These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/switch_to.h>
38 #include <asm/facility.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/tlbflush.h>
43 #include <asm/vtimer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/vdso.h>
47 #include <asm/debug.h>
48 #include <asm/os_info.h>
49 #include <asm/sigp.h>
50 #include <asm/idle.h>
51 #include "entry.h"
52
53 enum {
54         ec_schedule = 0,
55         ec_call_function_single,
56         ec_stop_cpu,
57 };
58
59 enum {
60         CPU_STATE_STANDBY,
61         CPU_STATE_CONFIGURED,
62 };
63
64 static DEFINE_PER_CPU(struct cpu *, cpu_device);
65
66 struct pcpu {
67         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
68         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
69         signed char state;              /* physical cpu state */
70         signed char polarization;       /* physical polarization */
71         u16 address;                    /* physical cpu address */
72 };
73
74 static u8 boot_core_type;
75 static struct pcpu pcpu_devices[NR_CPUS];
76
77 unsigned int smp_cpu_mt_shift;
78 EXPORT_SYMBOL(smp_cpu_mt_shift);
79
80 unsigned int smp_cpu_mtid;
81 EXPORT_SYMBOL(smp_cpu_mtid);
82
83 static unsigned int smp_max_threads __initdata = -1U;
84
85 static int __init early_nosmt(char *s)
86 {
87         smp_max_threads = 1;
88         return 0;
89 }
90 early_param("nosmt", early_nosmt);
91
92 static int __init early_smt(char *s)
93 {
94         get_option(&s, &smp_max_threads);
95         return 0;
96 }
97 early_param("smt", early_smt);
98
99 /*
100  * The smp_cpu_state_mutex must be held when changing the state or polarization
101  * member of a pcpu data structure within the pcpu_devices arreay.
102  */
103 DEFINE_MUTEX(smp_cpu_state_mutex);
104
105 /*
106  * Signal processor helper functions.
107  */
108 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
109                                     u32 *status)
110 {
111         int cc;
112
113         while (1) {
114                 cc = __pcpu_sigp(addr, order, parm, NULL);
115                 if (cc != SIGP_CC_BUSY)
116                         return cc;
117                 cpu_relax();
118         }
119 }
120
121 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
122 {
123         int cc, retry;
124
125         for (retry = 0; ; retry++) {
126                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
127                 if (cc != SIGP_CC_BUSY)
128                         break;
129                 if (retry >= 3)
130                         udelay(10);
131         }
132         return cc;
133 }
134
135 static inline int pcpu_stopped(struct pcpu *pcpu)
136 {
137         u32 uninitialized_var(status);
138
139         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
140                         0, &status) != SIGP_CC_STATUS_STORED)
141                 return 0;
142         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
143 }
144
145 static inline int pcpu_running(struct pcpu *pcpu)
146 {
147         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
148                         0, NULL) != SIGP_CC_STATUS_STORED)
149                 return 1;
150         /* Status stored condition code is equivalent to cpu not running. */
151         return 0;
152 }
153
154 /*
155  * Find struct pcpu by cpu address.
156  */
157 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
158 {
159         int cpu;
160
161         for_each_cpu(cpu, mask)
162                 if (pcpu_devices[cpu].address == address)
163                         return pcpu_devices + cpu;
164         return NULL;
165 }
166
167 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
168 {
169         int order;
170
171         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
172                 return;
173         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
174         pcpu_sigp_retry(pcpu, order, 0);
175 }
176
177 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
178 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
179
180 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
181 {
182         unsigned long async_stack, panic_stack;
183         struct _lowcore *lc;
184
185         if (pcpu != &pcpu_devices[0]) {
186                 pcpu->lowcore = (struct _lowcore *)
187                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
188                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
189                 panic_stack = __get_free_page(GFP_KERNEL);
190                 if (!pcpu->lowcore || !panic_stack || !async_stack)
191                         goto out;
192         } else {
193                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
194                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
195         }
196         lc = pcpu->lowcore;
197         memcpy(lc, &S390_lowcore, 512);
198         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
199         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
200         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
201         lc->cpu_nr = cpu;
202         lc->spinlock_lockval = arch_spin_lockval(cpu);
203         if (MACHINE_HAS_VX)
204                 lc->vector_save_area_addr =
205                         (unsigned long) &lc->vector_save_area;
206         if (vdso_alloc_per_cpu(lc))
207                 goto out;
208         lowcore_ptr[cpu] = lc;
209         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
210         return 0;
211 out:
212         if (pcpu != &pcpu_devices[0]) {
213                 free_page(panic_stack);
214                 free_pages(async_stack, ASYNC_ORDER);
215                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
216         }
217         return -ENOMEM;
218 }
219
220 #ifdef CONFIG_HOTPLUG_CPU
221
222 static void pcpu_free_lowcore(struct pcpu *pcpu)
223 {
224         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
225         lowcore_ptr[pcpu - pcpu_devices] = NULL;
226         vdso_free_per_cpu(pcpu->lowcore);
227         if (pcpu == &pcpu_devices[0])
228                 return;
229         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
230         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
231         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
232 }
233
234 #endif /* CONFIG_HOTPLUG_CPU */
235
236 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
237 {
238         struct _lowcore *lc = pcpu->lowcore;
239
240         if (MACHINE_HAS_TLB_LC)
241                 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
242         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
243         atomic_inc(&init_mm.context.attach_count);
244         lc->cpu_nr = cpu;
245         lc->spinlock_lockval = arch_spin_lockval(cpu);
246         lc->percpu_offset = __per_cpu_offset[cpu];
247         lc->kernel_asce = S390_lowcore.kernel_asce;
248         lc->machine_flags = S390_lowcore.machine_flags;
249         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
250         __ctl_store(lc->cregs_save_area, 0, 15);
251         save_access_regs((unsigned int *) lc->access_regs_save_area);
252         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
253                MAX_FACILITY_BIT/8);
254 }
255
256 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
257 {
258         struct _lowcore *lc = pcpu->lowcore;
259         struct thread_info *ti = task_thread_info(tsk);
260
261         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
262                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
263         lc->thread_info = (unsigned long) task_thread_info(tsk);
264         lc->current_task = (unsigned long) tsk;
265         lc->lpp = LPP_MAGIC;
266         lc->current_pid = tsk->pid;
267         lc->user_timer = ti->user_timer;
268         lc->system_timer = ti->system_timer;
269         lc->steal_timer = 0;
270 }
271
272 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
273 {
274         struct _lowcore *lc = pcpu->lowcore;
275
276         lc->restart_stack = lc->kernel_stack;
277         lc->restart_fn = (unsigned long) func;
278         lc->restart_data = (unsigned long) data;
279         lc->restart_source = -1UL;
280         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
281 }
282
283 /*
284  * Call function via PSW restart on pcpu and stop the current cpu.
285  */
286 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
287                           void *data, unsigned long stack)
288 {
289         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
290         unsigned long source_cpu = stap();
291
292         __load_psw_mask(PSW_KERNEL_BITS);
293         if (pcpu->address == source_cpu)
294                 func(data);     /* should not return */
295         /* Stop target cpu (if func returns this stops the current cpu). */
296         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
297         /* Restart func on the target cpu and stop the current cpu. */
298         mem_assign_absolute(lc->restart_stack, stack);
299         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
300         mem_assign_absolute(lc->restart_data, (unsigned long) data);
301         mem_assign_absolute(lc->restart_source, source_cpu);
302         asm volatile(
303                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
304                 "       brc     2,0b    # busy, try again\n"
305                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
306                 "       brc     2,1b    # busy, try again\n"
307                 : : "d" (pcpu->address), "d" (source_cpu),
308                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
309                 : "0", "1", "cc");
310         for (;;) ;
311 }
312
313 /*
314  * Enable additional logical cpus for multi-threading.
315  */
316 static int pcpu_set_smt(unsigned int mtid)
317 {
318         register unsigned long reg1 asm ("1") = (unsigned long) mtid;
319         int cc;
320
321         if (smp_cpu_mtid == mtid)
322                 return 0;
323         asm volatile(
324                 "       sigp    %1,0,%2 # sigp set multi-threading\n"
325                 "       ipm     %0\n"
326                 "       srl     %0,28\n"
327                 : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
328                 : "cc");
329         if (cc == 0) {
330                 smp_cpu_mtid = mtid;
331                 smp_cpu_mt_shift = 0;
332                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
333                         smp_cpu_mt_shift++;
334                 pcpu_devices[0].address = stap();
335         }
336         return cc;
337 }
338
339 /*
340  * Call function on an online CPU.
341  */
342 void smp_call_online_cpu(void (*func)(void *), void *data)
343 {
344         struct pcpu *pcpu;
345
346         /* Use the current cpu if it is online. */
347         pcpu = pcpu_find_address(cpu_online_mask, stap());
348         if (!pcpu)
349                 /* Use the first online cpu. */
350                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
351         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
352 }
353
354 /*
355  * Call function on the ipl CPU.
356  */
357 void smp_call_ipl_cpu(void (*func)(void *), void *data)
358 {
359         pcpu_delegate(&pcpu_devices[0], func, data,
360                       pcpu_devices->lowcore->panic_stack -
361                       PANIC_FRAME_OFFSET + PAGE_SIZE);
362 }
363
364 int smp_find_processor_id(u16 address)
365 {
366         int cpu;
367
368         for_each_present_cpu(cpu)
369                 if (pcpu_devices[cpu].address == address)
370                         return cpu;
371         return -1;
372 }
373
374 int smp_vcpu_scheduled(int cpu)
375 {
376         return pcpu_running(pcpu_devices + cpu);
377 }
378
379 void smp_yield_cpu(int cpu)
380 {
381         if (MACHINE_HAS_DIAG9C) {
382                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
383                 asm volatile("diag %0,0,0x9c"
384                              : : "d" (pcpu_devices[cpu].address));
385         } else if (MACHINE_HAS_DIAG44) {
386                 diag_stat_inc_norecursion(DIAG_STAT_X044);
387                 asm volatile("diag 0,0,0x44");
388         }
389 }
390
391 /*
392  * Send cpus emergency shutdown signal. This gives the cpus the
393  * opportunity to complete outstanding interrupts.
394  */
395 static void smp_emergency_stop(cpumask_t *cpumask)
396 {
397         u64 end;
398         int cpu;
399
400         end = get_tod_clock() + (1000000UL << 12);
401         for_each_cpu(cpu, cpumask) {
402                 struct pcpu *pcpu = pcpu_devices + cpu;
403                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
404                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
405                                    0, NULL) == SIGP_CC_BUSY &&
406                        get_tod_clock() < end)
407                         cpu_relax();
408         }
409         while (get_tod_clock() < end) {
410                 for_each_cpu(cpu, cpumask)
411                         if (pcpu_stopped(pcpu_devices + cpu))
412                                 cpumask_clear_cpu(cpu, cpumask);
413                 if (cpumask_empty(cpumask))
414                         break;
415                 cpu_relax();
416         }
417 }
418
419 /*
420  * Stop all cpus but the current one.
421  */
422 void smp_send_stop(void)
423 {
424         cpumask_t cpumask;
425         int cpu;
426
427         /* Disable all interrupts/machine checks */
428         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
429         trace_hardirqs_off();
430
431         debug_set_critical();
432         cpumask_copy(&cpumask, cpu_online_mask);
433         cpumask_clear_cpu(smp_processor_id(), &cpumask);
434
435         if (oops_in_progress)
436                 smp_emergency_stop(&cpumask);
437
438         /* stop all processors */
439         for_each_cpu(cpu, &cpumask) {
440                 struct pcpu *pcpu = pcpu_devices + cpu;
441                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
442                 while (!pcpu_stopped(pcpu))
443                         cpu_relax();
444         }
445 }
446
447 /*
448  * This is the main routine where commands issued by other
449  * cpus are handled.
450  */
451 static void smp_handle_ext_call(void)
452 {
453         unsigned long bits;
454
455         /* handle bit signal external calls */
456         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
457         if (test_bit(ec_stop_cpu, &bits))
458                 smp_stop_cpu();
459         if (test_bit(ec_schedule, &bits))
460                 scheduler_ipi();
461         if (test_bit(ec_call_function_single, &bits))
462                 generic_smp_call_function_single_interrupt();
463 }
464
465 static void do_ext_call_interrupt(struct ext_code ext_code,
466                                   unsigned int param32, unsigned long param64)
467 {
468         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
469         smp_handle_ext_call();
470 }
471
472 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
473 {
474         int cpu;
475
476         for_each_cpu(cpu, mask)
477                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
478 }
479
480 void arch_send_call_function_single_ipi(int cpu)
481 {
482         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
483 }
484
485 /*
486  * this function sends a 'reschedule' IPI to another CPU.
487  * it goes straight through and wastes no time serializing
488  * anything. Worst case is that we lose a reschedule ...
489  */
490 void smp_send_reschedule(int cpu)
491 {
492         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
493 }
494
495 /*
496  * parameter area for the set/clear control bit callbacks
497  */
498 struct ec_creg_mask_parms {
499         unsigned long orval;
500         unsigned long andval;
501         int cr;
502 };
503
504 /*
505  * callback for setting/clearing control bits
506  */
507 static void smp_ctl_bit_callback(void *info)
508 {
509         struct ec_creg_mask_parms *pp = info;
510         unsigned long cregs[16];
511
512         __ctl_store(cregs, 0, 15);
513         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
514         __ctl_load(cregs, 0, 15);
515 }
516
517 /*
518  * Set a bit in a control register of all cpus
519  */
520 void smp_ctl_set_bit(int cr, int bit)
521 {
522         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
523
524         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
525 }
526 EXPORT_SYMBOL(smp_ctl_set_bit);
527
528 /*
529  * Clear a bit in a control register of all cpus
530  */
531 void smp_ctl_clear_bit(int cr, int bit)
532 {
533         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
534
535         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
536 }
537 EXPORT_SYMBOL(smp_ctl_clear_bit);
538
539 #ifdef CONFIG_CRASH_DUMP
540
541 static void __init __smp_store_cpu_state(struct save_area_ext *sa_ext,
542                                          u16 address, int is_boot_cpu)
543 {
544         void *lc = (void *)(unsigned long) store_prefix();
545         unsigned long vx_sa;
546
547         if (is_boot_cpu) {
548                 /* Copy the registers of the boot CPU. */
549                 copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
550                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
551                 if (MACHINE_HAS_VX)
552                         save_vx_regs_safe(sa_ext->vx_regs);
553                 return;
554         }
555         /* Get the registers of a non-boot cpu. */
556         __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
557         memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
558         if (!MACHINE_HAS_VX)
559                 return;
560         /* Get the VX registers */
561         vx_sa = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
562         if (!vx_sa)
563                 panic("could not allocate memory for VX save area\n");
564         __pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
565         memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
566         memblock_free(vx_sa, PAGE_SIZE);
567 }
568
569 int smp_store_status(int cpu)
570 {
571         unsigned long vx_sa;
572         struct pcpu *pcpu;
573
574         pcpu = pcpu_devices + cpu;
575         if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
576                               0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
577                 return -EIO;
578         if (!MACHINE_HAS_VX)
579                 return 0;
580         vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
581         __pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
582                           vx_sa, NULL);
583         return 0;
584 }
585
586 #endif /* CONFIG_CRASH_DUMP */
587
588 /*
589  * Collect CPU state of the previous, crashed system.
590  * There are four cases:
591  * 1) standard zfcp dump
592  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
593  *    The state for all CPUs except the boot CPU needs to be collected
594  *    with sigp stop-and-store-status. The boot CPU state is located in
595  *    the absolute lowcore of the memory stored in the HSA. The zcore code
596  *    will allocate the save area and copy the boot CPU state from the HSA.
597  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
598  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
599  *    The state for all CPUs except the boot CPU needs to be collected
600  *    with sigp stop-and-store-status. The firmware or the boot-loader
601  *    stored the registers of the boot CPU in the absolute lowcore in the
602  *    memory of the old system.
603  * 3) kdump and the old kernel did not store the CPU state,
604  *    or stand-alone kdump for DASD
605  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
606  *    The state for all CPUs except the boot CPU needs to be collected
607  *    with sigp stop-and-store-status. The kexec code or the boot-loader
608  *    stored the registers of the boot CPU in the memory of the old system.
609  * 4) kdump and the old kernel stored the CPU state
610  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
611  *    The state of all CPUs is stored in ELF sections in the memory of the
612  *    old system. The ELF sections are picked up by the crash_dump code
613  *    via elfcorehdr_addr.
614  */
615 void __init smp_save_dump_cpus(void)
616 {
617 #ifdef CONFIG_CRASH_DUMP
618         int addr, cpu, boot_cpu_addr, max_cpu_addr;
619         struct save_area_ext *sa_ext;
620         bool is_boot_cpu;
621
622         if (is_kdump_kernel())
623                 /* Previous system stored the CPU states. Nothing to do. */
624                 return;
625         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
626                 /* No previous system present, normal boot. */
627                 return;
628         /* Set multi-threading state to the previous system. */
629         pcpu_set_smt(sclp.mtid_prev);
630         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
631         for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
632                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
633                     SIGP_CC_NOT_OPERATIONAL)
634                         continue;
635                 cpu += 1;
636         }
637         dump_save_areas.areas = (void *)memblock_alloc(sizeof(void *) * cpu, 8);
638         dump_save_areas.count = cpu;
639         boot_cpu_addr = stap();
640         for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
641                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
642                     SIGP_CC_NOT_OPERATIONAL)
643                         continue;
644                 sa_ext = (void *) memblock_alloc(sizeof(*sa_ext), 8);
645                 dump_save_areas.areas[cpu] = sa_ext;
646                 if (!sa_ext)
647                         panic("could not allocate memory for save area\n");
648                 is_boot_cpu = (addr == boot_cpu_addr);
649                 cpu += 1;
650                 if (is_boot_cpu && !OLDMEM_BASE)
651                         /* Skip boot CPU for standard zfcp dump. */
652                         continue;
653                 /* Get state for this CPU. */
654                 __smp_store_cpu_state(sa_ext, addr, is_boot_cpu);
655         }
656         diag308_reset();
657         pcpu_set_smt(0);
658 #endif /* CONFIG_CRASH_DUMP */
659 }
660
661 void smp_cpu_set_polarization(int cpu, int val)
662 {
663         pcpu_devices[cpu].polarization = val;
664 }
665
666 int smp_cpu_get_polarization(int cpu)
667 {
668         return pcpu_devices[cpu].polarization;
669 }
670
671 static struct sclp_core_info *smp_get_core_info(void)
672 {
673         static int use_sigp_detection;
674         struct sclp_core_info *info;
675         int address;
676
677         info = kzalloc(sizeof(*info), GFP_KERNEL);
678         if (info && (use_sigp_detection || sclp_get_core_info(info))) {
679                 use_sigp_detection = 1;
680                 for (address = 0;
681                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
682                      address += (1U << smp_cpu_mt_shift)) {
683                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
684                             SIGP_CC_NOT_OPERATIONAL)
685                                 continue;
686                         info->core[info->configured].core_id =
687                                 address >> smp_cpu_mt_shift;
688                         info->configured++;
689                 }
690                 info->combined = info->configured;
691         }
692         return info;
693 }
694
695 static int smp_add_present_cpu(int cpu);
696
697 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
698 {
699         struct pcpu *pcpu;
700         cpumask_t avail;
701         int cpu, nr, i, j;
702         u16 address;
703
704         nr = 0;
705         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
706         cpu = cpumask_first(&avail);
707         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
708                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
709                         continue;
710                 address = info->core[i].core_id << smp_cpu_mt_shift;
711                 for (j = 0; j <= smp_cpu_mtid; j++) {
712                         if (pcpu_find_address(cpu_present_mask, address + j))
713                                 continue;
714                         pcpu = pcpu_devices + cpu;
715                         pcpu->address = address + j;
716                         pcpu->state =
717                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
718                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
719                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
720                         set_cpu_present(cpu, true);
721                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
722                                 set_cpu_present(cpu, false);
723                         else
724                                 nr++;
725                         cpu = cpumask_next(cpu, &avail);
726                         if (cpu >= nr_cpu_ids)
727                                 break;
728                 }
729         }
730         return nr;
731 }
732
733 static void __init smp_detect_cpus(void)
734 {
735         unsigned int cpu, mtid, c_cpus, s_cpus;
736         struct sclp_core_info *info;
737         u16 address;
738
739         /* Get CPU information */
740         info = smp_get_core_info();
741         if (!info)
742                 panic("smp_detect_cpus failed to allocate memory\n");
743
744         /* Find boot CPU type */
745         if (sclp.has_core_type) {
746                 address = stap();
747                 for (cpu = 0; cpu < info->combined; cpu++)
748                         if (info->core[cpu].core_id == address) {
749                                 /* The boot cpu dictates the cpu type. */
750                                 boot_core_type = info->core[cpu].type;
751                                 break;
752                         }
753                 if (cpu >= info->combined)
754                         panic("Could not find boot CPU type");
755         }
756
757         /* Set multi-threading state for the current system */
758         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
759         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
760         pcpu_set_smt(mtid);
761
762         /* Print number of CPUs */
763         c_cpus = s_cpus = 0;
764         for (cpu = 0; cpu < info->combined; cpu++) {
765                 if (sclp.has_core_type &&
766                     info->core[cpu].type != boot_core_type)
767                         continue;
768                 if (cpu < info->configured)
769                         c_cpus += smp_cpu_mtid + 1;
770                 else
771                         s_cpus += smp_cpu_mtid + 1;
772         }
773         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
774
775         /* Add CPUs present at boot */
776         get_online_cpus();
777         __smp_rescan_cpus(info, 0);
778         put_online_cpus();
779         kfree(info);
780 }
781
782 /*
783  *      Activate a secondary processor.
784  */
785 static void smp_start_secondary(void *cpuvoid)
786 {
787         S390_lowcore.last_update_clock = get_tod_clock();
788         S390_lowcore.restart_stack = (unsigned long) restart_stack;
789         S390_lowcore.restart_fn = (unsigned long) do_restart;
790         S390_lowcore.restart_data = 0;
791         S390_lowcore.restart_source = -1UL;
792         restore_access_regs(S390_lowcore.access_regs_save_area);
793         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
794         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
795         cpu_init();
796         preempt_disable();
797         init_cpu_timer();
798         vtime_init();
799         pfault_init();
800         notify_cpu_starting(smp_processor_id());
801         set_cpu_online(smp_processor_id(), true);
802         inc_irq_stat(CPU_RST);
803         local_irq_enable();
804         cpu_startup_entry(CPUHP_ONLINE);
805 }
806
807 /* Upping and downing of CPUs */
808 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
809 {
810         struct pcpu *pcpu;
811         int base, i, rc;
812
813         pcpu = pcpu_devices + cpu;
814         if (pcpu->state != CPU_STATE_CONFIGURED)
815                 return -EIO;
816         base = cpu - (cpu % (smp_cpu_mtid + 1));
817         for (i = 0; i <= smp_cpu_mtid; i++) {
818                 if (base + i < nr_cpu_ids)
819                         if (cpu_online(base + i))
820                                 break;
821         }
822         /*
823          * If this is the first CPU of the core to get online
824          * do an initial CPU reset.
825          */
826         if (i > smp_cpu_mtid &&
827             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
828             SIGP_CC_ORDER_CODE_ACCEPTED)
829                 return -EIO;
830
831         rc = pcpu_alloc_lowcore(pcpu, cpu);
832         if (rc)
833                 return rc;
834         pcpu_prepare_secondary(pcpu, cpu);
835         pcpu_attach_task(pcpu, tidle);
836         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
837         /* Wait until cpu puts itself in the online & active maps */
838         while (!cpu_online(cpu) || !cpu_active(cpu))
839                 cpu_relax();
840         return 0;
841 }
842
843 static unsigned int setup_possible_cpus __initdata;
844
845 static int __init _setup_possible_cpus(char *s)
846 {
847         get_option(&s, &setup_possible_cpus);
848         return 0;
849 }
850 early_param("possible_cpus", _setup_possible_cpus);
851
852 #ifdef CONFIG_HOTPLUG_CPU
853
854 int __cpu_disable(void)
855 {
856         unsigned long cregs[16];
857
858         /* Handle possible pending IPIs */
859         smp_handle_ext_call();
860         set_cpu_online(smp_processor_id(), false);
861         /* Disable pseudo page faults on this cpu. */
862         pfault_fini();
863         /* Disable interrupt sources via control register. */
864         __ctl_store(cregs, 0, 15);
865         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
866         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
867         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
868         __ctl_load(cregs, 0, 15);
869         clear_cpu_flag(CIF_NOHZ_DELAY);
870         return 0;
871 }
872
873 void __cpu_die(unsigned int cpu)
874 {
875         struct pcpu *pcpu;
876
877         /* Wait until target cpu is down */
878         pcpu = pcpu_devices + cpu;
879         while (!pcpu_stopped(pcpu))
880                 cpu_relax();
881         pcpu_free_lowcore(pcpu);
882         atomic_dec(&init_mm.context.attach_count);
883         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
884         if (MACHINE_HAS_TLB_LC)
885                 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
886 }
887
888 void __noreturn cpu_die(void)
889 {
890         idle_task_exit();
891         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
892         for (;;) ;
893 }
894
895 #endif /* CONFIG_HOTPLUG_CPU */
896
897 void __init smp_fill_possible_mask(void)
898 {
899         unsigned int possible, sclp_max, cpu;
900
901         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
902         sclp_max = min(smp_max_threads, sclp_max);
903         sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
904         possible = setup_possible_cpus ?: nr_cpu_ids;
905         possible = min(possible, sclp_max);
906         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
907                 set_cpu_possible(cpu, true);
908 }
909
910 void __init smp_prepare_cpus(unsigned int max_cpus)
911 {
912         /* request the 0x1201 emergency signal external interrupt */
913         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
914                 panic("Couldn't request external interrupt 0x1201");
915         /* request the 0x1202 external call external interrupt */
916         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
917                 panic("Couldn't request external interrupt 0x1202");
918         smp_detect_cpus();
919 }
920
921 void __init smp_prepare_boot_cpu(void)
922 {
923         struct pcpu *pcpu = pcpu_devices;
924
925         pcpu->state = CPU_STATE_CONFIGURED;
926         pcpu->address = stap();
927         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
928         S390_lowcore.percpu_offset = __per_cpu_offset[0];
929         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
930         set_cpu_present(0, true);
931         set_cpu_online(0, true);
932 }
933
934 void __init smp_cpus_done(unsigned int max_cpus)
935 {
936 }
937
938 void __init smp_setup_processor_id(void)
939 {
940         S390_lowcore.cpu_nr = 0;
941         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
942 }
943
944 /*
945  * the frequency of the profiling timer can be changed
946  * by writing a multiplier value into /proc/profile.
947  *
948  * usually you want to run this on all CPUs ;)
949  */
950 int setup_profiling_timer(unsigned int multiplier)
951 {
952         return 0;
953 }
954
955 #ifdef CONFIG_HOTPLUG_CPU
956 static ssize_t cpu_configure_show(struct device *dev,
957                                   struct device_attribute *attr, char *buf)
958 {
959         ssize_t count;
960
961         mutex_lock(&smp_cpu_state_mutex);
962         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
963         mutex_unlock(&smp_cpu_state_mutex);
964         return count;
965 }
966
967 static ssize_t cpu_configure_store(struct device *dev,
968                                    struct device_attribute *attr,
969                                    const char *buf, size_t count)
970 {
971         struct pcpu *pcpu;
972         int cpu, val, rc, i;
973         char delim;
974
975         if (sscanf(buf, "%d %c", &val, &delim) != 1)
976                 return -EINVAL;
977         if (val != 0 && val != 1)
978                 return -EINVAL;
979         get_online_cpus();
980         mutex_lock(&smp_cpu_state_mutex);
981         rc = -EBUSY;
982         /* disallow configuration changes of online cpus and cpu 0 */
983         cpu = dev->id;
984         cpu -= cpu % (smp_cpu_mtid + 1);
985         if (cpu == 0)
986                 goto out;
987         for (i = 0; i <= smp_cpu_mtid; i++)
988                 if (cpu_online(cpu + i))
989                         goto out;
990         pcpu = pcpu_devices + cpu;
991         rc = 0;
992         switch (val) {
993         case 0:
994                 if (pcpu->state != CPU_STATE_CONFIGURED)
995                         break;
996                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
997                 if (rc)
998                         break;
999                 for (i = 0; i <= smp_cpu_mtid; i++) {
1000                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1001                                 continue;
1002                         pcpu[i].state = CPU_STATE_STANDBY;
1003                         smp_cpu_set_polarization(cpu + i,
1004                                                  POLARIZATION_UNKNOWN);
1005                 }
1006                 topology_expect_change();
1007                 break;
1008         case 1:
1009                 if (pcpu->state != CPU_STATE_STANDBY)
1010                         break;
1011                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1012                 if (rc)
1013                         break;
1014                 for (i = 0; i <= smp_cpu_mtid; i++) {
1015                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1016                                 continue;
1017                         pcpu[i].state = CPU_STATE_CONFIGURED;
1018                         smp_cpu_set_polarization(cpu + i,
1019                                                  POLARIZATION_UNKNOWN);
1020                 }
1021                 topology_expect_change();
1022                 break;
1023         default:
1024                 break;
1025         }
1026 out:
1027         mutex_unlock(&smp_cpu_state_mutex);
1028         put_online_cpus();
1029         return rc ? rc : count;
1030 }
1031 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1032 #endif /* CONFIG_HOTPLUG_CPU */
1033
1034 static ssize_t show_cpu_address(struct device *dev,
1035                                 struct device_attribute *attr, char *buf)
1036 {
1037         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1038 }
1039 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1040
1041 static struct attribute *cpu_common_attrs[] = {
1042 #ifdef CONFIG_HOTPLUG_CPU
1043         &dev_attr_configure.attr,
1044 #endif
1045         &dev_attr_address.attr,
1046         NULL,
1047 };
1048
1049 static struct attribute_group cpu_common_attr_group = {
1050         .attrs = cpu_common_attrs,
1051 };
1052
1053 static struct attribute *cpu_online_attrs[] = {
1054         &dev_attr_idle_count.attr,
1055         &dev_attr_idle_time_us.attr,
1056         NULL,
1057 };
1058
1059 static struct attribute_group cpu_online_attr_group = {
1060         .attrs = cpu_online_attrs,
1061 };
1062
1063 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1064                           void *hcpu)
1065 {
1066         unsigned int cpu = (unsigned int)(long)hcpu;
1067         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1068         int err = 0;
1069
1070         switch (action & ~CPU_TASKS_FROZEN) {
1071         case CPU_ONLINE:
1072                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1073                 break;
1074         case CPU_DEAD:
1075                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1076                 break;
1077         }
1078         return notifier_from_errno(err);
1079 }
1080
1081 static int smp_add_present_cpu(int cpu)
1082 {
1083         struct device *s;
1084         struct cpu *c;
1085         int rc;
1086
1087         c = kzalloc(sizeof(*c), GFP_KERNEL);
1088         if (!c)
1089                 return -ENOMEM;
1090         per_cpu(cpu_device, cpu) = c;
1091         s = &c->dev;
1092         c->hotpluggable = 1;
1093         rc = register_cpu(c, cpu);
1094         if (rc)
1095                 goto out;
1096         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1097         if (rc)
1098                 goto out_cpu;
1099         if (cpu_online(cpu)) {
1100                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1101                 if (rc)
1102                         goto out_online;
1103         }
1104         rc = topology_cpu_init(c);
1105         if (rc)
1106                 goto out_topology;
1107         return 0;
1108
1109 out_topology:
1110         if (cpu_online(cpu))
1111                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1112 out_online:
1113         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1114 out_cpu:
1115 #ifdef CONFIG_HOTPLUG_CPU
1116         unregister_cpu(c);
1117 #endif
1118 out:
1119         return rc;
1120 }
1121
1122 #ifdef CONFIG_HOTPLUG_CPU
1123
1124 int __ref smp_rescan_cpus(void)
1125 {
1126         struct sclp_core_info *info;
1127         int nr;
1128
1129         info = smp_get_core_info();
1130         if (!info)
1131                 return -ENOMEM;
1132         get_online_cpus();
1133         mutex_lock(&smp_cpu_state_mutex);
1134         nr = __smp_rescan_cpus(info, 1);
1135         mutex_unlock(&smp_cpu_state_mutex);
1136         put_online_cpus();
1137         kfree(info);
1138         if (nr)
1139                 topology_schedule_update();
1140         return 0;
1141 }
1142
1143 static ssize_t __ref rescan_store(struct device *dev,
1144                                   struct device_attribute *attr,
1145                                   const char *buf,
1146                                   size_t count)
1147 {
1148         int rc;
1149
1150         rc = smp_rescan_cpus();
1151         return rc ? rc : count;
1152 }
1153 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1154 #endif /* CONFIG_HOTPLUG_CPU */
1155
1156 static int __init s390_smp_init(void)
1157 {
1158         int cpu, rc = 0;
1159
1160 #ifdef CONFIG_HOTPLUG_CPU
1161         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1162         if (rc)
1163                 return rc;
1164 #endif
1165         cpu_notifier_register_begin();
1166         for_each_present_cpu(cpu) {
1167                 rc = smp_add_present_cpu(cpu);
1168                 if (rc)
1169                         goto out;
1170         }
1171
1172         __hotcpu_notifier(smp_cpu_notify, 0);
1173
1174 out:
1175         cpu_notifier_register_done();
1176         return rc;
1177 }
1178 subsys_initcall(s390_smp_init);