Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  */
16
17 #include <linux/smp.h>
18 #include <linux/ptrace.h>
19 #include <linux/slab.h>
20 #include <linux/thread_info.h>
21 #include <linux/uaccess.h>
22 #include <linux/mman.h>
23 #include <linux/types.h>
24 #include <linux/err.h>
25 #include <linux/prctl.h>
26 #include <linux/context_tracking.h>
27 #include <asm/cacheflush.h>
28 #include <asm/traps.h>
29 #include <asm/uaccess.h>
30 #include <asm/unaligned.h>
31 #include <arch/abi.h>
32 #include <arch/spr_def.h>
33 #include <arch/opcode.h>
34
35
36 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
37
38 #define signExtend17(val) sign_extend((val), 17)
39 #define TILE_X1_MASK (0xffffffffULL << 31)
40
41 enum mem_op {
42         MEMOP_NONE,
43         MEMOP_LOAD,
44         MEMOP_STORE,
45         MEMOP_LOAD_POSTINCR,
46         MEMOP_STORE_POSTINCR
47 };
48
49 static inline tilepro_bundle_bits set_BrOff_X1(tilepro_bundle_bits n,
50         s32 offset)
51 {
52         tilepro_bundle_bits result;
53
54         /* mask out the old offset */
55         tilepro_bundle_bits mask = create_BrOff_X1(-1);
56         result = n & (~mask);
57
58         /* or in the new offset */
59         result |= create_BrOff_X1(offset);
60
61         return result;
62 }
63
64 static inline tilepro_bundle_bits move_X1(tilepro_bundle_bits n, int dest,
65         int src)
66 {
67         tilepro_bundle_bits result;
68         tilepro_bundle_bits op;
69
70         result = n & (~TILE_X1_MASK);
71
72         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
73                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
74                 create_Dest_X1(dest) |
75                 create_SrcB_X1(TREG_ZERO) |
76                 create_SrcA_X1(src) ;
77
78         result |= op;
79         return result;
80 }
81
82 static inline tilepro_bundle_bits nop_X1(tilepro_bundle_bits n)
83 {
84         return move_X1(n, TREG_ZERO, TREG_ZERO);
85 }
86
87 static inline tilepro_bundle_bits addi_X1(
88         tilepro_bundle_bits n, int dest, int src, int imm)
89 {
90         n &= ~TILE_X1_MASK;
91
92         n |=  (create_SrcA_X1(src) |
93                create_Dest_X1(dest) |
94                create_Imm8_X1(imm) |
95                create_S_X1(0) |
96                create_Opcode_X1(IMM_0_OPCODE_X1) |
97                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
98
99         return n;
100 }
101
102 static tilepro_bundle_bits rewrite_load_store_unaligned(
103         struct single_step_state *state,
104         tilepro_bundle_bits bundle,
105         struct pt_regs *regs,
106         enum mem_op mem_op,
107         int size, int sign_ext)
108 {
109         unsigned char __user *addr;
110         int val_reg, addr_reg, err, val;
111         int align_ctl;
112
113         align_ctl = unaligned_fixup;
114         switch (task_thread_info(current)->align_ctl) {
115         case PR_UNALIGN_NOPRINT:
116                 align_ctl = 1;
117                 break;
118         case PR_UNALIGN_SIGBUS:
119                 align_ctl = 0;
120                 break;
121         }
122
123         /* Get address and value registers */
124         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
125                 addr_reg = get_SrcA_Y2(bundle);
126                 val_reg = get_SrcBDest_Y2(bundle);
127         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
128                 addr_reg = get_SrcA_X1(bundle);
129                 val_reg  = get_Dest_X1(bundle);
130         } else {
131                 addr_reg = get_SrcA_X1(bundle);
132                 val_reg  = get_SrcB_X1(bundle);
133         }
134
135         /*
136          * If registers are not GPRs, don't try to handle it.
137          *
138          * FIXME: we could handle non-GPR loads by getting the real value
139          * from memory, writing it to the single step buffer, using a
140          * temp_reg to hold a pointer to that memory, then executing that
141          * instruction and resetting temp_reg.  For non-GPR stores, it's a
142          * little trickier; we could use the single step buffer for that
143          * too, but we'd have to add some more state bits so that we could
144          * call back in here to copy that value to the real target.  For
145          * now, we just handle the simple case.
146          */
147         if ((val_reg >= PTREGS_NR_GPRS &&
148              (val_reg != TREG_ZERO ||
149               mem_op == MEMOP_LOAD ||
150               mem_op == MEMOP_LOAD_POSTINCR)) ||
151             addr_reg >= PTREGS_NR_GPRS)
152                 return bundle;
153
154         /* If it's aligned, don't handle it specially */
155         addr = (void __user *)regs->regs[addr_reg];
156         if (((unsigned long)addr % size) == 0)
157                 return bundle;
158
159         /*
160          * Return SIGBUS with the unaligned address, if requested.
161          * Note that we return SIGBUS even for completely invalid addresses
162          * as long as they are in fact unaligned; this matches what the
163          * tilepro hardware would be doing, if it could provide us with the
164          * actual bad address in an SPR, which it doesn't.
165          */
166         if (align_ctl == 0) {
167                 siginfo_t info = {
168                         .si_signo = SIGBUS,
169                         .si_code = BUS_ADRALN,
170                         .si_addr = addr
171                 };
172                 trace_unhandled_signal("unaligned trap", regs,
173                                        (unsigned long)addr, SIGBUS);
174                 force_sig_info(info.si_signo, &info, current);
175                 return (tilepro_bundle_bits) 0;
176         }
177
178         /* Handle unaligned load/store */
179         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
180                 unsigned short val_16;
181                 switch (size) {
182                 case 2:
183                         err = copy_from_user(&val_16, addr, sizeof(val_16));
184                         val = sign_ext ? ((short)val_16) : val_16;
185                         break;
186                 case 4:
187                         err = copy_from_user(&val, addr, sizeof(val));
188                         break;
189                 default:
190                         BUG();
191                 }
192                 if (err == 0) {
193                         state->update_reg = val_reg;
194                         state->update_value = val;
195                         state->update = 1;
196                 }
197         } else {
198                 unsigned short val_16;
199                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
200                 switch (size) {
201                 case 2:
202                         val_16 = val;
203                         err = copy_to_user(addr, &val_16, sizeof(val_16));
204                         break;
205                 case 4:
206                         err = copy_to_user(addr, &val, sizeof(val));
207                         break;
208                 default:
209                         BUG();
210                 }
211         }
212
213         if (err) {
214                 siginfo_t info = {
215                         .si_signo = SIGBUS,
216                         .si_code = BUS_ADRALN,
217                         .si_addr = addr
218                 };
219                 trace_unhandled_signal("bad address for unaligned fixup", regs,
220                                        (unsigned long)addr, SIGBUS);
221                 force_sig_info(info.si_signo, &info, current);
222                 return (tilepro_bundle_bits) 0;
223         }
224
225         if (unaligned_printk || unaligned_fixup_count == 0) {
226                 pr_info("Process %d/%s: PC %#lx: Fixup of unaligned %s at %#lx\n",
227                         current->pid, current->comm, regs->pc,
228                         mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR ?
229                         "load" : "store",
230                         (unsigned long)addr);
231                 if (!unaligned_printk) {
232 #define P pr_info
233 P("\n");
234 P("Unaligned fixups in the kernel will slow your application considerably.\n");
235 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
236 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
237 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
238 P("access will become a SIGBUS you can debug. No further warnings will be\n");
239 P("shown so as to avoid additional slowdown, but you can track the number\n");
240 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
241 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
242 P("\n");
243 #undef P
244                 }
245         }
246         ++unaligned_fixup_count;
247
248         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
249                 /* Convert the Y2 instruction to a prefetch. */
250                 bundle &= ~(create_SrcBDest_Y2(-1) |
251                             create_Opcode_Y2(-1));
252                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
253                            create_Opcode_Y2(LW_OPCODE_Y2));
254         /* Replace the load postincr with an addi */
255         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
256                 bundle = addi_X1(bundle, addr_reg, addr_reg,
257                                  get_Imm8_X1(bundle));
258         /* Replace the store postincr with an addi */
259         } else if (mem_op == MEMOP_STORE_POSTINCR) {
260                 bundle = addi_X1(bundle, addr_reg, addr_reg,
261                                  get_Dest_Imm8_X1(bundle));
262         } else {
263                 /* Convert the X1 instruction to a nop. */
264                 bundle &= ~(create_Opcode_X1(-1) |
265                             create_UnShOpcodeExtension_X1(-1) |
266                             create_UnOpcodeExtension_X1(-1));
267                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
268                            create_UnShOpcodeExtension_X1(
269                                    UN_0_SHUN_0_OPCODE_X1) |
270                            create_UnOpcodeExtension_X1(
271                                    NOP_UN_0_SHUN_0_OPCODE_X1));
272         }
273
274         return bundle;
275 }
276
277 /*
278  * Called after execve() has started the new image.  This allows us
279  * to reset the info state.  Note that the the mmap'ed memory, if there
280  * was any, has already been unmapped by the exec.
281  */
282 void single_step_execve(void)
283 {
284         struct thread_info *ti = current_thread_info();
285         kfree(ti->step_state);
286         ti->step_state = NULL;
287 }
288
289 /*
290  * single_step_once() - entry point when single stepping has been triggered.
291  * @regs: The machine register state
292  *
293  *  When we arrive at this routine via a trampoline, the single step
294  *  engine copies the executing bundle to the single step buffer.
295  *  If the instruction is a condition branch, then the target is
296  *  reset to one past the next instruction. If the instruction
297  *  sets the lr, then that is noted. If the instruction is a jump
298  *  or call, then the new target pc is preserved and the current
299  *  bundle instruction set to null.
300  *
301  *  The necessary post-single-step rewriting information is stored in
302  *  single_step_state->  We use data segment values because the
303  *  stack will be rewound when we run the rewritten single-stepped
304  *  instruction.
305  */
306 void single_step_once(struct pt_regs *regs)
307 {
308         extern tilepro_bundle_bits __single_step_ill_insn;
309         extern tilepro_bundle_bits __single_step_j_insn;
310         extern tilepro_bundle_bits __single_step_addli_insn;
311         extern tilepro_bundle_bits __single_step_auli_insn;
312         struct thread_info *info = (void *)current_thread_info();
313         struct single_step_state *state = info->step_state;
314         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
315         tilepro_bundle_bits __user *buffer, *pc;
316         tilepro_bundle_bits bundle;
317         int temp_reg;
318         int target_reg = TREG_LR;
319         int err;
320         enum mem_op mem_op = MEMOP_NONE;
321         int size = 0, sign_ext = 0;  /* happy compiler */
322         int align_ctl;
323
324         align_ctl = unaligned_fixup;
325         switch (task_thread_info(current)->align_ctl) {
326         case PR_UNALIGN_NOPRINT:
327                 align_ctl = 1;
328                 break;
329         case PR_UNALIGN_SIGBUS:
330                 align_ctl = 0;
331                 break;
332         }
333
334         asm(
335 "    .pushsection .rodata.single_step\n"
336 "    .align 8\n"
337 "    .globl    __single_step_ill_insn\n"
338 "__single_step_ill_insn:\n"
339 "    ill\n"
340 "    .globl    __single_step_addli_insn\n"
341 "__single_step_addli_insn:\n"
342 "    { nop; addli r0, zero, 0 }\n"
343 "    .globl    __single_step_auli_insn\n"
344 "__single_step_auli_insn:\n"
345 "    { nop; auli r0, r0, 0 }\n"
346 "    .globl    __single_step_j_insn\n"
347 "__single_step_j_insn:\n"
348 "    j .\n"
349 "    .popsection\n"
350         );
351
352         /*
353          * Enable interrupts here to allow touching userspace and the like.
354          * The callers expect this: do_trap() already has interrupts
355          * enabled, and do_work_pending() handles functions that enable
356          * interrupts internally.
357          */
358         local_irq_enable();
359
360         if (state == NULL) {
361                 /* allocate a page of writable, executable memory */
362                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
363                 if (state == NULL) {
364                         pr_err("Out of kernel memory trying to single-step\n");
365                         return;
366                 }
367
368                 /* allocate a cache line of writable, executable memory */
369                 buffer = (void __user *) vm_mmap(NULL, 0, 64,
370                                           PROT_EXEC | PROT_READ | PROT_WRITE,
371                                           MAP_PRIVATE | MAP_ANONYMOUS,
372                                           0);
373
374                 if (IS_ERR((void __force *)buffer)) {
375                         kfree(state);
376                         pr_err("Out of kernel pages trying to single-step\n");
377                         return;
378                 }
379
380                 state->buffer = buffer;
381                 state->is_enabled = 0;
382
383                 info->step_state = state;
384
385                 /* Validate our stored instruction patterns */
386                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
387                        ADDLI_OPCODE_X1);
388                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
389                        AULI_OPCODE_X1);
390                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
391                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
392                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
393         }
394
395         /*
396          * If we are returning from a syscall, we still haven't hit the
397          * "ill" for the swint1 instruction.  So back the PC up to be
398          * pointing at the swint1, but we'll actually return directly
399          * back to the "ill" so we come back in via SIGILL as if we
400          * had "executed" the swint1 without ever being in kernel space.
401          */
402         if (regs->faultnum == INT_SWINT_1)
403                 regs->pc -= 8;
404
405         pc = (tilepro_bundle_bits __user *)(regs->pc);
406         if (get_user(bundle, pc) != 0) {
407                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
408                 return;
409         }
410
411         /* We'll follow the instruction with 2 ill op bundles */
412         state->orig_pc = (unsigned long)pc;
413         state->next_pc = (unsigned long)(pc + 1);
414         state->branch_next_pc = 0;
415         state->update = 0;
416
417         if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
418                 /* two wide, check for control flow */
419                 int opcode = get_Opcode_X1(bundle);
420
421                 switch (opcode) {
422                 /* branches */
423                 case BRANCH_OPCODE_X1:
424                 {
425                         s32 offset = signExtend17(get_BrOff_X1(bundle));
426
427                         /*
428                          * For branches, we use a rewriting trick to let the
429                          * hardware evaluate whether the branch is taken or
430                          * untaken.  We record the target offset and then
431                          * rewrite the branch instruction to target 1 insn
432                          * ahead if the branch is taken.  We then follow the
433                          * rewritten branch with two bundles, each containing
434                          * an "ill" instruction. The supervisor examines the
435                          * pc after the single step code is executed, and if
436                          * the pc is the first ill instruction, then the
437                          * branch (if any) was not taken.  If the pc is the
438                          * second ill instruction, then the branch was
439                          * taken. The new pc is computed for these cases, and
440                          * inserted into the registers for the thread.  If
441                          * the pc is the start of the single step code, then
442                          * an exception or interrupt was taken before the
443                          * code started processing, and the same "original"
444                          * pc is restored.  This change, different from the
445                          * original implementation, has the advantage of
446                          * executing a single user instruction.
447                          */
448                         state->branch_next_pc = (unsigned long)(pc + offset);
449
450                         /* rewrite branch offset to go forward one bundle */
451                         bundle = set_BrOff_X1(bundle, 2);
452                 }
453                 break;
454
455                 /* jumps */
456                 case JALB_OPCODE_X1:
457                 case JALF_OPCODE_X1:
458                         state->update = 1;
459                         state->next_pc =
460                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
461                         break;
462
463                 case JB_OPCODE_X1:
464                 case JF_OPCODE_X1:
465                         state->next_pc =
466                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
467                         bundle = nop_X1(bundle);
468                         break;
469
470                 case SPECIAL_0_OPCODE_X1:
471                         switch (get_RRROpcodeExtension_X1(bundle)) {
472                         /* jump-register */
473                         case JALRP_SPECIAL_0_OPCODE_X1:
474                         case JALR_SPECIAL_0_OPCODE_X1:
475                                 state->update = 1;
476                                 state->next_pc =
477                                         regs->regs[get_SrcA_X1(bundle)];
478                                 break;
479
480                         case JRP_SPECIAL_0_OPCODE_X1:
481                         case JR_SPECIAL_0_OPCODE_X1:
482                                 state->next_pc =
483                                         regs->regs[get_SrcA_X1(bundle)];
484                                 bundle = nop_X1(bundle);
485                                 break;
486
487                         case LNK_SPECIAL_0_OPCODE_X1:
488                                 state->update = 1;
489                                 target_reg = get_Dest_X1(bundle);
490                                 break;
491
492                         /* stores */
493                         case SH_SPECIAL_0_OPCODE_X1:
494                                 mem_op = MEMOP_STORE;
495                                 size = 2;
496                                 break;
497
498                         case SW_SPECIAL_0_OPCODE_X1:
499                                 mem_op = MEMOP_STORE;
500                                 size = 4;
501                                 break;
502                         }
503                         break;
504
505                 /* loads and iret */
506                 case SHUN_0_OPCODE_X1:
507                         if (get_UnShOpcodeExtension_X1(bundle) ==
508                             UN_0_SHUN_0_OPCODE_X1) {
509                                 switch (get_UnOpcodeExtension_X1(bundle)) {
510                                 case LH_UN_0_SHUN_0_OPCODE_X1:
511                                         mem_op = MEMOP_LOAD;
512                                         size = 2;
513                                         sign_ext = 1;
514                                         break;
515
516                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
517                                         mem_op = MEMOP_LOAD;
518                                         size = 2;
519                                         sign_ext = 0;
520                                         break;
521
522                                 case LW_UN_0_SHUN_0_OPCODE_X1:
523                                         mem_op = MEMOP_LOAD;
524                                         size = 4;
525                                         break;
526
527                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
528                                 {
529                                         unsigned long ex0_0 = __insn_mfspr(
530                                                 SPR_EX_CONTEXT_0_0);
531                                         unsigned long ex0_1 = __insn_mfspr(
532                                                 SPR_EX_CONTEXT_0_1);
533                                         /*
534                                          * Special-case it if we're iret'ing
535                                          * to PL0 again.  Otherwise just let
536                                          * it run and it will generate SIGILL.
537                                          */
538                                         if (EX1_PL(ex0_1) == USER_PL) {
539                                                 state->next_pc = ex0_0;
540                                                 regs->ex1 = ex0_1;
541                                                 bundle = nop_X1(bundle);
542                                         }
543                                 }
544                                 }
545                         }
546                         break;
547
548                 /* postincrement operations */
549                 case IMM_0_OPCODE_X1:
550                         switch (get_ImmOpcodeExtension_X1(bundle)) {
551                         case LWADD_IMM_0_OPCODE_X1:
552                                 mem_op = MEMOP_LOAD_POSTINCR;
553                                 size = 4;
554                                 break;
555
556                         case LHADD_IMM_0_OPCODE_X1:
557                                 mem_op = MEMOP_LOAD_POSTINCR;
558                                 size = 2;
559                                 sign_ext = 1;
560                                 break;
561
562                         case LHADD_U_IMM_0_OPCODE_X1:
563                                 mem_op = MEMOP_LOAD_POSTINCR;
564                                 size = 2;
565                                 sign_ext = 0;
566                                 break;
567
568                         case SWADD_IMM_0_OPCODE_X1:
569                                 mem_op = MEMOP_STORE_POSTINCR;
570                                 size = 4;
571                                 break;
572
573                         case SHADD_IMM_0_OPCODE_X1:
574                                 mem_op = MEMOP_STORE_POSTINCR;
575                                 size = 2;
576                                 break;
577
578                         default:
579                                 break;
580                         }
581                         break;
582                 }
583
584                 if (state->update) {
585                         /*
586                          * Get an available register.  We start with a
587                          * bitmask with 1's for available registers.
588                          * We truncate to the low 32 registers since
589                          * we are guaranteed to have set bits in the
590                          * low 32 bits, then use ctz to pick the first.
591                          */
592                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
593                                            (1ULL << get_SrcA_X0(bundle)) |
594                                            (1ULL << get_SrcB_X0(bundle)) |
595                                            (1ULL << target_reg));
596                         temp_reg = __builtin_ctz(mask);
597                         state->update_reg = temp_reg;
598                         state->update_value = regs->regs[temp_reg];
599                         regs->regs[temp_reg] = (unsigned long) (pc+1);
600                         regs->flags |= PT_FLAGS_RESTORE_REGS;
601                         bundle = move_X1(bundle, target_reg, temp_reg);
602                 }
603         } else {
604                 int opcode = get_Opcode_Y2(bundle);
605
606                 switch (opcode) {
607                 /* loads */
608                 case LH_OPCODE_Y2:
609                         mem_op = MEMOP_LOAD;
610                         size = 2;
611                         sign_ext = 1;
612                         break;
613
614                 case LH_U_OPCODE_Y2:
615                         mem_op = MEMOP_LOAD;
616                         size = 2;
617                         sign_ext = 0;
618                         break;
619
620                 case LW_OPCODE_Y2:
621                         mem_op = MEMOP_LOAD;
622                         size = 4;
623                         break;
624
625                 /* stores */
626                 case SH_OPCODE_Y2:
627                         mem_op = MEMOP_STORE;
628                         size = 2;
629                         break;
630
631                 case SW_OPCODE_Y2:
632                         mem_op = MEMOP_STORE;
633                         size = 4;
634                         break;
635                 }
636         }
637
638         /*
639          * Check if we need to rewrite an unaligned load/store.
640          * Returning zero is a special value meaning we generated a signal.
641          */
642         if (mem_op != MEMOP_NONE && align_ctl >= 0) {
643                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
644                                                       mem_op, size, sign_ext);
645                 if (bundle == 0)
646                         return;
647         }
648
649         /* write the bundle to our execution area */
650         buffer = state->buffer;
651         err = __put_user(bundle, buffer++);
652
653         /*
654          * If we're really single-stepping, we take an INT_ILL after.
655          * If we're just handling an unaligned access, we can just
656          * jump directly back to where we were in user code.
657          */
658         if (is_single_step) {
659                 err |= __put_user(__single_step_ill_insn, buffer++);
660                 err |= __put_user(__single_step_ill_insn, buffer++);
661         } else {
662                 long delta;
663
664                 if (state->update) {
665                         /* We have some state to update; do it inline */
666                         int ha16;
667                         bundle = __single_step_addli_insn;
668                         bundle |= create_Dest_X1(state->update_reg);
669                         bundle |= create_Imm16_X1(state->update_value);
670                         err |= __put_user(bundle, buffer++);
671                         bundle = __single_step_auli_insn;
672                         bundle |= create_Dest_X1(state->update_reg);
673                         bundle |= create_SrcA_X1(state->update_reg);
674                         ha16 = (state->update_value + 0x8000) >> 16;
675                         bundle |= create_Imm16_X1(ha16);
676                         err |= __put_user(bundle, buffer++);
677                         state->update = 0;
678                 }
679
680                 /* End with a jump back to the next instruction */
681                 delta = ((regs->pc + TILEPRO_BUNDLE_SIZE_IN_BYTES) -
682                         (unsigned long)buffer) >>
683                         TILEPRO_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
684                 bundle = __single_step_j_insn;
685                 bundle |= create_JOffLong_X1(delta);
686                 err |= __put_user(bundle, buffer++);
687         }
688
689         if (err) {
690                 pr_err("Fault when writing to single-step buffer\n");
691                 return;
692         }
693
694         /*
695          * Flush the buffer.
696          * We do a local flush only, since this is a thread-specific buffer.
697          */
698         __flush_icache_range((unsigned long)state->buffer,
699                              (unsigned long)buffer);
700
701         /* Indicate enabled */
702         state->is_enabled = is_single_step;
703         regs->pc = (unsigned long)state->buffer;
704
705         /* Fault immediately if we are coming back from a syscall. */
706         if (regs->faultnum == INT_SWINT_1)
707                 regs->pc += 8;
708 }
709
710 #else
711
712 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
713
714
715 /*
716  * Called directly on the occasion of an interrupt.
717  *
718  * If the process doesn't have single step set, then we use this as an
719  * opportunity to turn single step off.
720  *
721  * It has been mentioned that we could conditionally turn off single stepping
722  * on each entry into the kernel and rely on single_step_once to turn it
723  * on for the processes that matter (as we already do), but this
724  * implementation is somewhat more efficient in that we muck with registers
725  * once on a bum interrupt rather than on every entry into the kernel.
726  *
727  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
728  * so we have to run through this process again before we can say that an
729  * instruction has executed.
730  *
731  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
732  * it changes the PC.  If it hasn't changed, then we know that the interrupt
733  * wasn't generated by swint and we'll need to run this process again before
734  * we can say an instruction has executed.
735  *
736  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
737  * on with our lives.
738  */
739
740 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
741 {
742         enum ctx_state prev_state = exception_enter();
743         unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
744         struct thread_info *info = (void *)current_thread_info();
745         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
746         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
747
748         if (is_single_step == 0) {
749                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
750
751         } else if ((*ss_pc != regs->pc) ||
752                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
753
754                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
755                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
756                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
757                 send_sigtrap(current, regs);
758         }
759         exception_exit(prev_state);
760 }
761
762
763 /*
764  * Called from need_singlestep.  Set up the control registers and the enable
765  * register, then return back.
766  */
767
768 void single_step_once(struct pt_regs *regs)
769 {
770         unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
771         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
772
773         *ss_pc = regs->pc;
774         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
775         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
776         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
777         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
778 }
779
780 void single_step_execve(void)
781 {
782         /* Nothing */
783 }
784
785 #endif /* !__tilegx__ */