Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / arch / x86 / crypto / sha-mb / sha1_mb.c
1 /*
2  * Multi buffer SHA1 algorithm Glue Code
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  *  Copyright(c) 2014 Intel Corporation.
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of version 2 of the GNU General Public License as
13  *  published by the Free Software Foundation.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  *  Contact Information:
21  *      Tim Chen <tim.c.chen@linux.intel.com>
22  *
23  *  BSD LICENSE
24  *
25  *  Copyright(c) 2014 Intel Corporation.
26  *
27  *  Redistribution and use in source and binary forms, with or without
28  *  modification, are permitted provided that the following conditions
29  *  are met:
30  *
31  *    * Redistributions of source code must retain the above copyright
32  *      notice, this list of conditions and the following disclaimer.
33  *    * Redistributions in binary form must reproduce the above copyright
34  *      notice, this list of conditions and the following disclaimer in
35  *      the documentation and/or other materials provided with the
36  *      distribution.
37  *    * Neither the name of Intel Corporation nor the names of its
38  *      contributors may be used to endorse or promote products derived
39  *      from this software without specific prior written permission.
40  *
41  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44  *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45  *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46  *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47  *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48  *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49  *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
52  */
53
54 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
55
56 #include <crypto/internal/hash.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/mm.h>
60 #include <linux/cryptohash.h>
61 #include <linux/types.h>
62 #include <linux/list.h>
63 #include <crypto/scatterwalk.h>
64 #include <crypto/sha.h>
65 #include <crypto/mcryptd.h>
66 #include <crypto/crypto_wq.h>
67 #include <asm/byteorder.h>
68 #include <linux/hardirq.h>
69 #include <asm/fpu/api.h>
70 #include "sha_mb_ctx.h"
71
72 #define FLUSH_INTERVAL 1000 /* in usec */
73
74 static struct mcryptd_alg_state sha1_mb_alg_state;
75
76 struct sha1_mb_ctx {
77         struct mcryptd_ahash *mcryptd_tfm;
78 };
79
80 static inline struct mcryptd_hash_request_ctx *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
81 {
82         struct shash_desc *desc;
83
84         desc = container_of((void *) hash_ctx, struct shash_desc, __ctx);
85         return container_of(desc, struct mcryptd_hash_request_ctx, desc);
86 }
87
88 static inline struct ahash_request *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
89 {
90         return container_of((void *) ctx, struct ahash_request, __ctx);
91 }
92
93 static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
94                                 struct shash_desc *desc)
95 {
96         rctx->flag = HASH_UPDATE;
97 }
98
99 static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
100 static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)(struct sha1_mb_mgr *state,
101                                                           struct job_sha1 *job);
102 static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)(struct sha1_mb_mgr *state);
103 static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)(struct sha1_mb_mgr *state);
104
105 inline void sha1_init_digest(uint32_t *digest)
106 {
107         static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0,
108                                         SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 };
109         memcpy(digest, initial_digest, sizeof(initial_digest));
110 }
111
112 inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
113                          uint32_t total_len)
114 {
115         uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);
116
117         memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
118         padblock[i] = 0x80;
119
120         i += ((SHA1_BLOCK_SIZE - 1) &
121               (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
122              + 1 + SHA1_PADLENGTHFIELD_SIZE;
123
124 #if SHA1_PADLENGTHFIELD_SIZE == 16
125         *((uint64_t *) &padblock[i - 16]) = 0;
126 #endif
127
128         *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
129
130         /* Number of extra blocks to hash */
131         return i >> SHA1_LOG2_BLOCK_SIZE;
132 }
133
134 static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr, struct sha1_hash_ctx *ctx)
135 {
136         while (ctx) {
137                 if (ctx->status & HASH_CTX_STS_COMPLETE) {
138                         /* Clear PROCESSING bit */
139                         ctx->status = HASH_CTX_STS_COMPLETE;
140                         return ctx;
141                 }
142
143                 /*
144                  * If the extra blocks are empty, begin hashing what remains
145                  * in the user's buffer.
146                  */
147                 if (ctx->partial_block_buffer_length == 0 &&
148                     ctx->incoming_buffer_length) {
149
150                         const void *buffer = ctx->incoming_buffer;
151                         uint32_t len = ctx->incoming_buffer_length;
152                         uint32_t copy_len;
153
154                         /*
155                          * Only entire blocks can be hashed.
156                          * Copy remainder to extra blocks buffer.
157                          */
158                         copy_len = len & (SHA1_BLOCK_SIZE-1);
159
160                         if (copy_len) {
161                                 len -= copy_len;
162                                 memcpy(ctx->partial_block_buffer,
163                                        ((const char *) buffer + len),
164                                        copy_len);
165                                 ctx->partial_block_buffer_length = copy_len;
166                         }
167
168                         ctx->incoming_buffer_length = 0;
169
170                         /* len should be a multiple of the block size now */
171                         assert((len % SHA1_BLOCK_SIZE) == 0);
172
173                         /* Set len to the number of blocks to be hashed */
174                         len >>= SHA1_LOG2_BLOCK_SIZE;
175
176                         if (len) {
177
178                                 ctx->job.buffer = (uint8_t *) buffer;
179                                 ctx->job.len = len;
180                                 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr,
181                                                                                   &ctx->job);
182                                 continue;
183                         }
184                 }
185
186                 /*
187                  * If the extra blocks are not empty, then we are
188                  * either on the last block(s) or we need more
189                  * user input before continuing.
190                  */
191                 if (ctx->status & HASH_CTX_STS_LAST) {
192
193                         uint8_t *buf = ctx->partial_block_buffer;
194                         uint32_t n_extra_blocks = sha1_pad(buf, ctx->total_length);
195
196                         ctx->status = (HASH_CTX_STS_PROCESSING |
197                                        HASH_CTX_STS_COMPLETE);
198                         ctx->job.buffer = buf;
199                         ctx->job.len = (uint32_t) n_extra_blocks;
200                         ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
201                         continue;
202                 }
203
204                 ctx->status = HASH_CTX_STS_IDLE;
205                 return ctx;
206         }
207
208         return NULL;
209 }
210
211 static struct sha1_hash_ctx *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
212 {
213         /*
214          * If get_comp_job returns NULL, there are no jobs complete.
215          * If get_comp_job returns a job, verify that it is safe to return to the user.
216          * If it is not ready, resubmit the job to finish processing.
217          * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
218          * Otherwise, all jobs currently being managed by the hash_ctx_mgr still need processing.
219          */
220         struct sha1_hash_ctx *ctx;
221
222         ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
223         return sha1_ctx_mgr_resubmit(mgr, ctx);
224 }
225
226 static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
227 {
228         sha1_job_mgr_init(&mgr->mgr);
229 }
230
231 static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
232                                           struct sha1_hash_ctx *ctx,
233                                           const void *buffer,
234                                           uint32_t len,
235                                           int flags)
236 {
237         if (flags & (~HASH_ENTIRE)) {
238                 /* User should not pass anything other than FIRST, UPDATE, or LAST */
239                 ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
240                 return ctx;
241         }
242
243         if (ctx->status & HASH_CTX_STS_PROCESSING) {
244                 /* Cannot submit to a currently processing job. */
245                 ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
246                 return ctx;
247         }
248
249         if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
250                 /* Cannot update a finished job. */
251                 ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
252                 return ctx;
253         }
254
255
256         if (flags & HASH_FIRST) {
257                 /* Init digest */
258                 sha1_init_digest(ctx->job.result_digest);
259
260                 /* Reset byte counter */
261                 ctx->total_length = 0;
262
263                 /* Clear extra blocks */
264                 ctx->partial_block_buffer_length = 0;
265         }
266
267         /* If we made it here, there were no errors during this call to submit */
268         ctx->error = HASH_CTX_ERROR_NONE;
269
270         /* Store buffer ptr info from user */
271         ctx->incoming_buffer = buffer;
272         ctx->incoming_buffer_length = len;
273
274         /* Store the user's request flags and mark this ctx as currently being processed. */
275         ctx->status = (flags & HASH_LAST) ?
276                         (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
277                         HASH_CTX_STS_PROCESSING;
278
279         /* Advance byte counter */
280         ctx->total_length += len;
281
282         /*
283          * If there is anything currently buffered in the extra blocks,
284          * append to it until it contains a whole block.
285          * Or if the user's buffer contains less than a whole block,
286          * append as much as possible to the extra block.
287          */
288         if ((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE)) {
289                 /* Compute how many bytes to copy from user buffer into extra block */
290                 uint32_t copy_len = SHA1_BLOCK_SIZE - ctx->partial_block_buffer_length;
291                 if (len < copy_len)
292                         copy_len = len;
293
294                 if (copy_len) {
295                         /* Copy and update relevant pointers and counters */
296                         memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
297                                 buffer, copy_len);
298
299                         ctx->partial_block_buffer_length += copy_len;
300                         ctx->incoming_buffer = (const void *)((const char *)buffer + copy_len);
301                         ctx->incoming_buffer_length = len - copy_len;
302                 }
303
304                 /* The extra block should never contain more than 1 block here */
305                 assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);
306
307                 /* If the extra block buffer contains exactly 1 block, it can be hashed. */
308                 if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
309                         ctx->partial_block_buffer_length = 0;
310
311                         ctx->job.buffer = ctx->partial_block_buffer;
312                         ctx->job.len = 1;
313                         ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
314                 }
315         }
316
317         return sha1_ctx_mgr_resubmit(mgr, ctx);
318 }
319
320 static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
321 {
322         struct sha1_hash_ctx *ctx;
323
324         while (1) {
325                 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);
326
327                 /* If flush returned 0, there are no more jobs in flight. */
328                 if (!ctx)
329                         return NULL;
330
331                 /*
332                  * If flush returned a job, resubmit the job to finish processing.
333                  */
334                 ctx = sha1_ctx_mgr_resubmit(mgr, ctx);
335
336                 /*
337                  * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
338                  * Otherwise, all jobs currently being managed by the sha1_ctx_mgr
339                  * still need processing. Loop.
340                  */
341                 if (ctx)
342                         return ctx;
343         }
344 }
345
346 static int sha1_mb_init(struct shash_desc *desc)
347 {
348         struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
349
350         hash_ctx_init(sctx);
351         sctx->job.result_digest[0] = SHA1_H0;
352         sctx->job.result_digest[1] = SHA1_H1;
353         sctx->job.result_digest[2] = SHA1_H2;
354         sctx->job.result_digest[3] = SHA1_H3;
355         sctx->job.result_digest[4] = SHA1_H4;
356         sctx->total_length = 0;
357         sctx->partial_block_buffer_length = 0;
358         sctx->status = HASH_CTX_STS_IDLE;
359
360         return 0;
361 }
362
363 static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
364 {
365         int     i;
366         struct  sha1_hash_ctx *sctx = shash_desc_ctx(&rctx->desc);
367         __be32  *dst = (__be32 *) rctx->out;
368
369         for (i = 0; i < 5; ++i)
370                 dst[i] = cpu_to_be32(sctx->job.result_digest[i]);
371
372         return 0;
373 }
374
375 static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
376                         struct mcryptd_alg_cstate *cstate, bool flush)
377 {
378         int     flag = HASH_UPDATE;
379         int     nbytes, err = 0;
380         struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
381         struct sha1_hash_ctx *sha_ctx;
382
383         /* more work ? */
384         while (!(rctx->flag & HASH_DONE)) {
385                 nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
386                 if (nbytes < 0) {
387                         err = nbytes;
388                         goto out;
389                 }
390                 /* check if the walk is done */
391                 if (crypto_ahash_walk_last(&rctx->walk)) {
392                         rctx->flag |= HASH_DONE;
393                         if (rctx->flag & HASH_FINAL)
394                                 flag |= HASH_LAST;
395
396                 }
397                 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(&rctx->desc);
398                 kernel_fpu_begin();
399                 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
400                 if (!sha_ctx) {
401                         if (flush)
402                                 sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
403                 }
404                 kernel_fpu_end();
405                 if (sha_ctx)
406                         rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
407                 else {
408                         rctx = NULL;
409                         goto out;
410                 }
411         }
412
413         /* copy the results */
414         if (rctx->flag & HASH_FINAL)
415                 sha1_mb_set_results(rctx);
416
417 out:
418         *ret_rctx = rctx;
419         return err;
420 }
421
422 static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
423                             struct mcryptd_alg_cstate *cstate,
424                             int err)
425 {
426         struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
427         struct sha1_hash_ctx *sha_ctx;
428         struct mcryptd_hash_request_ctx *req_ctx;
429         int ret;
430
431         /* remove from work list */
432         spin_lock(&cstate->work_lock);
433         list_del(&rctx->waiter);
434         spin_unlock(&cstate->work_lock);
435
436         if (irqs_disabled())
437                 rctx->complete(&req->base, err);
438         else {
439                 local_bh_disable();
440                 rctx->complete(&req->base, err);
441                 local_bh_enable();
442         }
443
444         /* check to see if there are other jobs that are done */
445         sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
446         while (sha_ctx) {
447                 req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
448                 ret = sha_finish_walk(&req_ctx, cstate, false);
449                 if (req_ctx) {
450                         spin_lock(&cstate->work_lock);
451                         list_del(&req_ctx->waiter);
452                         spin_unlock(&cstate->work_lock);
453
454                         req = cast_mcryptd_ctx_to_req(req_ctx);
455                         if (irqs_disabled())
456                                 req_ctx->complete(&req->base, ret);
457                         else {
458                                 local_bh_disable();
459                                 req_ctx->complete(&req->base, ret);
460                                 local_bh_enable();
461                         }
462                 }
463                 sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
464         }
465
466         return 0;
467 }
468
469 static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
470                              struct mcryptd_alg_cstate *cstate)
471 {
472         unsigned long next_flush;
473         unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
474
475         /* initialize tag */
476         rctx->tag.arrival = jiffies;    /* tag the arrival time */
477         rctx->tag.seq_num = cstate->next_seq_num++;
478         next_flush = rctx->tag.arrival + delay;
479         rctx->tag.expire = next_flush;
480
481         spin_lock(&cstate->work_lock);
482         list_add_tail(&rctx->waiter, &cstate->work_list);
483         spin_unlock(&cstate->work_lock);
484
485         mcryptd_arm_flusher(cstate, delay);
486 }
487
488 static int sha1_mb_update(struct shash_desc *desc, const u8 *data,
489                           unsigned int len)
490 {
491         struct mcryptd_hash_request_ctx *rctx =
492                         container_of(desc, struct mcryptd_hash_request_ctx, desc);
493         struct mcryptd_alg_cstate *cstate =
494                                 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
495
496         struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
497         struct sha1_hash_ctx *sha_ctx;
498         int ret = 0, nbytes;
499
500
501         /* sanity check */
502         if (rctx->tag.cpu != smp_processor_id()) {
503                 pr_err("mcryptd error: cpu clash\n");
504                 goto done;
505         }
506
507         /* need to init context */
508         req_ctx_init(rctx, desc);
509
510         nbytes = crypto_ahash_walk_first(req, &rctx->walk);
511
512         if (nbytes < 0) {
513                 ret = nbytes;
514                 goto done;
515         }
516
517         if (crypto_ahash_walk_last(&rctx->walk))
518                 rctx->flag |= HASH_DONE;
519
520         /* submit */
521         sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
522         sha1_mb_add_list(rctx, cstate);
523         kernel_fpu_begin();
524         sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, HASH_UPDATE);
525         kernel_fpu_end();
526
527         /* check if anything is returned */
528         if (!sha_ctx)
529                 return -EINPROGRESS;
530
531         if (sha_ctx->error) {
532                 ret = sha_ctx->error;
533                 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
534                 goto done;
535         }
536
537         rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
538         ret = sha_finish_walk(&rctx, cstate, false);
539
540         if (!rctx)
541                 return -EINPROGRESS;
542 done:
543         sha_complete_job(rctx, cstate, ret);
544         return ret;
545 }
546
547 static int sha1_mb_finup(struct shash_desc *desc, const u8 *data,
548                              unsigned int len, u8 *out)
549 {
550         struct mcryptd_hash_request_ctx *rctx =
551                         container_of(desc, struct mcryptd_hash_request_ctx, desc);
552         struct mcryptd_alg_cstate *cstate =
553                                 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
554
555         struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
556         struct sha1_hash_ctx *sha_ctx;
557         int ret = 0, flag = HASH_UPDATE, nbytes;
558
559         /* sanity check */
560         if (rctx->tag.cpu != smp_processor_id()) {
561                 pr_err("mcryptd error: cpu clash\n");
562                 goto done;
563         }
564
565         /* need to init context */
566         req_ctx_init(rctx, desc);
567
568         nbytes = crypto_ahash_walk_first(req, &rctx->walk);
569
570         if (nbytes < 0) {
571                 ret = nbytes;
572                 goto done;
573         }
574
575         if (crypto_ahash_walk_last(&rctx->walk)) {
576                 rctx->flag |= HASH_DONE;
577                 flag = HASH_LAST;
578         }
579         rctx->out = out;
580
581         /* submit */
582         rctx->flag |= HASH_FINAL;
583         sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
584         sha1_mb_add_list(rctx, cstate);
585
586         kernel_fpu_begin();
587         sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
588         kernel_fpu_end();
589
590         /* check if anything is returned */
591         if (!sha_ctx)
592                 return -EINPROGRESS;
593
594         if (sha_ctx->error) {
595                 ret = sha_ctx->error;
596                 goto done;
597         }
598
599         rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
600         ret = sha_finish_walk(&rctx, cstate, false);
601         if (!rctx)
602                 return -EINPROGRESS;
603 done:
604         sha_complete_job(rctx, cstate, ret);
605         return ret;
606 }
607
608 static int sha1_mb_final(struct shash_desc *desc, u8 *out)
609 {
610         struct mcryptd_hash_request_ctx *rctx =
611                         container_of(desc, struct mcryptd_hash_request_ctx, desc);
612         struct mcryptd_alg_cstate *cstate =
613                                 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
614
615         struct sha1_hash_ctx *sha_ctx;
616         int ret = 0;
617         u8 data;
618
619         /* sanity check */
620         if (rctx->tag.cpu != smp_processor_id()) {
621                 pr_err("mcryptd error: cpu clash\n");
622                 goto done;
623         }
624
625         /* need to init context */
626         req_ctx_init(rctx, desc);
627
628         rctx->out = out;
629         rctx->flag |= HASH_DONE | HASH_FINAL;
630
631         sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
632         /* flag HASH_FINAL and 0 data size */
633         sha1_mb_add_list(rctx, cstate);
634         kernel_fpu_begin();
635         sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0, HASH_LAST);
636         kernel_fpu_end();
637
638         /* check if anything is returned */
639         if (!sha_ctx)
640                 return -EINPROGRESS;
641
642         if (sha_ctx->error) {
643                 ret = sha_ctx->error;
644                 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
645                 goto done;
646         }
647
648         rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
649         ret = sha_finish_walk(&rctx, cstate, false);
650         if (!rctx)
651                 return -EINPROGRESS;
652 done:
653         sha_complete_job(rctx, cstate, ret);
654         return ret;
655 }
656
657 static int sha1_mb_export(struct shash_desc *desc, void *out)
658 {
659         struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
660
661         memcpy(out, sctx, sizeof(*sctx));
662
663         return 0;
664 }
665
666 static int sha1_mb_import(struct shash_desc *desc, const void *in)
667 {
668         struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
669
670         memcpy(sctx, in, sizeof(*sctx));
671
672         return 0;
673 }
674
675
676 static struct shash_alg sha1_mb_shash_alg = {
677         .digestsize     =       SHA1_DIGEST_SIZE,
678         .init           =       sha1_mb_init,
679         .update         =       sha1_mb_update,
680         .final          =       sha1_mb_final,
681         .finup          =       sha1_mb_finup,
682         .export         =       sha1_mb_export,
683         .import         =       sha1_mb_import,
684         .descsize       =       sizeof(struct sha1_hash_ctx),
685         .statesize      =       sizeof(struct sha1_hash_ctx),
686         .base           =       {
687                 .cra_name        = "__sha1-mb",
688                 .cra_driver_name = "__intel_sha1-mb",
689                 .cra_priority    = 100,
690                 /*
691                  * use ASYNC flag as some buffers in multi-buffer
692                  * algo may not have completed before hashing thread sleep
693                  */
694                 .cra_flags       = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_ASYNC |
695                                    CRYPTO_ALG_INTERNAL,
696                 .cra_blocksize   = SHA1_BLOCK_SIZE,
697                 .cra_module      = THIS_MODULE,
698                 .cra_list        = LIST_HEAD_INIT(sha1_mb_shash_alg.base.cra_list),
699         }
700 };
701
702 static int sha1_mb_async_init(struct ahash_request *req)
703 {
704         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
705         struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
706         struct ahash_request *mcryptd_req = ahash_request_ctx(req);
707         struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
708
709         memcpy(mcryptd_req, req, sizeof(*req));
710         ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
711         return crypto_ahash_init(mcryptd_req);
712 }
713
714 static int sha1_mb_async_update(struct ahash_request *req)
715 {
716         struct ahash_request *mcryptd_req = ahash_request_ctx(req);
717
718         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
719         struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
720         struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
721
722         memcpy(mcryptd_req, req, sizeof(*req));
723         ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
724         return crypto_ahash_update(mcryptd_req);
725 }
726
727 static int sha1_mb_async_finup(struct ahash_request *req)
728 {
729         struct ahash_request *mcryptd_req = ahash_request_ctx(req);
730
731         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
732         struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
733         struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
734
735         memcpy(mcryptd_req, req, sizeof(*req));
736         ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
737         return crypto_ahash_finup(mcryptd_req);
738 }
739
740 static int sha1_mb_async_final(struct ahash_request *req)
741 {
742         struct ahash_request *mcryptd_req = ahash_request_ctx(req);
743
744         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
745         struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
746         struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
747
748         memcpy(mcryptd_req, req, sizeof(*req));
749         ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
750         return crypto_ahash_final(mcryptd_req);
751 }
752
753 static int sha1_mb_async_digest(struct ahash_request *req)
754 {
755         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
756         struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
757         struct ahash_request *mcryptd_req = ahash_request_ctx(req);
758         struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
759
760         memcpy(mcryptd_req, req, sizeof(*req));
761         ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
762         return crypto_ahash_digest(mcryptd_req);
763 }
764
765 static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
766 {
767         struct mcryptd_ahash *mcryptd_tfm;
768         struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
769         struct mcryptd_hash_ctx *mctx;
770
771         mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb",
772                                           CRYPTO_ALG_INTERNAL,
773                                           CRYPTO_ALG_INTERNAL);
774         if (IS_ERR(mcryptd_tfm))
775                 return PTR_ERR(mcryptd_tfm);
776         mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
777         mctx->alg_state = &sha1_mb_alg_state;
778         ctx->mcryptd_tfm = mcryptd_tfm;
779         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
780                                  sizeof(struct ahash_request) +
781                                  crypto_ahash_reqsize(&mcryptd_tfm->base));
782
783         return 0;
784 }
785
786 static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
787 {
788         struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
789
790         mcryptd_free_ahash(ctx->mcryptd_tfm);
791 }
792
793 static struct ahash_alg sha1_mb_async_alg = {
794         .init           = sha1_mb_async_init,
795         .update         = sha1_mb_async_update,
796         .final          = sha1_mb_async_final,
797         .finup          = sha1_mb_async_finup,
798         .digest         = sha1_mb_async_digest,
799         .halg = {
800                 .digestsize     = SHA1_DIGEST_SIZE,
801                 .base = {
802                         .cra_name               = "sha1",
803                         .cra_driver_name        = "sha1_mb",
804                         .cra_priority           = 200,
805                         .cra_flags              = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
806                         .cra_blocksize          = SHA1_BLOCK_SIZE,
807                         .cra_type               = &crypto_ahash_type,
808                         .cra_module             = THIS_MODULE,
809                         .cra_list               = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
810                         .cra_init               = sha1_mb_async_init_tfm,
811                         .cra_exit               = sha1_mb_async_exit_tfm,
812                         .cra_ctxsize            = sizeof(struct sha1_mb_ctx),
813                         .cra_alignmask          = 0,
814                 },
815         },
816 };
817
818 static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
819 {
820         struct mcryptd_hash_request_ctx *rctx;
821         unsigned long cur_time;
822         unsigned long next_flush = 0;
823         struct sha1_hash_ctx *sha_ctx;
824
825
826         cur_time = jiffies;
827
828         while (!list_empty(&cstate->work_list)) {
829                 rctx = list_entry(cstate->work_list.next,
830                                 struct mcryptd_hash_request_ctx, waiter);
831                 if (time_before(cur_time, rctx->tag.expire))
832                         break;
833                 kernel_fpu_begin();
834                 sha_ctx = (struct sha1_hash_ctx *) sha1_ctx_mgr_flush(cstate->mgr);
835                 kernel_fpu_end();
836                 if (!sha_ctx) {
837                         pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
838                         break;
839                 }
840                 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
841                 sha_finish_walk(&rctx, cstate, true);
842                 sha_complete_job(rctx, cstate, 0);
843         }
844
845         if (!list_empty(&cstate->work_list)) {
846                 rctx = list_entry(cstate->work_list.next,
847                                 struct mcryptd_hash_request_ctx, waiter);
848                 /* get the hash context and then flush time */
849                 next_flush = rctx->tag.expire;
850                 mcryptd_arm_flusher(cstate, get_delay(next_flush));
851         }
852         return next_flush;
853 }
854
855 static int __init sha1_mb_mod_init(void)
856 {
857
858         int cpu;
859         int err;
860         struct mcryptd_alg_cstate *cpu_state;
861
862         /* check for dependent cpu features */
863         if (!boot_cpu_has(X86_FEATURE_AVX2) ||
864             !boot_cpu_has(X86_FEATURE_BMI2))
865                 return -ENODEV;
866
867         /* initialize multibuffer structures */
868         sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);
869
870         sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
871         sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
872         sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
873         sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;
874
875         if (!sha1_mb_alg_state.alg_cstate)
876                 return -ENOMEM;
877         for_each_possible_cpu(cpu) {
878                 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
879                 cpu_state->next_flush = 0;
880                 cpu_state->next_seq_num = 0;
881                 cpu_state->flusher_engaged = false;
882                 INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
883                 cpu_state->cpu = cpu;
884                 cpu_state->alg_state = &sha1_mb_alg_state;
885                 cpu_state->mgr = kzalloc(sizeof(struct sha1_ctx_mgr),
886                                         GFP_KERNEL);
887                 if (!cpu_state->mgr)
888                         goto err2;
889                 sha1_ctx_mgr_init(cpu_state->mgr);
890                 INIT_LIST_HEAD(&cpu_state->work_list);
891                 spin_lock_init(&cpu_state->work_lock);
892         }
893         sha1_mb_alg_state.flusher = &sha1_mb_flusher;
894
895         err = crypto_register_shash(&sha1_mb_shash_alg);
896         if (err)
897                 goto err2;
898         err = crypto_register_ahash(&sha1_mb_async_alg);
899         if (err)
900                 goto err1;
901
902
903         return 0;
904 err1:
905         crypto_unregister_shash(&sha1_mb_shash_alg);
906 err2:
907         for_each_possible_cpu(cpu) {
908                 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
909                 kfree(cpu_state->mgr);
910         }
911         free_percpu(sha1_mb_alg_state.alg_cstate);
912         return -ENODEV;
913 }
914
915 static void __exit sha1_mb_mod_fini(void)
916 {
917         int cpu;
918         struct mcryptd_alg_cstate *cpu_state;
919
920         crypto_unregister_ahash(&sha1_mb_async_alg);
921         crypto_unregister_shash(&sha1_mb_shash_alg);
922         for_each_possible_cpu(cpu) {
923                 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
924                 kfree(cpu_state->mgr);
925         }
926         free_percpu(sha1_mb_alg_state.alg_cstate);
927 }
928
929 module_init(sha1_mb_mod_init);
930 module_exit(sha1_mb_mod_fini);
931
932 MODULE_LICENSE("GPL");
933 MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");
934
935 MODULE_ALIAS_CRYPTO("sha1");