Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / sh / kernel / kgdb.c
1 /*
2  * SuperH KGDB support
3  *
4  * Copyright (C) 2008 - 2012  Paul Mundt
5  *
6  * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7  *
8  * This file is subject to the terms and conditions of the GNU General Public
9  * License.  See the file "COPYING" in the main directory of this archive
10  * for more details.
11  */
12 #include <linux/kgdb.h>
13 #include <linux/kdebug.h>
14 #include <linux/irq.h>
15 #include <linux/io.h>
16 #include <linux/sched.h>
17 #include <asm/cacheflush.h>
18 #include <asm/traps.h>
19
20 /* Macros for single step instruction identification */
21 #define OPCODE_BT(op)           (((op) & 0xff00) == 0x8900)
22 #define OPCODE_BF(op)           (((op) & 0xff00) == 0x8b00)
23 #define OPCODE_BTF_DISP(op)     (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
24                                  (((op) & 0x7f ) << 1))
25 #define OPCODE_BFS(op)          (((op) & 0xff00) == 0x8f00)
26 #define OPCODE_BTS(op)          (((op) & 0xff00) == 0x8d00)
27 #define OPCODE_BRA(op)          (((op) & 0xf000) == 0xa000)
28 #define OPCODE_BRA_DISP(op)     (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
29                                  (((op) & 0x7ff) << 1))
30 #define OPCODE_BRAF(op)         (((op) & 0xf0ff) == 0x0023)
31 #define OPCODE_BRAF_REG(op)     (((op) & 0x0f00) >> 8)
32 #define OPCODE_BSR(op)          (((op) & 0xf000) == 0xb000)
33 #define OPCODE_BSR_DISP(op)     (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
34                                  (((op) & 0x7ff) << 1))
35 #define OPCODE_BSRF(op)         (((op) & 0xf0ff) == 0x0003)
36 #define OPCODE_BSRF_REG(op)     (((op) >> 8) & 0xf)
37 #define OPCODE_JMP(op)          (((op) & 0xf0ff) == 0x402b)
38 #define OPCODE_JMP_REG(op)      (((op) >> 8) & 0xf)
39 #define OPCODE_JSR(op)          (((op) & 0xf0ff) == 0x400b)
40 #define OPCODE_JSR_REG(op)      (((op) >> 8) & 0xf)
41 #define OPCODE_RTS(op)          ((op) == 0xb)
42 #define OPCODE_RTE(op)          ((op) == 0x2b)
43
44 #define SR_T_BIT_MASK           0x1
45 #define STEP_OPCODE             0xc33d
46
47 /* Calculate the new address for after a step */
48 static short *get_step_address(struct pt_regs *linux_regs)
49 {
50         insn_size_t op = __raw_readw(linux_regs->pc);
51         long addr;
52
53         /* BT */
54         if (OPCODE_BT(op)) {
55                 if (linux_regs->sr & SR_T_BIT_MASK)
56                         addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
57                 else
58                         addr = linux_regs->pc + 2;
59         }
60
61         /* BTS */
62         else if (OPCODE_BTS(op)) {
63                 if (linux_regs->sr & SR_T_BIT_MASK)
64                         addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
65                 else
66                         addr = linux_regs->pc + 4;      /* Not in delay slot */
67         }
68
69         /* BF */
70         else if (OPCODE_BF(op)) {
71                 if (!(linux_regs->sr & SR_T_BIT_MASK))
72                         addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
73                 else
74                         addr = linux_regs->pc + 2;
75         }
76
77         /* BFS */
78         else if (OPCODE_BFS(op)) {
79                 if (!(linux_regs->sr & SR_T_BIT_MASK))
80                         addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
81                 else
82                         addr = linux_regs->pc + 4;      /* Not in delay slot */
83         }
84
85         /* BRA */
86         else if (OPCODE_BRA(op))
87                 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
88
89         /* BRAF */
90         else if (OPCODE_BRAF(op))
91                 addr = linux_regs->pc + 4
92                     + linux_regs->regs[OPCODE_BRAF_REG(op)];
93
94         /* BSR */
95         else if (OPCODE_BSR(op))
96                 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
97
98         /* BSRF */
99         else if (OPCODE_BSRF(op))
100                 addr = linux_regs->pc + 4
101                     + linux_regs->regs[OPCODE_BSRF_REG(op)];
102
103         /* JMP */
104         else if (OPCODE_JMP(op))
105                 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
106
107         /* JSR */
108         else if (OPCODE_JSR(op))
109                 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
110
111         /* RTS */
112         else if (OPCODE_RTS(op))
113                 addr = linux_regs->pr;
114
115         /* RTE */
116         else if (OPCODE_RTE(op))
117                 addr = linux_regs->regs[15];
118
119         /* Other */
120         else
121                 addr = linux_regs->pc + instruction_size(op);
122
123         flush_icache_range(addr, addr + instruction_size(op));
124         return (short *)addr;
125 }
126
127 /*
128  * Replace the instruction immediately after the current instruction
129  * (i.e. next in the expected flow of control) with a trap instruction,
130  * so that returning will cause only a single instruction to be executed.
131  * Note that this model is slightly broken for instructions with delay
132  * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
133  * instruction in the delay slot will be executed.
134  */
135
136 static unsigned long stepped_address;
137 static insn_size_t stepped_opcode;
138
139 static void do_single_step(struct pt_regs *linux_regs)
140 {
141         /* Determine where the target instruction will send us to */
142         unsigned short *addr = get_step_address(linux_regs);
143
144         stepped_address = (int)addr;
145
146         /* Replace it */
147         stepped_opcode = __raw_readw((long)addr);
148         *addr = STEP_OPCODE;
149
150         /* Flush and return */
151         flush_icache_range((long)addr, (long)addr +
152                            instruction_size(stepped_opcode));
153 }
154
155 /* Undo a single step */
156 static void undo_single_step(struct pt_regs *linux_regs)
157 {
158         /* If we have stepped, put back the old instruction */
159         /* Use stepped_address in case we stopped elsewhere */
160         if (stepped_opcode != 0) {
161                 __raw_writew(stepped_opcode, stepped_address);
162                 flush_icache_range(stepped_address, stepped_address + 2);
163         }
164
165         stepped_opcode = 0;
166 }
167
168 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
169         { "r0",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
170         { "r1",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
171         { "r2",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
172         { "r3",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
173         { "r4",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
174         { "r5",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
175         { "r6",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
176         { "r7",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
177         { "r8",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
178         { "r9",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
179         { "r10",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
180         { "r11",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
181         { "r12",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
182         { "r13",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
183         { "r14",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
184         { "r15",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
185         { "pc",         GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
186         { "pr",         GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
187         { "sr",         GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
188         { "gbr",        GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
189         { "mach",       GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
190         { "macl",       GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
191         { "vbr",        GDB_SIZEOF_REG, -1 },
192 };
193
194 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
195 {
196         if (regno < 0 || regno >= DBG_MAX_REG_NUM)
197                 return -EINVAL;
198
199         if (dbg_reg_def[regno].offset != -1)
200                 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
201                        dbg_reg_def[regno].size);
202
203         return 0;
204 }
205
206 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
207 {
208         if (regno >= DBG_MAX_REG_NUM || regno < 0)
209                 return NULL;
210
211         if (dbg_reg_def[regno].size != -1)
212                 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
213                        dbg_reg_def[regno].size);
214
215         switch (regno) {
216         case GDB_VBR:
217                 __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
218                 break;
219         }
220
221         return dbg_reg_def[regno].name;
222 }
223
224 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
225 {
226         struct pt_regs *thread_regs = task_pt_regs(p);
227         int reg;
228
229         /* Initialize to zero */
230         for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
231                 gdb_regs[reg] = 0;
232
233         /*
234          * Copy out GP regs 8 to 14.
235          *
236          * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
237          * and need privileged instructions to get to. The r15 value we
238          * fetch from the thread info directly.
239          */
240         for (reg = GDB_R8; reg < GDB_R15; reg++)
241                 gdb_regs[reg] = thread_regs->regs[reg];
242
243         gdb_regs[GDB_R15] = p->thread.sp;
244         gdb_regs[GDB_PC] = p->thread.pc;
245
246         /*
247          * Additional registers we have context for
248          */
249         gdb_regs[GDB_PR] = thread_regs->pr;
250         gdb_regs[GDB_GBR] = thread_regs->gbr;
251 }
252
253 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
254                                char *remcomInBuffer, char *remcomOutBuffer,
255                                struct pt_regs *linux_regs)
256 {
257         unsigned long addr;
258         char *ptr;
259
260         /* Undo any stepping we may have done */
261         undo_single_step(linux_regs);
262
263         switch (remcomInBuffer[0]) {
264         case 'c':
265         case 's':
266                 /* try to read optional parameter, pc unchanged if no parm */
267                 ptr = &remcomInBuffer[1];
268                 if (kgdb_hex2long(&ptr, &addr))
269                         linux_regs->pc = addr;
270         case 'D':
271         case 'k':
272                 atomic_set(&kgdb_cpu_doing_single_step, -1);
273
274                 if (remcomInBuffer[0] == 's') {
275                         do_single_step(linux_regs);
276                         kgdb_single_step = 1;
277
278                         atomic_set(&kgdb_cpu_doing_single_step,
279                                    raw_smp_processor_id());
280                 }
281
282                 return 0;
283         }
284
285         /* this means that we do not want to exit from the handler: */
286         return -1;
287 }
288
289 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
290 {
291         if (exception == 60)
292                 return instruction_pointer(regs) - 2;
293         return instruction_pointer(regs);
294 }
295
296 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
297 {
298         regs->pc = ip;
299 }
300
301 /*
302  * The primary entry points for the kgdb debug trap table entries.
303  */
304 BUILD_TRAP_HANDLER(singlestep)
305 {
306         unsigned long flags;
307         TRAP_HANDLER_DECL;
308
309         local_irq_save(flags);
310         regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311         kgdb_handle_exception(0, SIGTRAP, 0, regs);
312         local_irq_restore(flags);
313 }
314
315 static void kgdb_call_nmi_hook(void *ignored)
316 {
317         kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
318 }
319
320 void kgdb_roundup_cpus(unsigned long flags)
321 {
322         local_irq_enable();
323         smp_call_function(kgdb_call_nmi_hook, NULL, 0);
324         local_irq_disable();
325 }
326
327 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
328 {
329         int ret;
330
331         switch (cmd) {
332         case DIE_BREAKPOINT:
333                 /*
334                  * This means a user thread is single stepping
335                  * a system call which should be ignored
336                  */
337                 if (test_thread_flag(TIF_SINGLESTEP))
338                         return NOTIFY_DONE;
339
340                 ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
341                                             args->err, args->regs);
342                 if (ret)
343                         return NOTIFY_DONE;
344
345                 break;
346         }
347
348         return NOTIFY_STOP;
349 }
350
351 static int
352 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
353 {
354         unsigned long flags;
355         int ret;
356
357         local_irq_save(flags);
358         ret = __kgdb_notify(ptr, cmd);
359         local_irq_restore(flags);
360
361         return ret;
362 }
363
364 static struct notifier_block kgdb_notifier = {
365         .notifier_call  = kgdb_notify,
366
367         /*
368          * Lowest-prio notifier priority, we want to be notified last:
369          */
370         .priority       = -INT_MAX,
371 };
372
373 int kgdb_arch_init(void)
374 {
375         return register_die_notifier(&kgdb_notifier);
376 }
377
378 void kgdb_arch_exit(void)
379 {
380         unregister_die_notifier(&kgdb_notifier);
381 }
382
383 struct kgdb_arch arch_kgdb_ops = {
384         /* Breakpoint instruction: trapa #0x3c */
385 #ifdef CONFIG_CPU_LITTLE_ENDIAN
386         .gdb_bpt_instr          = { 0x3c, 0xc3 },
387 #else
388         .gdb_bpt_instr          = { 0xc3, 0x3c },
389 #endif
390 };