Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / sh / mm / tlbex_64.c
1 /*
2  * The SH64 TLB miss.
3  *
4  * Original code from fault.c
5  * Copyright (C) 2000, 2001  Paolo Alberelli
6  *
7  * Fast PTE->TLB refill path
8  * Copyright (C) 2003 Richard.Curnow@superh.com
9  *
10  * IMPORTANT NOTES :
11  * The do_fast_page_fault function is called from a context in entry.S
12  * where very few registers have been saved.  In particular, the code in
13  * this file must be compiled not to use ANY caller-save registers that
14  * are not part of the restricted save set.  Also, it means that code in
15  * this file must not make calls to functions elsewhere in the kernel, or
16  * else the excepting context will see corruption in its caller-save
17  * registers.  Plus, the entry.S save area is non-reentrant, so this code
18  * has to run with SR.BL==1, i.e. no interrupts taken inside it and panic
19  * on any exception.
20  *
21  * This file is subject to the terms and conditions of the GNU General Public
22  * License.  See the file "COPYING" in the main directory of this archive
23  * for more details.
24  */
25 #include <linux/signal.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 #include <linux/ptrace.h>
32 #include <linux/mman.h>
33 #include <linux/mm.h>
34 #include <linux/smp.h>
35 #include <linux/interrupt.h>
36 #include <linux/kprobes.h>
37 #include <asm/tlb.h>
38 #include <asm/io.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgalloc.h>
41 #include <asm/mmu_context.h>
42
43 static int handle_tlbmiss(unsigned long long protection_flags,
44                           unsigned long address)
45 {
46         pgd_t *pgd;
47         pud_t *pud;
48         pmd_t *pmd;
49         pte_t *pte;
50         pte_t entry;
51
52         if (is_vmalloc_addr((void *)address)) {
53                 pgd = pgd_offset_k(address);
54         } else {
55                 if (unlikely(address >= TASK_SIZE || !current->mm))
56                         return 1;
57
58                 pgd = pgd_offset(current->mm, address);
59         }
60
61         pud = pud_offset(pgd, address);
62         if (pud_none(*pud) || !pud_present(*pud))
63                 return 1;
64
65         pmd = pmd_offset(pud, address);
66         if (pmd_none(*pmd) || !pmd_present(*pmd))
67                 return 1;
68
69         pte = pte_offset_kernel(pmd, address);
70         entry = *pte;
71         if (pte_none(entry) || !pte_present(entry))
72                 return 1;
73
74         /*
75          * If the page doesn't have sufficient protection bits set to
76          * service the kind of fault being handled, there's not much
77          * point doing the TLB refill.  Punt the fault to the general
78          * handler.
79          */
80         if ((pte_val(entry) & protection_flags) != protection_flags)
81                 return 1;
82
83         update_mmu_cache(NULL, address, pte);
84
85         return 0;
86 }
87
88 /*
89  * Put all this information into one structure so that everything is just
90  * arithmetic relative to a single base address.  This reduces the number
91  * of movi/shori pairs needed just to load addresses of static data.
92  */
93 struct expevt_lookup {
94         unsigned short protection_flags[8];
95         unsigned char  is_text_access[8];
96         unsigned char  is_write_access[8];
97 };
98
99 #define PRU (1<<9)
100 #define PRW (1<<8)
101 #define PRX (1<<7)
102 #define PRR (1<<6)
103
104 /* Sized as 8 rather than 4 to allow checking the PTE's PRU bit against whether
105    the fault happened in user mode or privileged mode. */
106 static struct expevt_lookup expevt_lookup_table = {
107         .protection_flags = {PRX, PRX, 0, 0, PRR, PRR, PRW, PRW},
108         .is_text_access   = {1,   1,   0, 0, 0,   0,   0,   0}
109 };
110
111 static inline unsigned int
112 expevt_to_fault_code(unsigned long expevt)
113 {
114         if (expevt == 0xa40)
115                 return FAULT_CODE_ITLB;
116         else if (expevt == 0x060)
117                 return FAULT_CODE_WRITE;
118
119         return 0;
120 }
121
122 /*
123    This routine handles page faults that can be serviced just by refilling a
124    TLB entry from an existing page table entry.  (This case represents a very
125    large majority of page faults.) Return 1 if the fault was successfully
126    handled.  Return 0 if the fault could not be handled.  (This leads into the
127    general fault handling in fault.c which deals with mapping file-backed
128    pages, stack growth, segmentation faults, swapping etc etc)
129  */
130 asmlinkage int __kprobes
131 do_fast_page_fault(unsigned long long ssr_md, unsigned long long expevt,
132                    unsigned long address)
133 {
134         unsigned long long protection_flags;
135         unsigned long long index;
136         unsigned long long expevt4;
137         unsigned int fault_code;
138
139         /* The next few lines implement a way of hashing EXPEVT into a
140          * small array index which can be used to lookup parameters
141          * specific to the type of TLBMISS being handled.
142          *
143          * Note:
144          *      ITLBMISS has EXPEVT==0xa40
145          *      RTLBMISS has EXPEVT==0x040
146          *      WTLBMISS has EXPEVT==0x060
147          */
148         expevt4 = (expevt >> 4);
149         /* TODO : xor ssr_md into this expression too. Then we can check
150          * that PRU is set when it needs to be. */
151         index = expevt4 ^ (expevt4 >> 5);
152         index &= 7;
153
154         fault_code = expevt_to_fault_code(expevt);
155
156         protection_flags = expevt_lookup_table.protection_flags[index];
157
158         if (expevt_lookup_table.is_text_access[index])
159                 fault_code |= FAULT_CODE_ITLB;
160         if (!ssr_md)
161                 fault_code |= FAULT_CODE_USER;
162
163         set_thread_fault_code(fault_code);
164
165         return handle_tlbmiss(protection_flags, address);
166 }