Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / sh / kernel / perf_event.c
1 /*
2  * Performance event support framework for SuperH hardware counters.
3  *
4  *  Copyright (C) 2009  Paul Mundt
5  *
6  * Heavily based on the x86 and PowerPC implementations.
7  *
8  * x86:
9  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11  *  Copyright (C) 2009 Jaswinder Singh Rajput
12  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
14  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
15  *
16  * ppc:
17  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
18  *
19  * This file is subject to the terms and conditions of the GNU General Public
20  * License.  See the file "COPYING" in the main directory of this archive
21  * for more details.
22  */
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/perf_event.h>
28 #include <linux/export.h>
29 #include <asm/processor.h>
30
31 struct cpu_hw_events {
32         struct perf_event       *events[MAX_HWEVENTS];
33         unsigned long           used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
34         unsigned long           active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
35 };
36
37 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
38
39 static struct sh_pmu *sh_pmu __read_mostly;
40
41 /* Number of perf_events counting hardware events */
42 static atomic_t num_events;
43 /* Used to avoid races in calling reserve/release_pmc_hardware */
44 static DEFINE_MUTEX(pmc_reserve_mutex);
45
46 /*
47  * Stub these out for now, do something more profound later.
48  */
49 int reserve_pmc_hardware(void)
50 {
51         return 0;
52 }
53
54 void release_pmc_hardware(void)
55 {
56 }
57
58 static inline int sh_pmu_initialized(void)
59 {
60         return !!sh_pmu;
61 }
62
63 const char *perf_pmu_name(void)
64 {
65         if (!sh_pmu)
66                 return NULL;
67
68         return sh_pmu->name;
69 }
70 EXPORT_SYMBOL_GPL(perf_pmu_name);
71
72 int perf_num_counters(void)
73 {
74         if (!sh_pmu)
75                 return 0;
76
77         return sh_pmu->num_events;
78 }
79 EXPORT_SYMBOL_GPL(perf_num_counters);
80
81 /*
82  * Release the PMU if this is the last perf_event.
83  */
84 static void hw_perf_event_destroy(struct perf_event *event)
85 {
86         if (!atomic_add_unless(&num_events, -1, 1)) {
87                 mutex_lock(&pmc_reserve_mutex);
88                 if (atomic_dec_return(&num_events) == 0)
89                         release_pmc_hardware();
90                 mutex_unlock(&pmc_reserve_mutex);
91         }
92 }
93
94 static int hw_perf_cache_event(int config, int *evp)
95 {
96         unsigned long type, op, result;
97         int ev;
98
99         if (!sh_pmu->cache_events)
100                 return -EINVAL;
101
102         /* unpack config */
103         type = config & 0xff;
104         op = (config >> 8) & 0xff;
105         result = (config >> 16) & 0xff;
106
107         if (type >= PERF_COUNT_HW_CACHE_MAX ||
108             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
109             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
110                 return -EINVAL;
111
112         ev = (*sh_pmu->cache_events)[type][op][result];
113         if (ev == 0)
114                 return -EOPNOTSUPP;
115         if (ev == -1)
116                 return -EINVAL;
117         *evp = ev;
118         return 0;
119 }
120
121 static int __hw_perf_event_init(struct perf_event *event)
122 {
123         struct perf_event_attr *attr = &event->attr;
124         struct hw_perf_event *hwc = &event->hw;
125         int config = -1;
126         int err;
127
128         if (!sh_pmu_initialized())
129                 return -ENODEV;
130
131         /*
132          * See if we need to reserve the counter.
133          *
134          * If no events are currently in use, then we have to take a
135          * mutex to ensure that we don't race with another task doing
136          * reserve_pmc_hardware or release_pmc_hardware.
137          */
138         err = 0;
139         if (!atomic_inc_not_zero(&num_events)) {
140                 mutex_lock(&pmc_reserve_mutex);
141                 if (atomic_read(&num_events) == 0 &&
142                     reserve_pmc_hardware())
143                         err = -EBUSY;
144                 else
145                         atomic_inc(&num_events);
146                 mutex_unlock(&pmc_reserve_mutex);
147         }
148
149         if (err)
150                 return err;
151
152         event->destroy = hw_perf_event_destroy;
153
154         switch (attr->type) {
155         case PERF_TYPE_RAW:
156                 config = attr->config & sh_pmu->raw_event_mask;
157                 break;
158         case PERF_TYPE_HW_CACHE:
159                 err = hw_perf_cache_event(attr->config, &config);
160                 if (err)
161                         return err;
162                 break;
163         case PERF_TYPE_HARDWARE:
164                 if (attr->config >= sh_pmu->max_events)
165                         return -EINVAL;
166
167                 config = sh_pmu->event_map(attr->config);
168                 break;
169         }
170
171         if (config == -1)
172                 return -EINVAL;
173
174         hwc->config |= config;
175
176         return 0;
177 }
178
179 static void sh_perf_event_update(struct perf_event *event,
180                                    struct hw_perf_event *hwc, int idx)
181 {
182         u64 prev_raw_count, new_raw_count;
183         s64 delta;
184         int shift = 0;
185
186         /*
187          * Depending on the counter configuration, they may or may not
188          * be chained, in which case the previous counter value can be
189          * updated underneath us if the lower-half overflows.
190          *
191          * Our tactic to handle this is to first atomically read and
192          * exchange a new raw count - then add that new-prev delta
193          * count to the generic counter atomically.
194          *
195          * As there is no interrupt associated with the overflow events,
196          * this is the simplest approach for maintaining consistency.
197          */
198 again:
199         prev_raw_count = local64_read(&hwc->prev_count);
200         new_raw_count = sh_pmu->read(idx);
201
202         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
203                              new_raw_count) != prev_raw_count)
204                 goto again;
205
206         /*
207          * Now we have the new raw value and have updated the prev
208          * timestamp already. We can now calculate the elapsed delta
209          * (counter-)time and add that to the generic counter.
210          *
211          * Careful, not all hw sign-extends above the physical width
212          * of the count.
213          */
214         delta = (new_raw_count << shift) - (prev_raw_count << shift);
215         delta >>= shift;
216
217         local64_add(delta, &event->count);
218 }
219
220 static void sh_pmu_stop(struct perf_event *event, int flags)
221 {
222         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
223         struct hw_perf_event *hwc = &event->hw;
224         int idx = hwc->idx;
225
226         if (!(event->hw.state & PERF_HES_STOPPED)) {
227                 sh_pmu->disable(hwc, idx);
228                 cpuc->events[idx] = NULL;
229                 event->hw.state |= PERF_HES_STOPPED;
230         }
231
232         if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
233                 sh_perf_event_update(event, &event->hw, idx);
234                 event->hw.state |= PERF_HES_UPTODATE;
235         }
236 }
237
238 static void sh_pmu_start(struct perf_event *event, int flags)
239 {
240         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
241         struct hw_perf_event *hwc = &event->hw;
242         int idx = hwc->idx;
243
244         if (WARN_ON_ONCE(idx == -1))
245                 return;
246
247         if (flags & PERF_EF_RELOAD)
248                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
249
250         cpuc->events[idx] = event;
251         event->hw.state = 0;
252         sh_pmu->enable(hwc, idx);
253 }
254
255 static void sh_pmu_del(struct perf_event *event, int flags)
256 {
257         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
258
259         sh_pmu_stop(event, PERF_EF_UPDATE);
260         __clear_bit(event->hw.idx, cpuc->used_mask);
261
262         perf_event_update_userpage(event);
263 }
264
265 static int sh_pmu_add(struct perf_event *event, int flags)
266 {
267         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
268         struct hw_perf_event *hwc = &event->hw;
269         int idx = hwc->idx;
270         int ret = -EAGAIN;
271
272         perf_pmu_disable(event->pmu);
273
274         if (__test_and_set_bit(idx, cpuc->used_mask)) {
275                 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
276                 if (idx == sh_pmu->num_events)
277                         goto out;
278
279                 __set_bit(idx, cpuc->used_mask);
280                 hwc->idx = idx;
281         }
282
283         sh_pmu->disable(hwc, idx);
284
285         event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
286         if (flags & PERF_EF_START)
287                 sh_pmu_start(event, PERF_EF_RELOAD);
288
289         perf_event_update_userpage(event);
290         ret = 0;
291 out:
292         perf_pmu_enable(event->pmu);
293         return ret;
294 }
295
296 static void sh_pmu_read(struct perf_event *event)
297 {
298         sh_perf_event_update(event, &event->hw, event->hw.idx);
299 }
300
301 static int sh_pmu_event_init(struct perf_event *event)
302 {
303         int err;
304
305         /* does not support taken branch sampling */
306         if (has_branch_stack(event))
307                 return -EOPNOTSUPP;
308
309         switch (event->attr.type) {
310         case PERF_TYPE_RAW:
311         case PERF_TYPE_HW_CACHE:
312         case PERF_TYPE_HARDWARE:
313                 err = __hw_perf_event_init(event);
314                 break;
315
316         default:
317                 return -ENOENT;
318         }
319
320         if (unlikely(err)) {
321                 if (event->destroy)
322                         event->destroy(event);
323         }
324
325         return err;
326 }
327
328 static void sh_pmu_enable(struct pmu *pmu)
329 {
330         if (!sh_pmu_initialized())
331                 return;
332
333         sh_pmu->enable_all();
334 }
335
336 static void sh_pmu_disable(struct pmu *pmu)
337 {
338         if (!sh_pmu_initialized())
339                 return;
340
341         sh_pmu->disable_all();
342 }
343
344 static struct pmu pmu = {
345         .pmu_enable     = sh_pmu_enable,
346         .pmu_disable    = sh_pmu_disable,
347         .event_init     = sh_pmu_event_init,
348         .add            = sh_pmu_add,
349         .del            = sh_pmu_del,
350         .start          = sh_pmu_start,
351         .stop           = sh_pmu_stop,
352         .read           = sh_pmu_read,
353 };
354
355 static void sh_pmu_setup(int cpu)
356 {
357         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
358
359         memset(cpuhw, 0, sizeof(struct cpu_hw_events));
360 }
361
362 static int
363 sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
364 {
365         unsigned int cpu = (long)hcpu;
366
367         switch (action & ~CPU_TASKS_FROZEN) {
368         case CPU_UP_PREPARE:
369                 sh_pmu_setup(cpu);
370                 break;
371
372         default:
373                 break;
374         }
375
376         return NOTIFY_OK;
377 }
378
379 int register_sh_pmu(struct sh_pmu *_pmu)
380 {
381         if (sh_pmu)
382                 return -EBUSY;
383         sh_pmu = _pmu;
384
385         pr_info("Performance Events: %s support registered\n", _pmu->name);
386
387         /*
388          * All of the on-chip counters are "limited", in that they have
389          * no interrupts, and are therefore unable to do sampling without
390          * further work and timer assistance.
391          */
392         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
393
394         WARN_ON(_pmu->num_events > MAX_HWEVENTS);
395
396         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
397         perf_cpu_notifier(sh_pmu_notifier);
398         return 0;
399 }