Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / s390 / mm / vmem.c
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19
20 static DEFINE_MUTEX(vmem_mutex);
21
22 struct memory_segment {
23         struct list_head list;
24         unsigned long start;
25         unsigned long size;
26 };
27
28 static LIST_HEAD(mem_segs);
29
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32         if (slab_is_available())
33                 return (void *)__get_free_pages(GFP_KERNEL, order);
34         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39         pud_t *pud = NULL;
40
41         pud = vmem_alloc_pages(2);
42         if (!pud)
43                 return NULL;
44         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45         return pud;
46 }
47
48 static inline pmd_t *vmem_pmd_alloc(void)
49 {
50         pmd_t *pmd = NULL;
51
52         pmd = vmem_alloc_pages(2);
53         if (!pmd)
54                 return NULL;
55         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
56         return pmd;
57 }
58
59 static pte_t __ref *vmem_pte_alloc(unsigned long address)
60 {
61         pte_t *pte;
62
63         if (slab_is_available())
64                 pte = (pte_t *) page_table_alloc(&init_mm);
65         else
66                 pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
67                                           PTRS_PER_PTE * sizeof(pte_t));
68         if (!pte)
69                 return NULL;
70         clear_table((unsigned long *) pte, _PAGE_INVALID,
71                     PTRS_PER_PTE * sizeof(pte_t));
72         return pte;
73 }
74
75 /*
76  * Add a physical memory range to the 1:1 mapping.
77  */
78 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
79 {
80         unsigned long end = start + size;
81         unsigned long address = start;
82         pgd_t *pg_dir;
83         pud_t *pu_dir;
84         pmd_t *pm_dir;
85         pte_t *pt_dir;
86         int ret = -ENOMEM;
87
88         while (address < end) {
89                 pg_dir = pgd_offset_k(address);
90                 if (pgd_none(*pg_dir)) {
91                         pu_dir = vmem_pud_alloc();
92                         if (!pu_dir)
93                                 goto out;
94                         pgd_populate(&init_mm, pg_dir, pu_dir);
95                 }
96                 pu_dir = pud_offset(pg_dir, address);
97 #ifndef CONFIG_DEBUG_PAGEALLOC
98                 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
99                     !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
100                         pud_val(*pu_dir) = __pa(address) |
101                                 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
102                                 (ro ? _REGION_ENTRY_PROTECT : 0);
103                         address += PUD_SIZE;
104                         continue;
105                 }
106 #endif
107                 if (pud_none(*pu_dir)) {
108                         pm_dir = vmem_pmd_alloc();
109                         if (!pm_dir)
110                                 goto out;
111                         pud_populate(&init_mm, pu_dir, pm_dir);
112                 }
113                 pm_dir = pmd_offset(pu_dir, address);
114 #ifndef CONFIG_DEBUG_PAGEALLOC
115                 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
116                     !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
117                         pmd_val(*pm_dir) = __pa(address) |
118                                 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
119                                 _SEGMENT_ENTRY_YOUNG |
120                                 (ro ? _SEGMENT_ENTRY_PROTECT : 0);
121                         address += PMD_SIZE;
122                         continue;
123                 }
124 #endif
125                 if (pmd_none(*pm_dir)) {
126                         pt_dir = vmem_pte_alloc(address);
127                         if (!pt_dir)
128                                 goto out;
129                         pmd_populate(&init_mm, pm_dir, pt_dir);
130                 }
131
132                 pt_dir = pte_offset_kernel(pm_dir, address);
133                 pte_val(*pt_dir) = __pa(address) |
134                         pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
135                 address += PAGE_SIZE;
136         }
137         ret = 0;
138 out:
139         return ret;
140 }
141
142 /*
143  * Remove a physical memory range from the 1:1 mapping.
144  * Currently only invalidates page table entries.
145  */
146 static void vmem_remove_range(unsigned long start, unsigned long size)
147 {
148         unsigned long end = start + size;
149         unsigned long address = start;
150         pgd_t *pg_dir;
151         pud_t *pu_dir;
152         pmd_t *pm_dir;
153         pte_t *pt_dir;
154         pte_t  pte;
155
156         pte_val(pte) = _PAGE_INVALID;
157         while (address < end) {
158                 pg_dir = pgd_offset_k(address);
159                 if (pgd_none(*pg_dir)) {
160                         address += PGDIR_SIZE;
161                         continue;
162                 }
163                 pu_dir = pud_offset(pg_dir, address);
164                 if (pud_none(*pu_dir)) {
165                         address += PUD_SIZE;
166                         continue;
167                 }
168                 if (pud_large(*pu_dir)) {
169                         pud_clear(pu_dir);
170                         address += PUD_SIZE;
171                         continue;
172                 }
173                 pm_dir = pmd_offset(pu_dir, address);
174                 if (pmd_none(*pm_dir)) {
175                         address += PMD_SIZE;
176                         continue;
177                 }
178                 if (pmd_large(*pm_dir)) {
179                         pmd_clear(pm_dir);
180                         address += PMD_SIZE;
181                         continue;
182                 }
183                 pt_dir = pte_offset_kernel(pm_dir, address);
184                 *pt_dir = pte;
185                 address += PAGE_SIZE;
186         }
187         flush_tlb_kernel_range(start, end);
188 }
189
190 /*
191  * Add a backed mem_map array to the virtual mem_map array.
192  */
193 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
194 {
195         unsigned long address = start;
196         pgd_t *pg_dir;
197         pud_t *pu_dir;
198         pmd_t *pm_dir;
199         pte_t *pt_dir;
200         int ret = -ENOMEM;
201
202         for (address = start; address < end;) {
203                 pg_dir = pgd_offset_k(address);
204                 if (pgd_none(*pg_dir)) {
205                         pu_dir = vmem_pud_alloc();
206                         if (!pu_dir)
207                                 goto out;
208                         pgd_populate(&init_mm, pg_dir, pu_dir);
209                 }
210
211                 pu_dir = pud_offset(pg_dir, address);
212                 if (pud_none(*pu_dir)) {
213                         pm_dir = vmem_pmd_alloc();
214                         if (!pm_dir)
215                                 goto out;
216                         pud_populate(&init_mm, pu_dir, pm_dir);
217                 }
218
219                 pm_dir = pmd_offset(pu_dir, address);
220                 if (pmd_none(*pm_dir)) {
221                         /* Use 1MB frames for vmemmap if available. We always
222                          * use large frames even if they are only partially
223                          * used.
224                          * Otherwise we would have also page tables since
225                          * vmemmap_populate gets called for each section
226                          * separately. */
227                         if (MACHINE_HAS_EDAT1) {
228                                 void *new_page;
229
230                                 new_page = vmemmap_alloc_block(PMD_SIZE, node);
231                                 if (!new_page)
232                                         goto out;
233                                 pmd_val(*pm_dir) = __pa(new_page) |
234                                         _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
235                                 address = (address + PMD_SIZE) & PMD_MASK;
236                                 continue;
237                         }
238                         pt_dir = vmem_pte_alloc(address);
239                         if (!pt_dir)
240                                 goto out;
241                         pmd_populate(&init_mm, pm_dir, pt_dir);
242                 } else if (pmd_large(*pm_dir)) {
243                         address = (address + PMD_SIZE) & PMD_MASK;
244                         continue;
245                 }
246
247                 pt_dir = pte_offset_kernel(pm_dir, address);
248                 if (pte_none(*pt_dir)) {
249                         void *new_page;
250
251                         new_page = vmemmap_alloc_block(PAGE_SIZE, node);
252                         if (!new_page)
253                                 goto out;
254                         pte_val(*pt_dir) =
255                                 __pa(new_page) | pgprot_val(PAGE_KERNEL);
256                 }
257                 address += PAGE_SIZE;
258         }
259         ret = 0;
260 out:
261         return ret;
262 }
263
264 void vmemmap_free(unsigned long start, unsigned long end)
265 {
266 }
267
268 /*
269  * Add memory segment to the segment list if it doesn't overlap with
270  * an already present segment.
271  */
272 static int insert_memory_segment(struct memory_segment *seg)
273 {
274         struct memory_segment *tmp;
275
276         if (seg->start + seg->size > VMEM_MAX_PHYS ||
277             seg->start + seg->size < seg->start)
278                 return -ERANGE;
279
280         list_for_each_entry(tmp, &mem_segs, list) {
281                 if (seg->start >= tmp->start + tmp->size)
282                         continue;
283                 if (seg->start + seg->size <= tmp->start)
284                         continue;
285                 return -ENOSPC;
286         }
287         list_add(&seg->list, &mem_segs);
288         return 0;
289 }
290
291 /*
292  * Remove memory segment from the segment list.
293  */
294 static void remove_memory_segment(struct memory_segment *seg)
295 {
296         list_del(&seg->list);
297 }
298
299 static void __remove_shared_memory(struct memory_segment *seg)
300 {
301         remove_memory_segment(seg);
302         vmem_remove_range(seg->start, seg->size);
303 }
304
305 int vmem_remove_mapping(unsigned long start, unsigned long size)
306 {
307         struct memory_segment *seg;
308         int ret;
309
310         mutex_lock(&vmem_mutex);
311
312         ret = -ENOENT;
313         list_for_each_entry(seg, &mem_segs, list) {
314                 if (seg->start == start && seg->size == size)
315                         break;
316         }
317
318         if (seg->start != start || seg->size != size)
319                 goto out;
320
321         ret = 0;
322         __remove_shared_memory(seg);
323         kfree(seg);
324 out:
325         mutex_unlock(&vmem_mutex);
326         return ret;
327 }
328
329 int vmem_add_mapping(unsigned long start, unsigned long size)
330 {
331         struct memory_segment *seg;
332         int ret;
333
334         mutex_lock(&vmem_mutex);
335         ret = -ENOMEM;
336         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
337         if (!seg)
338                 goto out;
339         seg->start = start;
340         seg->size = size;
341
342         ret = insert_memory_segment(seg);
343         if (ret)
344                 goto out_free;
345
346         ret = vmem_add_mem(start, size, 0);
347         if (ret)
348                 goto out_remove;
349         goto out;
350
351 out_remove:
352         __remove_shared_memory(seg);
353 out_free:
354         kfree(seg);
355 out:
356         mutex_unlock(&vmem_mutex);
357         return ret;
358 }
359
360 /*
361  * map whole physical memory to virtual memory (identity mapping)
362  * we reserve enough space in the vmalloc area for vmemmap to hotplug
363  * additional memory segments.
364  */
365 void __init vmem_map_init(void)
366 {
367         unsigned long ro_start, ro_end;
368         struct memblock_region *reg;
369         phys_addr_t start, end;
370
371         ro_start = PFN_ALIGN((unsigned long)&_stext);
372         ro_end = (unsigned long)&_eshared & PAGE_MASK;
373         for_each_memblock(memory, reg) {
374                 start = reg->base;
375                 end = reg->base + reg->size - 1;
376                 if (start >= ro_end || end <= ro_start)
377                         vmem_add_mem(start, end - start, 0);
378                 else if (start >= ro_start && end <= ro_end)
379                         vmem_add_mem(start, end - start, 1);
380                 else if (start >= ro_start) {
381                         vmem_add_mem(start, ro_end - start, 1);
382                         vmem_add_mem(ro_end, end - ro_end, 0);
383                 } else if (end < ro_end) {
384                         vmem_add_mem(start, ro_start - start, 0);
385                         vmem_add_mem(ro_start, end - ro_start, 1);
386                 } else {
387                         vmem_add_mem(start, ro_start - start, 0);
388                         vmem_add_mem(ro_start, ro_end - ro_start, 1);
389                         vmem_add_mem(ro_end, end - ro_end, 0);
390                 }
391         }
392 }
393
394 /*
395  * Convert memblock.memory  to a memory segment list so there is a single
396  * list that contains all memory segments.
397  */
398 static int __init vmem_convert_memory_chunk(void)
399 {
400         struct memblock_region *reg;
401         struct memory_segment *seg;
402
403         mutex_lock(&vmem_mutex);
404         for_each_memblock(memory, reg) {
405                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
406                 if (!seg)
407                         panic("Out of memory...\n");
408                 seg->start = reg->base;
409                 seg->size = reg->size;
410                 insert_memory_segment(seg);
411         }
412         mutex_unlock(&vmem_mutex);
413         return 0;
414 }
415
416 core_initcall(vmem_convert_memory_chunk);