU_FORMAT_ATTR(event, "config:0-7");
1163 static struct attribute *intel_cqm_formats_attr[] = {
1164         &format_attr_event.attr,
1165         NULL,
1166 };
1167
1168 static struct attribute_group intel_cqm_format_group = {
1169         .name = "format",
1170         .attrs = intel_cqm_formats_attr,
1171 };
1172
1173 static ssize_t
1174 max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1175                            char *page)
1176 {
1177         ssize_t rv;
1178
1179         mutex_lock(&cache_mutex);
1180         rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1181         mutex_unlock(&cache_mutex);
1182
1183         return rv;
1184 }
1185
1186 static ssize_t
1187 max_recycle_threshold_store(struct device *dev,
1188                             struct device_attribute *attr,
1189                             const char *buf, size_t count)
1190 {
1191         unsigned int bytes, cachelines;
1192         int ret;
1193
1194         ret = kstrtouint(buf, 0, &bytes);
1195         if (ret)
1196                 return ret;
1197
1198         mutex_lock(&cache_mutex);
1199
1200         __intel_cqm_max_threshold = bytes;
1201         cachelines = bytes / cqm_l3_scale;
1202
1203         /*
1204          * The new maximum takes effect immediately.
1205          */
1206         if (__intel_cqm_threshold > cachelines)
1207                 __intel_cqm_threshold = cachelines;
1208
1209         mutex_unlock(&cache_mutex);
1210
1211         return count;
1212 }
1213
1214 static DEVICE_ATTR_RW(max_recycle_threshold);
1215
1216 static struct attribute *intel_cqm_attrs[] = {
1217         &dev_attr_max_recycle_threshold.attr,
1218         NULL,
1219 };
1220
1221 static const struct attribute_group intel_cqm_group = {
1222         .attrs = intel_cqm_attrs,
1223 };
1224
1225 static const struct attribute_group *intel_cqm_attr_groups[] = {
1226         &intel_cqm_events_group,
1227         &intel_cqm_format_group,
1228         &intel_cqm_group,
1229         NULL,
1230 };
1231
1232 static struct pmu intel_cqm_pmu = {
1233         .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1234         .attr_groups         = intel_cqm_attr_groups,
1235         .task_ctx_nr         = perf_sw_context,
1236         .event_init          = intel_cqm_event_init,
1237         .add                 = intel_cqm_event_add,
1238         .del                 = intel_cqm_event_stop,
1239         .start               = intel_cqm_event_start,
1240         .stop                = intel_cqm_event_stop,
1241         .read                = intel_cqm_event_read,
1242         .count               = intel_cqm_event_count,
1243 };
1244
1245 static inline void cqm_pick_event_reader(int cpu)
1246 {
1247         int phys_id = topology_physical_package_id(cpu);
1248         int i;
1249
1250         for_each_cpu(i, &cqm_cpumask) {
1251                 if (phys_id == topology_physical_package_id(i))
1252                         return; /* already got reader for this socket */
1253         }
1254
1255         cpumask_set_cpu(cpu, &cqm_cpumask);
1256 }
1257
1258 static void intel_cqm_cpu_starting(unsigned int cpu)
1259 {
1260         struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
1261         struct cpuinfo_x86 *c = &cpu_data(cpu);
1262
1263         state->rmid = 0;
1264         state->closid = 0;
1265         state->rmid_usecnt = 0;
1266
1267         WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1268         WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1269 }
1270
1271 static void intel_cqm_cpu_exit(unsigned int cpu)
1272 {
1273         int phys_id = topology_physical_package_id(cpu);
1274         int i;
1275
1276         /*
1277          * Is @cpu a designated cqm reader?
1278          */
1279         if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1280                 return;
1281
1282         for_each_online_cpu(i) {
1283                 if (i == cpu)
1284                         continue;
1285
1286                 if (phys_id == topology_physical_package_id(i)) {
1287                         cpumask_set_cpu(i, &cqm_cpumask);
1288                         break;
1289                 }
1290         }
1291 }
1292
1293 static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1294                                   unsigned long action, void *hcpu)
1295 {
1296         unsigned int cpu  = (unsigned long)hcpu;
1297
1298         switch (action & ~CPU_TASKS_FROZEN) {
1299         case CPU_DOWN_PREPARE:
1300                 intel_cqm_cpu_exit(cpu);
1301                 break;
1302         case CPU_STARTING:
1303                 intel_cqm_cpu_starting(cpu);
1304                 cqm_pick_event_reader(cpu);
1305                 break;
1306         }
1307
1308         return NOTIFY_OK;
1309 }
1310
1311 static const struct x86_cpu_id intel_cqm_match[] = {
1312         { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1313         {}
1314 };
1315
1316 static int __init intel_cqm_init(void)
1317 {
1318         char *str, scale[20];
1319         int i, cpu, ret;
1320
1321         if (!x86_match_cpu(intel_cqm_match))
1322                 return -ENODEV;
1323
1324         cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1325
1326         /*
1327          * It's possible that not all resources support the same number
1328          * of RMIDs. Instead of making scheduling much more complicated
1329          * (where we have to match a task's RMID to a cpu that supports
1330          * that many RMIDs) just find the minimum RMIDs supported across
1331          * all cpus.
1332          *
1333          * Also, check that the scales match on all cpus.
1334          */
1335         cpu_notifier_register_begin();
1336
1337         for_each_online_cpu(cpu) {
1338                 struct cpuinfo_x86 *c = &cpu_data(cpu);
1339
1340                 if (c->x86_cache_max_rmid < cqm_max_rmid)
1341                         cqm_max_rmid = c->x86_cache_max_rmid;
1342
1343                 if (c->x86_cache_occ_scale != cqm_l3_scale) {
1344                         pr_err("Multiple LLC scale values, disabling\n");
1345                         ret = -EINVAL;
1346                         goto out;
1347                 }
1348         }
1349
1350         /*
1351          * A reasonable upper limit on the max threshold is the number
1352          * of lines tagged per RMID if all RMIDs have the same number of
1353          * lines tagged in the LLC.
1354          *
1355          * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1356          */
1357         __intel_cqm_max_threshold =
1358                 boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1359
1360         snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1361         str = kstrdup(scale, GFP_KERNEL);
1362         if (!str) {
1363                 ret = -ENOMEM;
1364                 goto out;
1365         }
1366
1367         event_attr_intel_cqm_llc_scale.event_str = str;
1368
1369         ret = intel_cqm_setup_rmid_cache();
1370         if (ret)
1371                 goto out;
1372
1373         for_each_online_cpu(i) {
1374                 intel_cqm_cpu_starting(i);
1375                 cqm_pick_event_reader(i);
1376         }
1377
1378         __perf_cpu_notifier(intel_cqm_cpu_notifier);
1379
1380         ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1381         if (ret)
1382                 pr_err("Intel CQM perf registration failed: %d\n", ret);
1383         else
1384                 pr_info("Intel CQM monitoring enabled\n");
1385
1386 out:
1387         cpu_notifier_register_done();
1388
1389         return ret;
1390 }
1391 device_initcall(intel_cqm_init);