Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include <asm/idle.h>
49 #include "entry.h"
50
51 enum {
52         ec_schedule = 0,
53         ec_call_function_single,
54         ec_stop_cpu,
55 };
56
57 enum {
58         CPU_STATE_STANDBY,
59         CPU_STATE_CONFIGURED,
60 };
61
62 static DEFINE_PER_CPU(struct cpu *, cpu_device);
63
64 struct pcpu {
65         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
66         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
67         signed char state;              /* physical cpu state */
68         signed char polarization;       /* physical polarization */
69         u16 address;                    /* physical cpu address */
70 };
71
72 static u8 boot_cpu_type;
73 static struct pcpu pcpu_devices[NR_CPUS];
74
75 unsigned int smp_cpu_mt_shift;
76 EXPORT_SYMBOL(smp_cpu_mt_shift);
77
78 unsigned int smp_cpu_mtid;
79 EXPORT_SYMBOL(smp_cpu_mtid);
80
81 static unsigned int smp_max_threads __initdata = -1U;
82
83 static int __init early_nosmt(char *s)
84 {
85         smp_max_threads = 1;
86         return 0;
87 }
88 early_param("nosmt", early_nosmt);
89
90 static int __init early_smt(char *s)
91 {
92         get_option(&s, &smp_max_threads);
93         return 0;
94 }
95 early_param("smt", early_smt);
96
97 /*
98  * The smp_cpu_state_mutex must be held when changing the state or polarization
99  * member of a pcpu data structure within the pcpu_devices arreay.
100  */
101 DEFINE_MUTEX(smp_cpu_state_mutex);
102
103 /*
104  * Signal processor helper functions.
105  */
106 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
107                                     u32 *status)
108 {
109         int cc;
110
111         while (1) {
112                 cc = __pcpu_sigp(addr, order, parm, NULL);
113                 if (cc != SIGP_CC_BUSY)
114                         return cc;
115                 cpu_relax();
116         }
117 }
118
119 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
120 {
121         int cc, retry;
122
123         for (retry = 0; ; retry++) {
124                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
125                 if (cc != SIGP_CC_BUSY)
126                         break;
127                 if (retry >= 3)
128                         udelay(10);
129         }
130         return cc;
131 }
132
133 static inline int pcpu_stopped(struct pcpu *pcpu)
134 {
135         u32 uninitialized_var(status);
136
137         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
138                         0, &status) != SIGP_CC_STATUS_STORED)
139                 return 0;
140         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
141 }
142
143 static inline int pcpu_running(struct pcpu *pcpu)
144 {
145         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
146                         0, NULL) != SIGP_CC_STATUS_STORED)
147                 return 1;
148         /* Status stored condition code is equivalent to cpu not running. */
149         return 0;
150 }
151
152 /*
153  * Find struct pcpu by cpu address.
154  */
155 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
156 {
157         int cpu;
158
159         for_each_cpu(cpu, mask)
160                 if (pcpu_devices[cpu].address == address)
161                         return pcpu_devices + cpu;
162         return NULL;
163 }
164
165 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
166 {
167         int order;
168
169         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
170                 return;
171         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
172         pcpu_sigp_retry(pcpu, order, 0);
173 }
174
175 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
176 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
177
178 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
179 {
180         unsigned long async_stack, panic_stack;
181         struct _lowcore *lc;
182
183         if (pcpu != &pcpu_devices[0]) {
184                 pcpu->lowcore = (struct _lowcore *)
185                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
186                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
187                 panic_stack = __get_free_page(GFP_KERNEL);
188                 if (!pcpu->lowcore || !panic_stack || !async_stack)
189                         goto out;
190         } else {
191                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
192                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
193         }
194         lc = pcpu->lowcore;
195         memcpy(lc, &S390_lowcore, 512);
196         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
197         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
198         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
199         lc->cpu_nr = cpu;
200         lc->spinlock_lockval = arch_spin_lockval(cpu);
201         if (MACHINE_HAS_VX)
202                 lc->vector_save_area_addr =
203                         (unsigned long) &lc->vector_save_area;
204         if (vdso_alloc_per_cpu(lc))
205                 goto out;
206         lowcore_ptr[cpu] = lc;
207         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
208         return 0;
209 out:
210         if (pcpu != &pcpu_devices[0]) {
211                 free_page(panic_stack);
212                 free_pages(async_stack, ASYNC_ORDER);
213                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
214         }
215         return -ENOMEM;
216 }
217
218 #ifdef CONFIG_HOTPLUG_CPU
219
220 static void pcpu_free_lowcore(struct pcpu *pcpu)
221 {
222         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
223         lowcore_ptr[pcpu - pcpu_devices] = NULL;
224         vdso_free_per_cpu(pcpu->lowcore);
225         if (pcpu == &pcpu_devices[0])
226                 return;
227         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
228         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
229         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230 }
231
232 #endif /* CONFIG_HOTPLUG_CPU */
233
234 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
235 {
236         struct _lowcore *lc = pcpu->lowcore;
237
238         if (MACHINE_HAS_TLB_LC)
239                 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
240         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
241         atomic_inc(&init_mm.context.attach_count);
242         lc->cpu_nr = cpu;
243         lc->spinlock_lockval = arch_spin_lockval(cpu);
244         lc->percpu_offset = __per_cpu_offset[cpu];
245         lc->kernel_asce = S390_lowcore.kernel_asce;
246         lc->machine_flags = S390_lowcore.machine_flags;
247         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
248         __ctl_store(lc->cregs_save_area, 0, 15);
249         save_access_regs((unsigned int *) lc->access_regs_save_area);
250         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
251                MAX_FACILITY_BIT/8);
252 }
253
254 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
255 {
256         struct _lowcore *lc = pcpu->lowcore;
257         struct thread_info *ti = task_thread_info(tsk);
258
259         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
260                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
261         lc->thread_info = (unsigned long) task_thread_info(tsk);
262         lc->current_task = (unsigned long) tsk;
263         lc->user_timer = ti->user_timer;
264         lc->system_timer = ti->system_timer;
265         lc->steal_timer = 0;
266 }
267
268 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
269 {
270         struct _lowcore *lc = pcpu->lowcore;
271
272         lc->restart_stack = lc->kernel_stack;
273         lc->restart_fn = (unsigned long) func;
274         lc->restart_data = (unsigned long) data;
275         lc->restart_source = -1UL;
276         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
277 }
278
279 /*
280  * Call function via PSW restart on pcpu and stop the current cpu.
281  */
282 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
283                           void *data, unsigned long stack)
284 {
285         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
286         unsigned long source_cpu = stap();
287
288         __load_psw_mask(PSW_KERNEL_BITS);
289         if (pcpu->address == source_cpu)
290                 func(data);     /* should not return */
291         /* Stop target cpu (if func returns this stops the current cpu). */
292         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
293         /* Restart func on the target cpu and stop the current cpu. */
294         mem_assign_absolute(lc->restart_stack, stack);
295         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
296         mem_assign_absolute(lc->restart_data, (unsigned long) data);
297         mem_assign_absolute(lc->restart_source, source_cpu);
298         asm volatile(
299                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
300                 "       brc     2,0b    # busy, try again\n"
301                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
302                 "       brc     2,1b    # busy, try again\n"
303                 : : "d" (pcpu->address), "d" (source_cpu),
304                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
305                 : "0", "1", "cc");
306         for (;;) ;
307 }
308
309 /*
310  * Enable additional logical cpus for multi-threading.
311  */
312 static int pcpu_set_smt(unsigned int mtid)
313 {
314         register unsigned long reg1 asm ("1") = (unsigned long) mtid;
315         int cc;
316
317         if (smp_cpu_mtid == mtid)
318                 return 0;
319         asm volatile(
320                 "       sigp    %1,0,%2 # sigp set multi-threading\n"
321                 "       ipm     %0\n"
322                 "       srl     %0,28\n"
323                 : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
324                 : "cc");
325         if (cc == 0) {
326                 smp_cpu_mtid = mtid;
327                 smp_cpu_mt_shift = 0;
328                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
329                         smp_cpu_mt_shift++;
330                 pcpu_devices[0].address = stap();
331         }
332         return cc;
333 }
334
335 /*
336  * Call function on an online CPU.
337  */
338 void smp_call_online_cpu(void (*func)(void *), void *data)
339 {
340         struct pcpu *pcpu;
341
342         /* Use the current cpu if it is online. */
343         pcpu = pcpu_find_address(cpu_online_mask, stap());
344         if (!pcpu)
345                 /* Use the first online cpu. */
346                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
347         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
348 }
349
350 /*
351  * Call function on the ipl CPU.
352  */
353 void smp_call_ipl_cpu(void (*func)(void *), void *data)
354 {
355         pcpu_delegate(&pcpu_devices[0], func, data,
356                       pcpu_devices->lowcore->panic_stack -
357                       PANIC_FRAME_OFFSET + PAGE_SIZE);
358 }
359
360 int smp_find_processor_id(u16 address)
361 {
362         int cpu;
363
364         for_each_present_cpu(cpu)
365                 if (pcpu_devices[cpu].address == address)
366                         return cpu;
367         return -1;
368 }
369
370 int smp_vcpu_scheduled(int cpu)
371 {
372         return pcpu_running(pcpu_devices + cpu);
373 }
374
375 void smp_yield_cpu(int cpu)
376 {
377         if (MACHINE_HAS_DIAG9C)
378                 asm volatile("diag %0,0,0x9c"
379                              : : "d" (pcpu_devices[cpu].address));
380         else if (MACHINE_HAS_DIAG44)
381                 asm volatile("diag 0,0,0x44");
382 }
383
384 /*
385  * Send cpus emergency shutdown signal. This gives the cpus the
386  * opportunity to complete outstanding interrupts.
387  */
388 static void smp_emergency_stop(cpumask_t *cpumask)
389 {
390         u64 end;
391         int cpu;
392
393         end = get_tod_clock() + (1000000UL << 12);
394         for_each_cpu(cpu, cpumask) {
395                 struct pcpu *pcpu = pcpu_devices + cpu;
396                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
397                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
398                                    0, NULL) == SIGP_CC_BUSY &&
399                        get_tod_clock() < end)
400                         cpu_relax();
401         }
402         while (get_tod_clock() < end) {
403                 for_each_cpu(cpu, cpumask)
404                         if (pcpu_stopped(pcpu_devices + cpu))
405                                 cpumask_clear_cpu(cpu, cpumask);
406                 if (cpumask_empty(cpumask))
407                         break;
408                 cpu_relax();
409         }
410 }
411
412 /*
413  * Stop all cpus but the current one.
414  */
415 void smp_send_stop(void)
416 {
417         cpumask_t cpumask;
418         int cpu;
419
420         /* Disable all interrupts/machine checks */
421         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
422         trace_hardirqs_off();
423
424         debug_set_critical();
425         cpumask_copy(&cpumask, cpu_online_mask);
426         cpumask_clear_cpu(smp_processor_id(), &cpumask);
427
428         if (oops_in_progress)
429                 smp_emergency_stop(&cpumask);
430
431         /* stop all processors */
432         for_each_cpu(cpu, &cpumask) {
433                 struct pcpu *pcpu = pcpu_devices + cpu;
434                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
435                 while (!pcpu_stopped(pcpu))
436                         cpu_relax();
437         }
438 }
439
440 /*
441  * This is the main routine where commands issued by other
442  * cpus are handled.
443  */
444 static void smp_handle_ext_call(void)
445 {
446         unsigned long bits;
447
448         /* handle bit signal external calls */
449         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
450         if (test_bit(ec_stop_cpu, &bits))
451                 smp_stop_cpu();
452         if (test_bit(ec_schedule, &bits))
453                 scheduler_ipi();
454         if (test_bit(ec_call_function_single, &bits))
455                 generic_smp_call_function_single_interrupt();
456 }
457
458 static void do_ext_call_interrupt(struct ext_code ext_code,
459                                   unsigned int param32, unsigned long param64)
460 {
461         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
462         smp_handle_ext_call();
463 }
464
465 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
466 {
467         int cpu;
468
469         for_each_cpu(cpu, mask)
470                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
471 }
472
473 void arch_send_call_function_single_ipi(int cpu)
474 {
475         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
476 }
477
478 /*
479  * this function sends a 'reschedule' IPI to another CPU.
480  * it goes straight through and wastes no time serializing
481  * anything. Worst case is that we lose a reschedule ...
482  */
483 void smp_send_reschedule(int cpu)
484 {
485         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
486 }
487
488 /*
489  * parameter area for the set/clear control bit callbacks
490  */
491 struct ec_creg_mask_parms {
492         unsigned long orval;
493         unsigned long andval;
494         int cr;
495 };
496
497 /*
498  * callback for setting/clearing control bits
499  */
500 static void smp_ctl_bit_callback(void *info)
501 {
502         struct ec_creg_mask_parms *pp = info;
503         unsigned long cregs[16];
504
505         __ctl_store(cregs, 0, 15);
506         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
507         __ctl_load(cregs, 0, 15);
508 }
509
510 /*
511  * Set a bit in a control register of all cpus
512  */
513 void smp_ctl_set_bit(int cr, int bit)
514 {
515         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
516
517         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
518 }
519 EXPORT_SYMBOL(smp_ctl_set_bit);
520
521 /*
522  * Clear a bit in a control register of all cpus
523  */
524 void smp_ctl_clear_bit(int cr, int bit)
525 {
526         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
527
528         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
529 }
530 EXPORT_SYMBOL(smp_ctl_clear_bit);
531
532 #ifdef CONFIG_CRASH_DUMP
533
534 static inline void __smp_store_cpu_state(int cpu, u16 address, int is_boot_cpu)
535 {
536         void *lc = pcpu_devices[0].lowcore;
537         struct save_area_ext *sa_ext;
538         unsigned long vx_sa;
539
540         sa_ext = dump_save_area_create(cpu);
541         if (!sa_ext)
542                 panic("could not allocate memory for save area\n");
543         if (is_boot_cpu) {
544                 /* Copy the registers of the boot CPU. */
545                 copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
546                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
547                 if (MACHINE_HAS_VX)
548                         save_vx_regs_safe(sa_ext->vx_regs);
549                 return;
550         }
551         /* Get the registers of a non-boot cpu. */
552         __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
553         memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
554         if (!MACHINE_HAS_VX)
555                 return;
556         /* Get the VX registers */
557         vx_sa = __get_free_page(GFP_KERNEL);
558         if (!vx_sa)
559                 panic("could not allocate memory for VX save area\n");
560         __pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
561         memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
562         free_page(vx_sa);
563 }
564
565 /*
566  * Collect CPU state of the previous, crashed system.
567  * There are four cases:
568  * 1) standard zfcp dump
569  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
570  *    The state for all CPUs except the boot CPU needs to be collected
571  *    with sigp stop-and-store-status. The boot CPU state is located in
572  *    the absolute lowcore of the memory stored in the HSA. The zcore code
573  *    will allocate the save area and copy the boot CPU state from the HSA.
574  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
575  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
576  *    The state for all CPUs except the boot CPU needs to be collected
577  *    with sigp stop-and-store-status. The firmware or the boot-loader
578  *    stored the registers of the boot CPU in the absolute lowcore in the
579  *    memory of the old system.
580  * 3) kdump and the old kernel did not store the CPU state,
581  *    or stand-alone kdump for DASD
582  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
583  *    The state for all CPUs except the boot CPU needs to be collected
584  *    with sigp stop-and-store-status. The kexec code or the boot-loader
585  *    stored the registers of the boot CPU in the memory of the old system.
586  * 4) kdump and the old kernel stored the CPU state
587  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
588  *    The state of all CPUs is stored in ELF sections in the memory of the
589  *    old system. The ELF sections are picked up by the crash_dump code
590  *    via elfcorehdr_addr.
591  */
592 static void __init smp_store_cpu_states(struct sclp_cpu_info *info)
593 {
594         unsigned int cpu, address, i, j;
595         int is_boot_cpu;
596
597         if (is_kdump_kernel())
598                 /* Previous system stored the CPU states. Nothing to do. */
599                 return;
600         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
601                 /* No previous system present, normal boot. */
602                 return;
603         /* Set multi-threading state to the previous system. */
604         pcpu_set_smt(sclp_get_mtid_prev());
605         /* Collect CPU states. */
606         cpu = 0;
607         for (i = 0; i < info->configured; i++) {
608                 /* Skip CPUs with different CPU type. */
609                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
610                         continue;
611                 for (j = 0; j <= smp_cpu_mtid; j++, cpu++) {
612                         address = (info->cpu[i].core_id << smp_cpu_mt_shift) + j;
613                         is_boot_cpu = (address == pcpu_devices[0].address);
614                         if (is_boot_cpu && !OLDMEM_BASE)
615                                 /* Skip boot CPU for standard zfcp dump. */
616                                 continue;
617                         /* Get state for this CPu. */
618                         __smp_store_cpu_state(cpu, address, is_boot_cpu);
619                 }
620         }
621 }
622
623 int smp_store_status(int cpu)
624 {
625         unsigned long vx_sa;
626         struct pcpu *pcpu;
627
628         pcpu = pcpu_devices + cpu;
629         if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
630                               0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
631                 return -EIO;
632         if (!MACHINE_HAS_VX)
633                 return 0;
634         vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
635         __pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
636                           vx_sa, NULL);
637         return 0;
638 }
639
640 #endif /* CONFIG_CRASH_DUMP */
641
642 void smp_cpu_set_polarization(int cpu, int val)
643 {
644         pcpu_devices[cpu].polarization = val;
645 }
646
647 int smp_cpu_get_polarization(int cpu)
648 {
649         return pcpu_devices[cpu].polarization;
650 }
651
652 static struct sclp_cpu_info *smp_get_cpu_info(void)
653 {
654         static int use_sigp_detection;
655         struct sclp_cpu_info *info;
656         int address;
657
658         info = kzalloc(sizeof(*info), GFP_KERNEL);
659         if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
660                 use_sigp_detection = 1;
661                 for (address = 0; address <= MAX_CPU_ADDRESS;
662                      address += (1U << smp_cpu_mt_shift)) {
663                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
664                             SIGP_CC_NOT_OPERATIONAL)
665                                 continue;
666                         info->cpu[info->configured].core_id =
667                                 address >> smp_cpu_mt_shift;
668                         info->configured++;
669                 }
670                 info->combined = info->configured;
671         }
672         return info;
673 }
674
675 static int smp_add_present_cpu(int cpu);
676
677 static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add)
678 {
679         struct pcpu *pcpu;
680         cpumask_t avail;
681         int cpu, nr, i, j;
682         u16 address;
683
684         nr = 0;
685         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
686         cpu = cpumask_first(&avail);
687         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
688                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
689                         continue;
690                 address = info->cpu[i].core_id << smp_cpu_mt_shift;
691                 for (j = 0; j <= smp_cpu_mtid; j++) {
692                         if (pcpu_find_address(cpu_present_mask, address + j))
693                                 continue;
694                         pcpu = pcpu_devices + cpu;
695                         pcpu->address = address + j;
696                         pcpu->state =
697                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
698                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
699                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
700                         set_cpu_present(cpu, true);
701                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
702                                 set_cpu_present(cpu, false);
703                         else
704                                 nr++;
705                         cpu = cpumask_next(cpu, &avail);
706                         if (cpu >= nr_cpu_ids)
707                                 break;
708                 }
709         }
710         return nr;
711 }
712
713 static void __init smp_detect_cpus(void)
714 {
715         unsigned int cpu, mtid, c_cpus, s_cpus;
716         struct sclp_cpu_info *info;
717         u16 address;
718
719         /* Get CPU information */
720         info = smp_get_cpu_info();
721         if (!info)
722                 panic("smp_detect_cpus failed to allocate memory\n");
723
724         /* Find boot CPU type */
725         if (info->has_cpu_type) {
726                 address = stap();
727                 for (cpu = 0; cpu < info->combined; cpu++)
728                         if (info->cpu[cpu].core_id == address) {
729                                 /* The boot cpu dictates the cpu type. */
730                                 boot_cpu_type = info->cpu[cpu].type;
731                                 break;
732                         }
733                 if (cpu >= info->combined)
734                         panic("Could not find boot CPU type");
735         }
736
737 #ifdef CONFIG_CRASH_DUMP
738         /* Collect CPU state of previous system */
739         smp_store_cpu_states(info);
740 #endif
741
742         /* Set multi-threading state for the current system */
743         mtid = sclp_get_mtid(boot_cpu_type);
744         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
745         pcpu_set_smt(mtid);
746
747         /* Print number of CPUs */
748         c_cpus = s_cpus = 0;
749         for (cpu = 0; cpu < info->combined; cpu++) {
750                 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
751                         continue;
752                 if (cpu < info->configured)
753                         c_cpus += smp_cpu_mtid + 1;
754                 else
755                         s_cpus += smp_cpu_mtid + 1;
756         }
757         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
758
759         /* Add CPUs present at boot */
760         get_online_cpus();
761         __smp_rescan_cpus(info, 0);
762         put_online_cpus();
763         kfree(info);
764 }
765
766 /*
767  *      Activate a secondary processor.
768  */
769 static void smp_start_secondary(void *cpuvoid)
770 {
771         S390_lowcore.last_update_clock = get_tod_clock();
772         S390_lowcore.restart_stack = (unsigned long) restart_stack;
773         S390_lowcore.restart_fn = (unsigned long) do_restart;
774         S390_lowcore.restart_data = 0;
775         S390_lowcore.restart_source = -1UL;
776         restore_access_regs(S390_lowcore.access_regs_save_area);
777         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
778         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
779         cpu_init();
780         preempt_disable();
781         init_cpu_timer();
782         vtime_init();
783         pfault_init();
784         notify_cpu_starting(smp_processor_id());
785         set_cpu_online(smp_processor_id(), true);
786         inc_irq_stat(CPU_RST);
787         local_irq_enable();
788         cpu_startup_entry(CPUHP_ONLINE);
789 }
790
791 /* Upping and downing of CPUs */
792 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
793 {
794         struct pcpu *pcpu;
795         int base, i, rc;
796
797         pcpu = pcpu_devices + cpu;
798         if (pcpu->state != CPU_STATE_CONFIGURED)
799                 return -EIO;
800         base = cpu - (cpu % (smp_cpu_mtid + 1));
801         for (i = 0; i <= smp_cpu_mtid; i++) {
802                 if (base + i < nr_cpu_ids)
803                         if (cpu_online(base + i))
804                                 break;
805         }
806         /*
807          * If this is the first CPU of the core to get online
808          * do an initial CPU reset.
809          */
810         if (i > smp_cpu_mtid &&
811             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
812             SIGP_CC_ORDER_CODE_ACCEPTED)
813                 return -EIO;
814
815         rc = pcpu_alloc_lowcore(pcpu, cpu);
816         if (rc)
817                 return rc;
818         pcpu_prepare_secondary(pcpu, cpu);
819         pcpu_attach_task(pcpu, tidle);
820         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
821         /* Wait until cpu puts itself in the online & active maps */
822         while (!cpu_online(cpu) || !cpu_active(cpu))
823                 cpu_relax();
824         return 0;
825 }
826
827 static unsigned int setup_possible_cpus __initdata;
828
829 static int __init _setup_possible_cpus(char *s)
830 {
831         get_option(&s, &setup_possible_cpus);
832         return 0;
833 }
834 early_param("possible_cpus", _setup_possible_cpus);
835
836 #ifdef CONFIG_HOTPLUG_CPU
837
838 int __cpu_disable(void)
839 {
840         unsigned long cregs[16];
841
842         /* Handle possible pending IPIs */
843         smp_handle_ext_call();
844         set_cpu_online(smp_processor_id(), false);
845         /* Disable pseudo page faults on this cpu. */
846         pfault_fini();
847         /* Disable interrupt sources via control register. */
848         __ctl_store(cregs, 0, 15);
849         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
850         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
851         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
852         __ctl_load(cregs, 0, 15);
853         clear_cpu_flag(CIF_NOHZ_DELAY);
854         return 0;
855 }
856
857 void __cpu_die(unsigned int cpu)
858 {
859         struct pcpu *pcpu;
860
861         /* Wait until target cpu is down */
862         pcpu = pcpu_devices + cpu;
863         while (!pcpu_stopped(pcpu))
864                 cpu_relax();
865         pcpu_free_lowcore(pcpu);
866         atomic_dec(&init_mm.context.attach_count);
867         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
868         if (MACHINE_HAS_TLB_LC)
869                 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
870 }
871
872 void __noreturn cpu_die(void)
873 {
874         idle_task_exit();
875         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
876         for (;;) ;
877 }
878
879 #endif /* CONFIG_HOTPLUG_CPU */
880
881 void __init smp_fill_possible_mask(void)
882 {
883         unsigned int possible, sclp, cpu;
884
885         sclp = min(smp_max_threads, sclp_get_mtid_max() + 1);
886         sclp = sclp_get_max_cpu()*sclp ?: nr_cpu_ids;
887         possible = setup_possible_cpus ?: nr_cpu_ids;
888         possible = min(possible, sclp);
889         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
890                 set_cpu_possible(cpu, true);
891 }
892
893 void __init smp_prepare_cpus(unsigned int max_cpus)
894 {
895         /* request the 0x1201 emergency signal external interrupt */
896         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
897                 panic("Couldn't request external interrupt 0x1201");
898         /* request the 0x1202 external call external interrupt */
899         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
900                 panic("Couldn't request external interrupt 0x1202");
901         smp_detect_cpus();
902 }
903
904 void __init smp_prepare_boot_cpu(void)
905 {
906         struct pcpu *pcpu = pcpu_devices;
907
908         pcpu->state = CPU_STATE_CONFIGURED;
909         pcpu->address = stap();
910         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
911         S390_lowcore.percpu_offset = __per_cpu_offset[0];
912         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
913         set_cpu_present(0, true);
914         set_cpu_online(0, true);
915 }
916
917 void __init smp_cpus_done(unsigned int max_cpus)
918 {
919 }
920
921 void __init smp_setup_processor_id(void)
922 {
923         S390_lowcore.cpu_nr = 0;
924         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
925 }
926
927 /*
928  * the frequency of the profiling timer can be changed
929  * by writing a multiplier value into /proc/profile.
930  *
931  * usually you want to run this on all CPUs ;)
932  */
933 int setup_profiling_timer(unsigned int multiplier)
934 {
935         return 0;
936 }
937
938 #ifdef CONFIG_HOTPLUG_CPU
939 static ssize_t cpu_configure_show(struct device *dev,
940                                   struct device_attribute *attr, char *buf)
941 {
942         ssize_t count;
943
944         mutex_lock(&smp_cpu_state_mutex);
945         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
946         mutex_unlock(&smp_cpu_state_mutex);
947         return count;
948 }
949
950 static ssize_t cpu_configure_store(struct device *dev,
951                                    struct device_attribute *attr,
952                                    const char *buf, size_t count)
953 {
954         struct pcpu *pcpu;
955         int cpu, val, rc, i;
956         char delim;
957
958         if (sscanf(buf, "%d %c", &val, &delim) != 1)
959                 return -EINVAL;
960         if (val != 0 && val != 1)
961                 return -EINVAL;
962         get_online_cpus();
963         mutex_lock(&smp_cpu_state_mutex);
964         rc = -EBUSY;
965         /* disallow configuration changes of online cpus and cpu 0 */
966         cpu = dev->id;
967         cpu -= cpu % (smp_cpu_mtid + 1);
968         if (cpu == 0)
969                 goto out;
970         for (i = 0; i <= smp_cpu_mtid; i++)
971                 if (cpu_online(cpu + i))
972                         goto out;
973         pcpu = pcpu_devices + cpu;
974         rc = 0;
975         switch (val) {
976         case 0:
977                 if (pcpu->state != CPU_STATE_CONFIGURED)
978                         break;
979                 rc = sclp_cpu_deconfigure(pcpu->address >> smp_cpu_mt_shift);
980                 if (rc)
981                         break;
982                 for (i = 0; i <= smp_cpu_mtid; i++) {
983                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
984                                 continue;
985                         pcpu[i].state = CPU_STATE_STANDBY;
986                         smp_cpu_set_polarization(cpu + i,
987                                                  POLARIZATION_UNKNOWN);
988                 }
989                 topology_expect_change();
990                 break;
991         case 1:
992                 if (pcpu->state != CPU_STATE_STANDBY)
993                         break;
994                 rc = sclp_cpu_configure(pcpu->address >> smp_cpu_mt_shift);
995                 if (rc)
996                         break;
997                 for (i = 0; i <= smp_cpu_mtid; i++) {
998                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
999                                 continue;
1000                         pcpu[i].state = CPU_STATE_CONFIGURED;
1001                         smp_cpu_set_polarization(cpu + i,
1002                                                  POLARIZATION_UNKNOWN);
1003                 }
1004                 topology_expect_change();
1005                 break;
1006         default:
1007                 break;
1008         }
1009 out:
1010         mutex_unlock(&smp_cpu_state_mutex);
1011         put_online_cpus();
1012         return rc ? rc : count;
1013 }
1014 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1015 #endif /* CONFIG_HOTPLUG_CPU */
1016
1017 static ssize_t show_cpu_address(struct device *dev,
1018                                 struct device_attribute *attr, char *buf)
1019 {
1020         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1021 }
1022 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1023
1024 static struct attribute *cpu_common_attrs[] = {
1025 #ifdef CONFIG_HOTPLUG_CPU
1026         &dev_attr_configure.attr,
1027 #endif
1028         &dev_attr_address.attr,
1029         NULL,
1030 };
1031
1032 static struct attribute_group cpu_common_attr_group = {
1033         .attrs = cpu_common_attrs,
1034 };
1035
1036 static struct attribute *cpu_online_attrs[] = {
1037         &dev_attr_idle_count.attr,
1038         &dev_attr_idle_time_us.attr,
1039         NULL,
1040 };
1041
1042 static struct attribute_group cpu_online_attr_group = {
1043         .attrs = cpu_online_attrs,
1044 };
1045
1046 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1047                           void *hcpu)
1048 {
1049         unsigned int cpu = (unsigned int)(long)hcpu;
1050         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1051         int err = 0;
1052
1053         switch (action & ~CPU_TASKS_FROZEN) {
1054         case CPU_ONLINE:
1055                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1056                 break;
1057         case CPU_DEAD:
1058                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1059                 break;
1060         }
1061         return notifier_from_errno(err);
1062 }
1063
1064 static int smp_add_present_cpu(int cpu)
1065 {
1066         struct device *s;
1067         struct cpu *c;
1068         int rc;
1069
1070         c = kzalloc(sizeof(*c), GFP_KERNEL);
1071         if (!c)
1072                 return -ENOMEM;
1073         per_cpu(cpu_device, cpu) = c;
1074         s = &c->dev;
1075         c->hotpluggable = 1;
1076         rc = register_cpu(c, cpu);
1077         if (rc)
1078                 goto out;
1079         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1080         if (rc)
1081                 goto out_cpu;
1082         if (cpu_online(cpu)) {
1083                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1084                 if (rc)
1085                         goto out_online;
1086         }
1087         rc = topology_cpu_init(c);
1088         if (rc)
1089                 goto out_topology;
1090         return 0;
1091
1092 out_topology:
1093         if (cpu_online(cpu))
1094                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1095 out_online:
1096         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1097 out_cpu:
1098 #ifdef CONFIG_HOTPLUG_CPU
1099         unregister_cpu(c);
1100 #endif
1101 out:
1102         return rc;
1103 }
1104
1105 #ifdef CONFIG_HOTPLUG_CPU
1106
1107 int __ref smp_rescan_cpus(void)
1108 {
1109         struct sclp_cpu_info *info;
1110         int nr;
1111
1112         info = smp_get_cpu_info();
1113         if (!info)
1114                 return -ENOMEM;
1115         get_online_cpus();
1116         mutex_lock(&smp_cpu_state_mutex);
1117         nr = __smp_rescan_cpus(info, 1);
1118         mutex_unlock(&smp_cpu_state_mutex);
1119         put_online_cpus();
1120         kfree(info);
1121         if (nr)
1122                 topology_schedule_update();
1123         return 0;
1124 }
1125
1126 static ssize_t __ref rescan_store(struct device *dev,
1127                                   struct device_attribute *attr,
1128                                   const char *buf,
1129                                   size_t count)
1130 {
1131         int rc;
1132
1133         rc = smp_rescan_cpus();
1134         return rc ? rc : count;
1135 }
1136 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1137 #endif /* CONFIG_HOTPLUG_CPU */
1138
1139 static int __init s390_smp_init(void)
1140 {
1141         int cpu, rc = 0;
1142
1143 #ifdef CONFIG_HOTPLUG_CPU
1144         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1145         if (rc)
1146                 return rc;
1147 #endif
1148         cpu_notifier_register_begin();
1149         for_each_present_cpu(cpu) {
1150                 rc = smp_add_present_cpu(cpu);
1151                 if (rc)
1152                         goto out;
1153         }
1154
1155         __hotcpu_notifier(smp_cpu_notify, 0);
1156
1157 out:
1158         cpu_notifier_register_done();
1159         return rc;
1160 }
1161 subsys_initcall(s390_smp_init);