Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / sparc / kernel / time_32.c
1 /* linux/arch/sparc/kernel/time.c
2  *
3  * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
5  *
6  * Chris Davis (cdavis@cois.on.ca) 03/27/1998
7  * Added support for the intersil on the sun4/4200
8  *
9  * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
10  * Support for MicroSPARC-IIep, PCI CPU.
11  *
12  * This file handles the Sparc specific time handling details.
13  *
14  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
15  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
16  */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38
39 #include <asm/mc146818rtc.h>
40 #include <asm/oplib.h>
41 #include <asm/timex.h>
42 #include <asm/timer.h>
43 #include <asm/irq.h>
44 #include <asm/io.h>
45 #include <asm/idprom.h>
46 #include <asm/page.h>
47 #include <asm/pcic.h>
48 #include <asm/irq_regs.h>
49 #include <asm/setup.h>
50
51 #include "kernel.h"
52 #include "irq.h"
53
54 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
55 static __volatile__ u64 timer_cs_internal_counter = 0;
56 static char timer_cs_enabled = 0;
57
58 static struct clock_event_device timer_ce;
59 static char timer_ce_enabled = 0;
60
61 #ifdef CONFIG_SMP
62 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
63 #endif
64
65 DEFINE_SPINLOCK(rtc_lock);
66 EXPORT_SYMBOL(rtc_lock);
67
68 static int set_rtc_mmss(unsigned long);
69
70 unsigned long profile_pc(struct pt_regs *regs)
71 {
72         extern char __copy_user_begin[], __copy_user_end[];
73         extern char __bzero_begin[], __bzero_end[];
74
75         unsigned long pc = regs->pc;
76
77         if (in_lock_functions(pc) ||
78             (pc >= (unsigned long) __copy_user_begin &&
79              pc < (unsigned long) __copy_user_end) ||
80             (pc >= (unsigned long) __bzero_begin &&
81              pc < (unsigned long) __bzero_end))
82                 pc = regs->u_regs[UREG_RETPC];
83         return pc;
84 }
85
86 EXPORT_SYMBOL(profile_pc);
87
88 volatile u32 __iomem *master_l10_counter;
89
90 int update_persistent_clock(struct timespec now)
91 {
92         return set_rtc_mmss(now.tv_sec);
93 }
94
95 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
96 {
97         if (timer_cs_enabled) {
98                 write_seqlock(&timer_cs_lock);
99                 timer_cs_internal_counter++;
100                 sparc_config.clear_clock_irq();
101                 write_sequnlock(&timer_cs_lock);
102         } else {
103                 sparc_config.clear_clock_irq();
104         }
105
106         if (timer_ce_enabled)
107                 timer_ce.event_handler(&timer_ce);
108
109         return IRQ_HANDLED;
110 }
111
112 static void timer_ce_set_mode(enum clock_event_mode mode,
113                               struct clock_event_device *evt)
114 {
115         switch (mode) {
116                 case CLOCK_EVT_MODE_PERIODIC:
117                 case CLOCK_EVT_MODE_RESUME:
118                         timer_ce_enabled = 1;
119                         break;
120                 case CLOCK_EVT_MODE_SHUTDOWN:
121                         timer_ce_enabled = 0;
122                         break;
123                 default:
124                         break;
125         }
126         smp_mb();
127 }
128
129 static __init void setup_timer_ce(void)
130 {
131         struct clock_event_device *ce = &timer_ce;
132
133         BUG_ON(smp_processor_id() != boot_cpu_id);
134
135         ce->name     = "timer_ce";
136         ce->rating   = 100;
137         ce->features = CLOCK_EVT_FEAT_PERIODIC;
138         ce->set_mode = timer_ce_set_mode;
139         ce->cpumask  = cpu_possible_mask;
140         ce->shift    = 32;
141         ce->mult     = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
142                               ce->shift);
143         clockevents_register_device(ce);
144 }
145
146 static unsigned int sbus_cycles_offset(void)
147 {
148         u32 val, offset;
149
150         val = sbus_readl(master_l10_counter);
151         offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
152
153         /* Limit hit? */
154         if (val & TIMER_LIMIT_BIT)
155                 offset += sparc_config.cs_period;
156
157         return offset;
158 }
159
160 static cycle_t timer_cs_read(struct clocksource *cs)
161 {
162         unsigned int seq, offset;
163         u64 cycles;
164
165         do {
166                 seq = read_seqbegin(&timer_cs_lock);
167
168                 cycles = timer_cs_internal_counter;
169                 offset = sparc_config.get_cycles_offset();
170         } while (read_seqretry(&timer_cs_lock, seq));
171
172         /* Count absolute cycles */
173         cycles *= sparc_config.cs_period;
174         cycles += offset;
175
176         return cycles;
177 }
178
179 static struct clocksource timer_cs = {
180         .name   = "timer_cs",
181         .rating = 100,
182         .read   = timer_cs_read,
183         .mask   = CLOCKSOURCE_MASK(64),
184         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
185 };
186
187 static __init int setup_timer_cs(void)
188 {
189         timer_cs_enabled = 1;
190         return clocksource_register_hz(&timer_cs, sparc_config.clock_rate);
191 }
192
193 #ifdef CONFIG_SMP
194 static void percpu_ce_setup(enum clock_event_mode mode,
195                         struct clock_event_device *evt)
196 {
197         int cpu = cpumask_first(evt->cpumask);
198
199         switch (mode) {
200                 case CLOCK_EVT_MODE_PERIODIC:
201                         sparc_config.load_profile_irq(cpu,
202                                                       SBUS_CLOCK_RATE / HZ);
203                         break;
204                 case CLOCK_EVT_MODE_ONESHOT:
205                 case CLOCK_EVT_MODE_SHUTDOWN:
206                 case CLOCK_EVT_MODE_UNUSED:
207                         sparc_config.load_profile_irq(cpu, 0);
208                         break;
209                 default:
210                         break;
211         }
212 }
213
214 static int percpu_ce_set_next_event(unsigned long delta,
215                                     struct clock_event_device *evt)
216 {
217         int cpu = cpumask_first(evt->cpumask);
218         unsigned int next = (unsigned int)delta;
219
220         sparc_config.load_profile_irq(cpu, next);
221         return 0;
222 }
223
224 void register_percpu_ce(int cpu)
225 {
226         struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
227         unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
228
229         if (sparc_config.features & FEAT_L14_ONESHOT)
230                 features |= CLOCK_EVT_FEAT_ONESHOT;
231
232         ce->name           = "percpu_ce";
233         ce->rating         = 200;
234         ce->features       = features;
235         ce->set_mode       = percpu_ce_setup;
236         ce->set_next_event = percpu_ce_set_next_event;
237         ce->cpumask        = cpumask_of(cpu);
238         ce->shift          = 32;
239         ce->mult           = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
240                                     ce->shift);
241         ce->max_delta_ns   = clockevent_delta2ns(sparc_config.clock_rate, ce);
242         ce->min_delta_ns   = clockevent_delta2ns(100, ce);
243
244         clockevents_register_device(ce);
245 }
246 #endif
247
248 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
249 {
250         struct platform_device *pdev = to_platform_device(dev);
251         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
252
253         return readb(pdata->ioaddr + ofs);
254 }
255
256 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
257 {
258         struct platform_device *pdev = to_platform_device(dev);
259         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
260
261         writeb(val, pdata->ioaddr + ofs);
262 }
263
264 static struct m48t59_plat_data m48t59_data = {
265         .read_byte = mostek_read_byte,
266         .write_byte = mostek_write_byte,
267 };
268
269 /* resource is set at runtime */
270 static struct platform_device m48t59_rtc = {
271         .name           = "rtc-m48t59",
272         .id             = 0,
273         .num_resources  = 1,
274         .dev    = {
275                 .platform_data = &m48t59_data,
276         },
277 };
278
279 static int clock_probe(struct platform_device *op)
280 {
281         struct device_node *dp = op->dev.of_node;
282         const char *model = of_get_property(dp, "model", NULL);
283
284         if (!model)
285                 return -ENODEV;
286
287         /* Only the primary RTC has an address property */
288         if (!of_find_property(dp, "address", NULL))
289                 return -ENODEV;
290
291         m48t59_rtc.resource = &op->resource[0];
292         if (!strcmp(model, "mk48t02")) {
293                 /* Map the clock register io area read-only */
294                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
295                                                 2048, "rtc-m48t59");
296                 m48t59_data.type = M48T59RTC_TYPE_M48T02;
297         } else if (!strcmp(model, "mk48t08")) {
298                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
299                                                 8192, "rtc-m48t59");
300                 m48t59_data.type = M48T59RTC_TYPE_M48T08;
301         } else
302                 return -ENODEV;
303
304         if (platform_device_register(&m48t59_rtc) < 0)
305                 printk(KERN_ERR "Registering RTC device failed\n");
306
307         return 0;
308 }
309
310 static struct of_device_id clock_match[] = {
311         {
312                 .name = "eeprom",
313         },
314         {},
315 };
316
317 static struct platform_driver clock_driver = {
318         .probe          = clock_probe,
319         .driver = {
320                 .name = "rtc",
321                 .of_match_table = clock_match,
322         },
323 };
324
325
326 /* Probe for the mostek real time clock chip. */
327 static int __init clock_init(void)
328 {
329         return platform_driver_register(&clock_driver);
330 }
331 /* Must be after subsys_initcall() so that busses are probed.  Must
332  * be before device_initcall() because things like the RTC driver
333  * need to see the clock registers.
334  */
335 fs_initcall(clock_init);
336
337 static void __init sparc32_late_time_init(void)
338 {
339         if (sparc_config.features & FEAT_L10_CLOCKEVENT)
340                 setup_timer_ce();
341         if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
342                 setup_timer_cs();
343 #ifdef CONFIG_SMP
344         register_percpu_ce(smp_processor_id());
345 #endif
346 }
347
348 static void __init sbus_time_init(void)
349 {
350         sparc_config.get_cycles_offset = sbus_cycles_offset;
351         sparc_config.init_timers();
352 }
353
354 void __init time_init(void)
355 {
356         sparc_config.features = 0;
357         late_time_init = sparc32_late_time_init;
358
359         if (pcic_present())
360                 pci_time_init();
361         else
362                 sbus_time_init();
363 }
364
365
366 static int set_rtc_mmss(unsigned long secs)
367 {
368         struct rtc_device *rtc = rtc_class_open("rtc0");
369         int err = -1;
370
371         if (rtc) {
372                 err = rtc_set_mmss(rtc, secs);
373                 rtc_class_close(rtc);
374         }
375
376         return err;
377 }