Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43         struct pt_regs *regs = task_pt_regs(task);
44         struct thread_struct *thread = &task->thread;
45         struct per_regs old, new;
46
47         /* Take care of the enable/disable of transactional execution. */
48         if (MACHINE_HAS_TE || MACHINE_HAS_VX) {
49                 unsigned long cr, cr_new;
50
51                 __ctl_store(cr, 0, 0);
52                 cr_new = cr;
53                 if (MACHINE_HAS_TE) {
54                         /* Set or clear transaction execution TXC bit 8. */
55                         cr_new |= (1UL << 55);
56                         if (task->thread.per_flags & PER_FLAG_NO_TE)
57                                 cr_new &= ~(1UL << 55);
58                 }
59                 if (MACHINE_HAS_VX) {
60                         /* Enable/disable of vector extension */
61                         cr_new &= ~(1UL << 17);
62                         if (task->thread.vxrs)
63                                 cr_new |= (1UL << 17);
64                 }
65                 if (cr_new != cr)
66                         __ctl_load(cr_new, 0, 0);
67                 if (MACHINE_HAS_TE) {
68                         /* Set/clear transaction execution TDC bits 62/63. */
69                         __ctl_store(cr, 2, 2);
70                         cr_new = cr & ~3UL;
71                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
72                                 if (task->thread.per_flags &
73                                     PER_FLAG_TE_ABORT_RAND_TEND)
74                                         cr_new |= 1UL;
75                                 else
76                                         cr_new |= 2UL;
77                         }
78                         if (cr_new != cr)
79                                 __ctl_load(cr_new, 2, 2);
80                 }
81         }
82         /* Copy user specified PER registers */
83         new.control = thread->per_user.control;
84         new.start = thread->per_user.start;
85         new.end = thread->per_user.end;
86
87         /* merge TIF_SINGLE_STEP into user specified PER registers. */
88         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
89             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
90                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
91                         new.control |= PER_EVENT_BRANCH;
92                 else
93                         new.control |= PER_EVENT_IFETCH;
94                 new.control |= PER_CONTROL_SUSPENSION;
95                 new.control |= PER_EVENT_TRANSACTION_END;
96                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
97                         new.control |= PER_EVENT_IFETCH;
98                 new.start = 0;
99                 new.end = PSW_ADDR_INSN;
100         }
101
102         /* Take care of the PER enablement bit in the PSW. */
103         if (!(new.control & PER_EVENT_MASK)) {
104                 regs->psw.mask &= ~PSW_MASK_PER;
105                 return;
106         }
107         regs->psw.mask |= PSW_MASK_PER;
108         __ctl_store(old, 9, 11);
109         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
110                 __ctl_load(new, 9, 11);
111 }
112
113 void user_enable_single_step(struct task_struct *task)
114 {
115         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
116         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
117 }
118
119 void user_disable_single_step(struct task_struct *task)
120 {
121         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
122         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
123 }
124
125 void user_enable_block_step(struct task_struct *task)
126 {
127         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
128         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
129 }
130
131 /*
132  * Called by kernel/ptrace.c when detaching..
133  *
134  * Clear all debugging related fields.
135  */
136 void ptrace_disable(struct task_struct *task)
137 {
138         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
139         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
140         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
141         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
142         task->thread.per_flags = 0;
143 }
144
145 #define __ADDR_MASK 7
146
147 static inline unsigned long __peek_user_per(struct task_struct *child,
148                                             addr_t addr)
149 {
150         struct per_struct_kernel *dummy = NULL;
151
152         if (addr == (addr_t) &dummy->cr9)
153                 /* Control bits of the active per set. */
154                 return test_thread_flag(TIF_SINGLE_STEP) ?
155                         PER_EVENT_IFETCH : child->thread.per_user.control;
156         else if (addr == (addr_t) &dummy->cr10)
157                 /* Start address of the active per set. */
158                 return test_thread_flag(TIF_SINGLE_STEP) ?
159                         0 : child->thread.per_user.start;
160         else if (addr == (addr_t) &dummy->cr11)
161                 /* End address of the active per set. */
162                 return test_thread_flag(TIF_SINGLE_STEP) ?
163                         PSW_ADDR_INSN : child->thread.per_user.end;
164         else if (addr == (addr_t) &dummy->bits)
165                 /* Single-step bit. */
166                 return test_thread_flag(TIF_SINGLE_STEP) ?
167                         (1UL << (BITS_PER_LONG - 1)) : 0;
168         else if (addr == (addr_t) &dummy->starting_addr)
169                 /* Start address of the user specified per set. */
170                 return child->thread.per_user.start;
171         else if (addr == (addr_t) &dummy->ending_addr)
172                 /* End address of the user specified per set. */
173                 return child->thread.per_user.end;
174         else if (addr == (addr_t) &dummy->perc_atmid)
175                 /* PER code, ATMID and AI of the last PER trap */
176                 return (unsigned long)
177                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
178         else if (addr == (addr_t) &dummy->address)
179                 /* Address of the last PER trap */
180                 return child->thread.per_event.address;
181         else if (addr == (addr_t) &dummy->access_id)
182                 /* Access id of the last PER trap */
183                 return (unsigned long)
184                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
185         return 0;
186 }
187
188 /*
189  * Read the word at offset addr from the user area of a process. The
190  * trouble here is that the information is littered over different
191  * locations. The process registers are found on the kernel stack,
192  * the floating point stuff and the trace settings are stored in
193  * the task structure. In addition the different structures in
194  * struct user contain pad bytes that should be read as zeroes.
195  * Lovely...
196  */
197 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
198 {
199         struct user *dummy = NULL;
200         addr_t offset, tmp;
201
202         if (addr < (addr_t) &dummy->regs.acrs) {
203                 /*
204                  * psw and gprs are stored on the stack
205                  */
206                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
207                 if (addr == (addr_t) &dummy->regs.psw.mask) {
208                         /* Return a clean psw mask. */
209                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
210                         tmp |= PSW_USER_BITS;
211                 }
212
213         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
214                 /*
215                  * access registers are stored in the thread structure
216                  */
217                 offset = addr - (addr_t) &dummy->regs.acrs;
218                 /*
219                  * Very special case: old & broken 64 bit gdb reading
220                  * from acrs[15]. Result is a 64 bit value. Read the
221                  * 32 bit acrs[15] value and shift it by 32. Sick...
222                  */
223                 if (addr == (addr_t) &dummy->regs.acrs[15])
224                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
225                 else
226                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
227
228         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
229                 /*
230                  * orig_gpr2 is stored on the kernel stack
231                  */
232                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
233
234         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
235                 /*
236                  * prevent reads of padding hole between
237                  * orig_gpr2 and fp_regs on s390.
238                  */
239                 tmp = 0;
240
241         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
242                 /*
243                  * floating point control reg. is in the thread structure
244                  */
245                 tmp = child->thread.fp_regs.fpc;
246                 tmp <<= BITS_PER_LONG - 32;
247
248         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
249                 /*
250                  * floating point regs. are either in child->thread.fp_regs
251                  * or the child->thread.vxrs array
252                  */
253                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
254                 if (child->thread.vxrs)
255                         tmp = *(addr_t *)
256                                ((addr_t) child->thread.vxrs + 2*offset);
257                 else
258                         tmp = *(addr_t *)
259                                ((addr_t) &child->thread.fp_regs.fprs + offset);
260
261         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
262                 /*
263                  * Handle access to the per_info structure.
264                  */
265                 addr -= (addr_t) &dummy->regs.per_info;
266                 tmp = __peek_user_per(child, addr);
267
268         } else
269                 tmp = 0;
270
271         return tmp;
272 }
273
274 static int
275 peek_user(struct task_struct *child, addr_t addr, addr_t data)
276 {
277         addr_t tmp, mask;
278
279         /*
280          * Stupid gdb peeks/pokes the access registers in 64 bit with
281          * an alignment of 4. Programmers from hell...
282          */
283         mask = __ADDR_MASK;
284         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286                 mask = 3;
287         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
288                 return -EIO;
289
290         tmp = __peek_user(child, addr);
291         return put_user(tmp, (addr_t __user *) data);
292 }
293
294 static inline void __poke_user_per(struct task_struct *child,
295                                    addr_t addr, addr_t data)
296 {
297         struct per_struct_kernel *dummy = NULL;
298
299         /*
300          * There are only three fields in the per_info struct that the
301          * debugger user can write to.
302          * 1) cr9: the debugger wants to set a new PER event mask
303          * 2) starting_addr: the debugger wants to set a new starting
304          *    address to use with the PER event mask.
305          * 3) ending_addr: the debugger wants to set a new ending
306          *    address to use with the PER event mask.
307          * The user specified PER event mask and the start and end
308          * addresses are used only if single stepping is not in effect.
309          * Writes to any other field in per_info are ignored.
310          */
311         if (addr == (addr_t) &dummy->cr9)
312                 /* PER event mask of the user specified per set. */
313                 child->thread.per_user.control =
314                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
315         else if (addr == (addr_t) &dummy->starting_addr)
316                 /* Starting address of the user specified per set. */
317                 child->thread.per_user.start = data;
318         else if (addr == (addr_t) &dummy->ending_addr)
319                 /* Ending address of the user specified per set. */
320                 child->thread.per_user.end = data;
321 }
322
323 /*
324  * Write a word to the user area of a process at location addr. This
325  * operation does have an additional problem compared to peek_user.
326  * Stores to the program status word and on the floating point
327  * control register needs to get checked for validity.
328  */
329 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
330 {
331         struct user *dummy = NULL;
332         addr_t offset;
333
334         if (addr < (addr_t) &dummy->regs.acrs) {
335                 /*
336                  * psw and gprs are stored on the stack
337                  */
338                 if (addr == (addr_t) &dummy->regs.psw.mask) {
339                         unsigned long mask = PSW_MASK_USER;
340
341                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
342                         if ((data ^ PSW_USER_BITS) & ~mask)
343                                 /* Invalid psw mask. */
344                                 return -EINVAL;
345                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
346                                 /* Invalid address-space-control bits */
347                                 return -EINVAL;
348                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
349                                 /* Invalid addressing mode bits */
350                                 return -EINVAL;
351                 }
352                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
353
354         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
355                 /*
356                  * access registers are stored in the thread structure
357                  */
358                 offset = addr - (addr_t) &dummy->regs.acrs;
359                 /*
360                  * Very special case: old & broken 64 bit gdb writing
361                  * to acrs[15] with a 64 bit value. Ignore the lower
362                  * half of the value and write the upper 32 bit to
363                  * acrs[15]. Sick...
364                  */
365                 if (addr == (addr_t) &dummy->regs.acrs[15])
366                         child->thread.acrs[15] = (unsigned int) (data >> 32);
367                 else
368                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
369
370         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
371                 /*
372                  * orig_gpr2 is stored on the kernel stack
373                  */
374                 task_pt_regs(child)->orig_gpr2 = data;
375
376         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
377                 /*
378                  * prevent writes of padding hole between
379                  * orig_gpr2 and fp_regs on s390.
380                  */
381                 return 0;
382
383         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
384                 /*
385                  * floating point control reg. is in the thread structure
386                  */
387                 if ((unsigned int) data != 0 ||
388                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
389                         return -EINVAL;
390                 child->thread.fp_regs.fpc = data >> (BITS_PER_LONG - 32);
391
392         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
393                 /*
394                  * floating point regs. are either in child->thread.fp_regs
395                  * or the child->thread.vxrs array
396                  */
397                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
398                 if (child->thread.vxrs)
399                         *(addr_t *)((addr_t)
400                                 child->thread.vxrs + 2*offset) = data;
401                 else
402                         *(addr_t *)((addr_t)
403                                 &child->thread.fp_regs.fprs + offset) = data;
404
405         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
406                 /*
407                  * Handle access to the per_info structure.
408                  */
409                 addr -= (addr_t) &dummy->regs.per_info;
410                 __poke_user_per(child, addr, data);
411
412         }
413
414         return 0;
415 }
416
417 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
418 {
419         addr_t mask;
420
421         /*
422          * Stupid gdb peeks/pokes the access registers in 64 bit with
423          * an alignment of 4. Programmers from hell indeed...
424          */
425         mask = __ADDR_MASK;
426         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
427             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
428                 mask = 3;
429         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
430                 return -EIO;
431
432         return __poke_user(child, addr, data);
433 }
434
435 long arch_ptrace(struct task_struct *child, long request,
436                  unsigned long addr, unsigned long data)
437 {
438         ptrace_area parea; 
439         int copied, ret;
440
441         switch (request) {
442         case PTRACE_PEEKUSR:
443                 /* read the word at location addr in the USER area. */
444                 return peek_user(child, addr, data);
445
446         case PTRACE_POKEUSR:
447                 /* write the word at location addr in the USER area */
448                 return poke_user(child, addr, data);
449
450         case PTRACE_PEEKUSR_AREA:
451         case PTRACE_POKEUSR_AREA:
452                 if (copy_from_user(&parea, (void __force __user *) addr,
453                                                         sizeof(parea)))
454                         return -EFAULT;
455                 addr = parea.kernel_addr;
456                 data = parea.process_addr;
457                 copied = 0;
458                 while (copied < parea.len) {
459                         if (request == PTRACE_PEEKUSR_AREA)
460                                 ret = peek_user(child, addr, data);
461                         else {
462                                 addr_t utmp;
463                                 if (get_user(utmp,
464                                              (addr_t __force __user *) data))
465                                         return -EFAULT;
466                                 ret = poke_user(child, addr, utmp);
467                         }
468                         if (ret)
469                                 return ret;
470                         addr += sizeof(unsigned long);
471                         data += sizeof(unsigned long);
472                         copied += sizeof(unsigned long);
473                 }
474                 return 0;
475         case PTRACE_GET_LAST_BREAK:
476                 put_user(task_thread_info(child)->last_break,
477                          (unsigned long __user *) data);
478                 return 0;
479         case PTRACE_ENABLE_TE:
480                 if (!MACHINE_HAS_TE)
481                         return -EIO;
482                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
483                 return 0;
484         case PTRACE_DISABLE_TE:
485                 if (!MACHINE_HAS_TE)
486                         return -EIO;
487                 child->thread.per_flags |= PER_FLAG_NO_TE;
488                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
489                 return 0;
490         case PTRACE_TE_ABORT_RAND:
491                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
492                         return -EIO;
493                 switch (data) {
494                 case 0UL:
495                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
496                         break;
497                 case 1UL:
498                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
499                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
500                         break;
501                 case 2UL:
502                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
503                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
504                         break;
505                 default:
506                         return -EINVAL;
507                 }
508                 return 0;
509         default:
510                 /* Removing high order bit from addr (only for 31 bit). */
511                 addr &= PSW_ADDR_INSN;
512                 return ptrace_request(child, request, addr, data);
513         }
514 }
515
516 #ifdef CONFIG_COMPAT
517 /*
518  * Now the fun part starts... a 31 bit program running in the
519  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
520  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
521  * to handle, the difference to the 64 bit versions of the requests
522  * is that the access is done in multiples of 4 byte instead of
523  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
524  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
525  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
526  * is a 31 bit program too, the content of struct user can be
527  * emulated. A 31 bit program peeking into the struct user of
528  * a 64 bit program is a no-no.
529  */
530
531 /*
532  * Same as peek_user_per but for a 31 bit program.
533  */
534 static inline __u32 __peek_user_per_compat(struct task_struct *child,
535                                            addr_t addr)
536 {
537         struct compat_per_struct_kernel *dummy32 = NULL;
538
539         if (addr == (addr_t) &dummy32->cr9)
540                 /* Control bits of the active per set. */
541                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
542                         PER_EVENT_IFETCH : child->thread.per_user.control;
543         else if (addr == (addr_t) &dummy32->cr10)
544                 /* Start address of the active per set. */
545                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
546                         0 : child->thread.per_user.start;
547         else if (addr == (addr_t) &dummy32->cr11)
548                 /* End address of the active per set. */
549                 return test_thread_flag(TIF_SINGLE_STEP) ?
550                         PSW32_ADDR_INSN : child->thread.per_user.end;
551         else if (addr == (addr_t) &dummy32->bits)
552                 /* Single-step bit. */
553                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
554                         0x80000000 : 0;
555         else if (addr == (addr_t) &dummy32->starting_addr)
556                 /* Start address of the user specified per set. */
557                 return (__u32) child->thread.per_user.start;
558         else if (addr == (addr_t) &dummy32->ending_addr)
559                 /* End address of the user specified per set. */
560                 return (__u32) child->thread.per_user.end;
561         else if (addr == (addr_t) &dummy32->perc_atmid)
562                 /* PER code, ATMID and AI of the last PER trap */
563                 return (__u32) child->thread.per_event.cause << 16;
564         else if (addr == (addr_t) &dummy32->address)
565                 /* Address of the last PER trap */
566                 return (__u32) child->thread.per_event.address;
567         else if (addr == (addr_t) &dummy32->access_id)
568                 /* Access id of the last PER trap */
569                 return (__u32) child->thread.per_event.paid << 24;
570         return 0;
571 }
572
573 /*
574  * Same as peek_user but for a 31 bit program.
575  */
576 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
577 {
578         struct compat_user *dummy32 = NULL;
579         addr_t offset;
580         __u32 tmp;
581
582         if (addr < (addr_t) &dummy32->regs.acrs) {
583                 struct pt_regs *regs = task_pt_regs(child);
584                 /*
585                  * psw and gprs are stored on the stack
586                  */
587                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
588                         /* Fake a 31 bit psw mask. */
589                         tmp = (__u32)(regs->psw.mask >> 32);
590                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
591                         tmp |= PSW32_USER_BITS;
592                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
593                         /* Fake a 31 bit psw address. */
594                         tmp = (__u32) regs->psw.addr |
595                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
596                 } else {
597                         /* gpr 0-15 */
598                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
599                 }
600         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
601                 /*
602                  * access registers are stored in the thread structure
603                  */
604                 offset = addr - (addr_t) &dummy32->regs.acrs;
605                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
606
607         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
608                 /*
609                  * orig_gpr2 is stored on the kernel stack
610                  */
611                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
612
613         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
614                 /*
615                  * prevent reads of padding hole between
616                  * orig_gpr2 and fp_regs on s390.
617                  */
618                 tmp = 0;
619
620         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
621                 /*
622                  * floating point control reg. is in the thread structure
623                  */
624                 tmp = child->thread.fp_regs.fpc;
625
626         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
627                 /*
628                  * floating point regs. are either in child->thread.fp_regs
629                  * or the child->thread.vxrs array
630                  */
631                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
632                 if (child->thread.vxrs)
633                         tmp = *(__u32 *)
634                                ((addr_t) child->thread.vxrs + 2*offset);
635                 else
636                         tmp = *(__u32 *)
637                                ((addr_t) &child->thread.fp_regs.fprs + offset);
638
639         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
640                 /*
641                  * Handle access to the per_info structure.
642                  */
643                 addr -= (addr_t) &dummy32->regs.per_info;
644                 tmp = __peek_user_per_compat(child, addr);
645
646         } else
647                 tmp = 0;
648
649         return tmp;
650 }
651
652 static int peek_user_compat(struct task_struct *child,
653                             addr_t addr, addr_t data)
654 {
655         __u32 tmp;
656
657         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
658                 return -EIO;
659
660         tmp = __peek_user_compat(child, addr);
661         return put_user(tmp, (__u32 __user *) data);
662 }
663
664 /*
665  * Same as poke_user_per but for a 31 bit program.
666  */
667 static inline void __poke_user_per_compat(struct task_struct *child,
668                                           addr_t addr, __u32 data)
669 {
670         struct compat_per_struct_kernel *dummy32 = NULL;
671
672         if (addr == (addr_t) &dummy32->cr9)
673                 /* PER event mask of the user specified per set. */
674                 child->thread.per_user.control =
675                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
676         else if (addr == (addr_t) &dummy32->starting_addr)
677                 /* Starting address of the user specified per set. */
678                 child->thread.per_user.start = data;
679         else if (addr == (addr_t) &dummy32->ending_addr)
680                 /* Ending address of the user specified per set. */
681                 child->thread.per_user.end = data;
682 }
683
684 /*
685  * Same as poke_user but for a 31 bit program.
686  */
687 static int __poke_user_compat(struct task_struct *child,
688                               addr_t addr, addr_t data)
689 {
690         struct compat_user *dummy32 = NULL;
691         __u32 tmp = (__u32) data;
692         addr_t offset;
693
694         if (addr < (addr_t) &dummy32->regs.acrs) {
695                 struct pt_regs *regs = task_pt_regs(child);
696                 /*
697                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
698                  */
699                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
700                         __u32 mask = PSW32_MASK_USER;
701
702                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
703                         /* Build a 64 bit psw mask from 31 bit mask. */
704                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
705                                 /* Invalid psw mask. */
706                                 return -EINVAL;
707                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
708                                 /* Invalid address-space-control bits */
709                                 return -EINVAL;
710                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
711                                 (regs->psw.mask & PSW_MASK_BA) |
712                                 (__u64)(tmp & mask) << 32;
713                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
714                         /* Build a 64 bit psw address from 31 bit address. */
715                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
716                         /* Transfer 31 bit amode bit to psw mask. */
717                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
718                                 (__u64)(tmp & PSW32_ADDR_AMODE);
719                 } else {
720                         /* gpr 0-15 */
721                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
722                 }
723         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
724                 /*
725                  * access registers are stored in the thread structure
726                  */
727                 offset = addr - (addr_t) &dummy32->regs.acrs;
728                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
729
730         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
731                 /*
732                  * orig_gpr2 is stored on the kernel stack
733                  */
734                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
735
736         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
737                 /*
738                  * prevent writess of padding hole between
739                  * orig_gpr2 and fp_regs on s390.
740                  */
741                 return 0;
742
743         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
744                 /*
745                  * floating point control reg. is in the thread structure
746                  */
747                 if (test_fp_ctl(tmp))
748                         return -EINVAL;
749                 child->thread.fp_regs.fpc = data;
750
751         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
752                 /*
753                  * floating point regs. are either in child->thread.fp_regs
754                  * or the child->thread.vxrs array
755                  */
756                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
757                 if (child->thread.vxrs)
758                         *(__u32 *)((addr_t)
759                                 child->thread.vxrs + 2*offset) = tmp;
760                 else
761                         *(__u32 *)((addr_t)
762                                 &child->thread.fp_regs.fprs + offset) = tmp;
763
764         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
765                 /*
766                  * Handle access to the per_info structure.
767                  */
768                 addr -= (addr_t) &dummy32->regs.per_info;
769                 __poke_user_per_compat(child, addr, data);
770         }
771
772         return 0;
773 }
774
775 static int poke_user_compat(struct task_struct *child,
776                             addr_t addr, addr_t data)
777 {
778         if (!is_compat_task() || (addr & 3) ||
779             addr > sizeof(struct compat_user) - 3)
780                 return -EIO;
781
782         return __poke_user_compat(child, addr, data);
783 }
784
785 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
786                         compat_ulong_t caddr, compat_ulong_t cdata)
787 {
788         unsigned long addr = caddr;
789         unsigned long data = cdata;
790         compat_ptrace_area parea;
791         int copied, ret;
792
793         switch (request) {
794         case PTRACE_PEEKUSR:
795                 /* read the word at location addr in the USER area. */
796                 return peek_user_compat(child, addr, data);
797
798         case PTRACE_POKEUSR:
799                 /* write the word at location addr in the USER area */
800                 return poke_user_compat(child, addr, data);
801
802         case PTRACE_PEEKUSR_AREA:
803         case PTRACE_POKEUSR_AREA:
804                 if (copy_from_user(&parea, (void __force __user *) addr,
805                                                         sizeof(parea)))
806                         return -EFAULT;
807                 addr = parea.kernel_addr;
808                 data = parea.process_addr;
809                 copied = 0;
810                 while (copied < parea.len) {
811                         if (request == PTRACE_PEEKUSR_AREA)
812                                 ret = peek_user_compat(child, addr, data);
813                         else {
814                                 __u32 utmp;
815                                 if (get_user(utmp,
816                                              (__u32 __force __user *) data))
817                                         return -EFAULT;
818                                 ret = poke_user_compat(child, addr, utmp);
819                         }
820                         if (ret)
821                                 return ret;
822                         addr += sizeof(unsigned int);
823                         data += sizeof(unsigned int);
824                         copied += sizeof(unsigned int);
825                 }
826                 return 0;
827         case PTRACE_GET_LAST_BREAK:
828                 put_user(task_thread_info(child)->last_break,
829                          (unsigned int __user *) data);
830                 return 0;
831         }
832         return compat_ptrace_request(child, request, addr, data);
833 }
834 #endif
835
836 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
837 {
838         long ret = 0;
839
840         /* Do the secure computing check first. */
841         if (secure_computing()) {
842                 /* seccomp failures shouldn't expose any additional code. */
843                 ret = -1;
844                 goto out;
845         }
846
847         /*
848          * The sysc_tracesys code in entry.S stored the system
849          * call number to gprs[2].
850          */
851         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
852             (tracehook_report_syscall_entry(regs) ||
853              regs->gprs[2] >= NR_syscalls)) {
854                 /*
855                  * Tracing decided this syscall should not happen or the
856                  * debugger stored an invalid system call number. Skip
857                  * the system call and the system call restart handling.
858                  */
859                 clear_pt_regs_flag(regs, PIF_SYSCALL);
860                 ret = -1;
861         }
862
863         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
864                 trace_sys_enter(regs, regs->gprs[2]);
865
866         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
867                             regs->gprs[3], regs->gprs[4],
868                             regs->gprs[5]);
869 out:
870         return ret ?: regs->gprs[2];
871 }
872
873 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
874 {
875         audit_syscall_exit(regs);
876
877         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
878                 trace_sys_exit(regs, regs->gprs[2]);
879
880         if (test_thread_flag(TIF_SYSCALL_TRACE))
881                 tracehook_report_syscall_exit(regs, 0);
882 }
883
884 /*
885  * user_regset definitions.
886  */
887
888 static int s390_regs_get(struct task_struct *target,
889                          const struct user_regset *regset,
890                          unsigned int pos, unsigned int count,
891                          void *kbuf, void __user *ubuf)
892 {
893         if (target == current)
894                 save_access_regs(target->thread.acrs);
895
896         if (kbuf) {
897                 unsigned long *k = kbuf;
898                 while (count > 0) {
899                         *k++ = __peek_user(target, pos);
900                         count -= sizeof(*k);
901                         pos += sizeof(*k);
902                 }
903         } else {
904                 unsigned long __user *u = ubuf;
905                 while (count > 0) {
906                         if (__put_user(__peek_user(target, pos), u++))
907                                 return -EFAULT;
908                         count -= sizeof(*u);
909                         pos += sizeof(*u);
910                 }
911         }
912         return 0;
913 }
914
915 static int s390_regs_set(struct task_struct *target,
916                          const struct user_regset *regset,
917                          unsigned int pos, unsigned int count,
918                          const void *kbuf, const void __user *ubuf)
919 {
920         int rc = 0;
921
922         if (target == current)
923                 save_access_regs(target->thread.acrs);
924
925         if (kbuf) {
926                 const unsigned long *k = kbuf;
927                 while (count > 0 && !rc) {
928                         rc = __poke_user(target, pos, *k++);
929                         count -= sizeof(*k);
930                         pos += sizeof(*k);
931                 }
932         } else {
933                 const unsigned long  __user *u = ubuf;
934                 while (count > 0 && !rc) {
935                         unsigned long word;
936                         rc = __get_user(word, u++);
937                         if (rc)
938                                 break;
939                         rc = __poke_user(target, pos, word);
940                         count -= sizeof(*u);
941                         pos += sizeof(*u);
942                 }
943         }
944
945         if (rc == 0 && target == current)
946                 restore_access_regs(target->thread.acrs);
947
948         return rc;
949 }
950
951 static int s390_fpregs_get(struct task_struct *target,
952                            const struct user_regset *regset, unsigned int pos,
953                            unsigned int count, void *kbuf, void __user *ubuf)
954 {
955         if (target == current) {
956                 save_fp_ctl(&target->thread.fp_regs.fpc);
957                 save_fp_regs(target->thread.fp_regs.fprs);
958         } else if (target->thread.vxrs) {
959                 int i;
960
961                 for (i = 0; i < __NUM_VXRS_LOW; i++)
962                         target->thread.fp_regs.fprs[i] =
963                                 *(freg_t *)(target->thread.vxrs + i);
964         }
965         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
966                                    &target->thread.fp_regs, 0, -1);
967 }
968
969 static int s390_fpregs_set(struct task_struct *target,
970                            const struct user_regset *regset, unsigned int pos,
971                            unsigned int count, const void *kbuf,
972                            const void __user *ubuf)
973 {
974         int rc = 0;
975
976         if (target == current) {
977                 save_fp_ctl(&target->thread.fp_regs.fpc);
978                 save_fp_regs(target->thread.fp_regs.fprs);
979         }
980
981         /* If setting FPC, must validate it first. */
982         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
983                 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
984                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
985                                         0, offsetof(s390_fp_regs, fprs));
986                 if (rc)
987                         return rc;
988                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
989                         return -EINVAL;
990                 target->thread.fp_regs.fpc = ufpc[0];
991         }
992
993         if (rc == 0 && count > 0)
994                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
995                                         target->thread.fp_regs.fprs,
996                                         offsetof(s390_fp_regs, fprs), -1);
997
998         if (rc == 0) {
999                 if (target == current) {
1000                         restore_fp_ctl(&target->thread.fp_regs.fpc);
1001                         restore_fp_regs(target->thread.fp_regs.fprs);
1002                 } else if (target->thread.vxrs) {
1003                         int i;
1004
1005                         for (i = 0; i < __NUM_VXRS_LOW; i++)
1006                                 *(freg_t *)(target->thread.vxrs + i) =
1007                                         target->thread.fp_regs.fprs[i];
1008                 }
1009         }
1010
1011         return rc;
1012 }
1013
1014 static int s390_last_break_get(struct task_struct *target,
1015                                const struct user_regset *regset,
1016                                unsigned int pos, unsigned int count,
1017                                void *kbuf, void __user *ubuf)
1018 {
1019         if (count > 0) {
1020                 if (kbuf) {
1021                         unsigned long *k = kbuf;
1022                         *k = task_thread_info(target)->last_break;
1023                 } else {
1024                         unsigned long  __user *u = ubuf;
1025                         if (__put_user(task_thread_info(target)->last_break, u))
1026                                 return -EFAULT;
1027                 }
1028         }
1029         return 0;
1030 }
1031
1032 static int s390_last_break_set(struct task_struct *target,
1033                                const struct user_regset *regset,
1034                                unsigned int pos, unsigned int count,
1035                                const void *kbuf, const void __user *ubuf)
1036 {
1037         return 0;
1038 }
1039
1040 static int s390_tdb_get(struct task_struct *target,
1041                         const struct user_regset *regset,
1042                         unsigned int pos, unsigned int count,
1043                         void *kbuf, void __user *ubuf)
1044 {
1045         struct pt_regs *regs = task_pt_regs(target);
1046         unsigned char *data;
1047
1048         if (!(regs->int_code & 0x200))
1049                 return -ENODATA;
1050         data = target->thread.trap_tdb;
1051         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1052 }
1053
1054 static int s390_tdb_set(struct task_struct *target,
1055                         const struct user_regset *regset,
1056                         unsigned int pos, unsigned int count,
1057                         const void *kbuf, const void __user *ubuf)
1058 {
1059         return 0;
1060 }
1061
1062 static int s390_vxrs_low_get(struct task_struct *target,
1063                              const struct user_regset *regset,
1064                              unsigned int pos, unsigned int count,
1065                              void *kbuf, void __user *ubuf)
1066 {
1067         __u64 vxrs[__NUM_VXRS_LOW];
1068         int i;
1069
1070         if (!MACHINE_HAS_VX)
1071                 return -ENODEV;
1072         if (target->thread.vxrs) {
1073                 if (target == current)
1074                         save_vx_regs(target->thread.vxrs);
1075                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1076                         vxrs[i] = *((__u64 *)(target->thread.vxrs + i) + 1);
1077         } else
1078                 memset(vxrs, 0, sizeof(vxrs));
1079         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1080 }
1081
1082 static int s390_vxrs_low_set(struct task_struct *target,
1083                              const struct user_regset *regset,
1084                              unsigned int pos, unsigned int count,
1085                              const void *kbuf, const void __user *ubuf)
1086 {
1087         __u64 vxrs[__NUM_VXRS_LOW];
1088         int i, rc;
1089
1090         if (!MACHINE_HAS_VX)
1091                 return -ENODEV;
1092         if (!target->thread.vxrs) {
1093                 rc = alloc_vector_registers(target);
1094                 if (rc)
1095                         return rc;
1096         } else if (target == current)
1097                 save_vx_regs(target->thread.vxrs);
1098
1099         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1100         if (rc == 0) {
1101                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1102                         *((__u64 *)(target->thread.vxrs + i) + 1) = vxrs[i];
1103                 if (target == current)
1104                         restore_vx_regs(target->thread.vxrs);
1105         }
1106
1107         return rc;
1108 }
1109
1110 static int s390_vxrs_high_get(struct task_struct *target,
1111                               const struct user_regset *regset,
1112                               unsigned int pos, unsigned int count,
1113                               void *kbuf, void __user *ubuf)
1114 {
1115         __vector128 vxrs[__NUM_VXRS_HIGH];
1116
1117         if (!MACHINE_HAS_VX)
1118                 return -ENODEV;
1119         if (target->thread.vxrs) {
1120                 if (target == current)
1121                         save_vx_regs(target->thread.vxrs);
1122                 memcpy(vxrs, target->thread.vxrs + __NUM_VXRS_LOW,
1123                        sizeof(vxrs));
1124         } else
1125                 memset(vxrs, 0, sizeof(vxrs));
1126         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1127 }
1128
1129 static int s390_vxrs_high_set(struct task_struct *target,
1130                               const struct user_regset *regset,
1131                               unsigned int pos, unsigned int count,
1132                               const void *kbuf, const void __user *ubuf)
1133 {
1134         int rc;
1135
1136         if (!MACHINE_HAS_VX)
1137                 return -ENODEV;
1138         if (!target->thread.vxrs) {
1139                 rc = alloc_vector_registers(target);
1140                 if (rc)
1141                         return rc;
1142         } else if (target == current)
1143                 save_vx_regs(target->thread.vxrs);
1144
1145         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1146                                 target->thread.vxrs + __NUM_VXRS_LOW, 0, -1);
1147         if (rc == 0 && target == current)
1148                 restore_vx_regs(target->thread.vxrs);
1149
1150         return rc;
1151 }
1152
1153 static int s390_system_call_get(struct task_struct *target,
1154                                 const struct user_regset *regset,
1155                                 unsigned int pos, unsigned int count,
1156                                 void *kbuf, void __user *ubuf)
1157 {
1158         unsigned int *data = &task_thread_info(target)->system_call;
1159         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1160                                    data, 0, sizeof(unsigned int));
1161 }
1162
1163 static int s390_system_call_set(struct task_struct *target,
1164                                 const struct user_regset *regset,
1165                                 unsigned int pos, unsigned int count,
1166                                 const void *kbuf, const void __user *ubuf)
1167 {
1168         unsigned int *data = &task_thread_info(target)->system_call;
1169         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1170                                   data, 0, sizeof(unsigned int));
1171 }
1172
1173 static const struct user_regset s390_regsets[] = {
1174         {
1175                 .core_note_type = NT_PRSTATUS,
1176                 .n = sizeof(s390_regs) / sizeof(long),
1177                 .size = sizeof(long),
1178                 .align = sizeof(long),
1179                 .get = s390_regs_get,
1180                 .set = s390_regs_set,
1181         },
1182         {
1183                 .core_note_type = NT_PRFPREG,
1184                 .n = sizeof(s390_fp_regs) / sizeof(long),
1185                 .size = sizeof(long),
1186                 .align = sizeof(long),
1187                 .get = s390_fpregs_get,
1188                 .set = s390_fpregs_set,
1189         },
1190         {
1191                 .core_note_type = NT_S390_SYSTEM_CALL,
1192                 .n = 1,
1193                 .size = sizeof(unsigned int),
1194                 .align = sizeof(unsigned int),
1195                 .get = s390_system_call_get,
1196                 .set = s390_system_call_set,
1197         },
1198         {
1199                 .core_note_type = NT_S390_LAST_BREAK,
1200                 .n = 1,
1201                 .size = sizeof(long),
1202                 .align = sizeof(long),
1203                 .get = s390_last_break_get,
1204                 .set = s390_last_break_set,
1205         },
1206         {
1207                 .core_note_type = NT_S390_TDB,
1208                 .n = 1,
1209                 .size = 256,
1210                 .align = 1,
1211                 .get = s390_tdb_get,
1212                 .set = s390_tdb_set,
1213         },
1214         {
1215                 .core_note_type = NT_S390_VXRS_LOW,
1216                 .n = __NUM_VXRS_LOW,
1217                 .size = sizeof(__u64),
1218                 .align = sizeof(__u64),
1219                 .get = s390_vxrs_low_get,
1220                 .set = s390_vxrs_low_set,
1221         },
1222         {
1223                 .core_note_type = NT_S390_VXRS_HIGH,
1224                 .n = __NUM_VXRS_HIGH,
1225                 .size = sizeof(__vector128),
1226                 .align = sizeof(__vector128),
1227                 .get = s390_vxrs_high_get,
1228                 .set = s390_vxrs_high_set,
1229         },
1230 };
1231
1232 static const struct user_regset_view user_s390_view = {
1233         .name = UTS_MACHINE,
1234         .e_machine = EM_S390,
1235         .regsets = s390_regsets,
1236         .n = ARRAY_SIZE(s390_regsets)
1237 };
1238
1239 #ifdef CONFIG_COMPAT
1240 static int s390_compat_regs_get(struct task_struct *target,
1241                                 const struct user_regset *regset,
1242                                 unsigned int pos, unsigned int count,
1243                                 void *kbuf, void __user *ubuf)
1244 {
1245         if (target == current)
1246                 save_access_regs(target->thread.acrs);
1247
1248         if (kbuf) {
1249                 compat_ulong_t *k = kbuf;
1250                 while (count > 0) {
1251                         *k++ = __peek_user_compat(target, pos);
1252                         count -= sizeof(*k);
1253                         pos += sizeof(*k);
1254                 }
1255         } else {
1256                 compat_ulong_t __user *u = ubuf;
1257                 while (count > 0) {
1258                         if (__put_user(__peek_user_compat(target, pos), u++))
1259                                 return -EFAULT;
1260                         count -= sizeof(*u);
1261                         pos += sizeof(*u);
1262                 }
1263         }
1264         return 0;
1265 }
1266
1267 static int s390_compat_regs_set(struct task_struct *target,
1268                                 const struct user_regset *regset,
1269                                 unsigned int pos, unsigned int count,
1270                                 const void *kbuf, const void __user *ubuf)
1271 {
1272         int rc = 0;
1273
1274         if (target == current)
1275                 save_access_regs(target->thread.acrs);
1276
1277         if (kbuf) {
1278                 const compat_ulong_t *k = kbuf;
1279                 while (count > 0 && !rc) {
1280                         rc = __poke_user_compat(target, pos, *k++);
1281                         count -= sizeof(*k);
1282                         pos += sizeof(*k);
1283                 }
1284         } else {
1285                 const compat_ulong_t  __user *u = ubuf;
1286                 while (count > 0 && !rc) {
1287                         compat_ulong_t word;
1288                         rc = __get_user(word, u++);
1289                         if (rc)
1290                                 break;
1291                         rc = __poke_user_compat(target, pos, word);
1292                         count -= sizeof(*u);
1293                         pos += sizeof(*u);
1294                 }
1295         }
1296
1297         if (rc == 0 && target == current)
1298                 restore_access_regs(target->thread.acrs);
1299
1300         return rc;
1301 }
1302
1303 static int s390_compat_regs_high_get(struct task_struct *target,
1304                                      const struct user_regset *regset,
1305                                      unsigned int pos, unsigned int count,
1306                                      void *kbuf, void __user *ubuf)
1307 {
1308         compat_ulong_t *gprs_high;
1309
1310         gprs_high = (compat_ulong_t *)
1311                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1312         if (kbuf) {
1313                 compat_ulong_t *k = kbuf;
1314                 while (count > 0) {
1315                         *k++ = *gprs_high;
1316                         gprs_high += 2;
1317                         count -= sizeof(*k);
1318                 }
1319         } else {
1320                 compat_ulong_t __user *u = ubuf;
1321                 while (count > 0) {
1322                         if (__put_user(*gprs_high, u++))
1323                                 return -EFAULT;
1324                         gprs_high += 2;
1325                         count -= sizeof(*u);
1326                 }
1327         }
1328         return 0;
1329 }
1330
1331 static int s390_compat_regs_high_set(struct task_struct *target,
1332                                      const struct user_regset *regset,
1333                                      unsigned int pos, unsigned int count,
1334                                      const void *kbuf, const void __user *ubuf)
1335 {
1336         compat_ulong_t *gprs_high;
1337         int rc = 0;
1338
1339         gprs_high = (compat_ulong_t *)
1340                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1341         if (kbuf) {
1342                 const compat_ulong_t *k = kbuf;
1343                 while (count > 0) {
1344                         *gprs_high = *k++;
1345                         *gprs_high += 2;
1346                         count -= sizeof(*k);
1347                 }
1348         } else {
1349                 const compat_ulong_t  __user *u = ubuf;
1350                 while (count > 0 && !rc) {
1351                         unsigned long word;
1352                         rc = __get_user(word, u++);
1353                         if (rc)
1354                                 break;
1355                         *gprs_high = word;
1356                         *gprs_high += 2;
1357                         count -= sizeof(*u);
1358                 }
1359         }
1360
1361         return rc;
1362 }
1363
1364 static int s390_compat_last_break_get(struct task_struct *target,
1365                                       const struct user_regset *regset,
1366                                       unsigned int pos, unsigned int count,
1367                                       void *kbuf, void __user *ubuf)
1368 {
1369         compat_ulong_t last_break;
1370
1371         if (count > 0) {
1372                 last_break = task_thread_info(target)->last_break;
1373                 if (kbuf) {
1374                         unsigned long *k = kbuf;
1375                         *k = last_break;
1376                 } else {
1377                         unsigned long  __user *u = ubuf;
1378                         if (__put_user(last_break, u))
1379                                 return -EFAULT;
1380                 }
1381         }
1382         return 0;
1383 }
1384
1385 static int s390_compat_last_break_set(struct task_struct *target,
1386                                       const struct user_regset *regset,
1387                                       unsigned int pos, unsigned int count,
1388                                       const void *kbuf, const void __user *ubuf)
1389 {
1390         return 0;
1391 }
1392
1393 static const struct user_regset s390_compat_regsets[] = {
1394         {
1395                 .core_note_type = NT_PRSTATUS,
1396                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1397                 .size = sizeof(compat_long_t),
1398                 .align = sizeof(compat_long_t),
1399                 .get = s390_compat_regs_get,
1400                 .set = s390_compat_regs_set,
1401         },
1402         {
1403                 .core_note_type = NT_PRFPREG,
1404                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1405                 .size = sizeof(compat_long_t),
1406                 .align = sizeof(compat_long_t),
1407                 .get = s390_fpregs_get,
1408                 .set = s390_fpregs_set,
1409         },
1410         {
1411                 .core_note_type = NT_S390_SYSTEM_CALL,
1412                 .n = 1,
1413                 .size = sizeof(compat_uint_t),
1414                 .align = sizeof(compat_uint_t),
1415                 .get = s390_system_call_get,
1416                 .set = s390_system_call_set,
1417         },
1418         {
1419                 .core_note_type = NT_S390_LAST_BREAK,
1420                 .n = 1,
1421                 .size = sizeof(long),
1422                 .align = sizeof(long),
1423                 .get = s390_compat_last_break_get,
1424                 .set = s390_compat_last_break_set,
1425         },
1426         {
1427                 .core_note_type = NT_S390_TDB,
1428                 .n = 1,
1429                 .size = 256,
1430                 .align = 1,
1431                 .get = s390_tdb_get,
1432                 .set = s390_tdb_set,
1433         },
1434         {
1435                 .core_note_type = NT_S390_VXRS_LOW,
1436                 .n = __NUM_VXRS_LOW,
1437                 .size = sizeof(__u64),
1438                 .align = sizeof(__u64),
1439                 .get = s390_vxrs_low_get,
1440                 .set = s390_vxrs_low_set,
1441         },
1442         {
1443                 .core_note_type = NT_S390_VXRS_HIGH,
1444                 .n = __NUM_VXRS_HIGH,
1445                 .size = sizeof(__vector128),
1446                 .align = sizeof(__vector128),
1447                 .get = s390_vxrs_high_get,
1448                 .set = s390_vxrs_high_set,
1449         },
1450         {
1451                 .core_note_type = NT_S390_HIGH_GPRS,
1452                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1453                 .size = sizeof(compat_long_t),
1454                 .align = sizeof(compat_long_t),
1455                 .get = s390_compat_regs_high_get,
1456                 .set = s390_compat_regs_high_set,
1457         },
1458 };
1459
1460 static const struct user_regset_view user_s390_compat_view = {
1461         .name = "s390",
1462         .e_machine = EM_S390,
1463         .regsets = s390_compat_regsets,
1464         .n = ARRAY_SIZE(s390_compat_regsets)
1465 };
1466 #endif
1467
1468 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1469 {
1470 #ifdef CONFIG_COMPAT
1471         if (test_tsk_thread_flag(task, TIF_31BIT))
1472                 return &user_s390_compat_view;
1473 #endif
1474         return &user_s390_view;
1475 }
1476
1477 static const char *gpr_names[NUM_GPRS] = {
1478         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1479         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1480 };
1481
1482 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1483 {
1484         if (offset >= NUM_GPRS)
1485                 return 0;
1486         return regs->gprs[offset];
1487 }
1488
1489 int regs_query_register_offset(const char *name)
1490 {
1491         unsigned long offset;
1492
1493         if (!name || *name != 'r')
1494                 return -EINVAL;
1495         if (kstrtoul(name + 1, 10, &offset))
1496                 return -EINVAL;
1497         if (offset >= NUM_GPRS)
1498                 return -EINVAL;
1499         return offset;
1500 }
1501
1502 const char *regs_query_register_name(unsigned int offset)
1503 {
1504         if (offset >= NUM_GPRS)
1505                 return NULL;
1506         return gpr_names[offset];
1507 }
1508
1509 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1510 {
1511         unsigned long ksp = kernel_stack_pointer(regs);
1512
1513         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1514 }
1515
1516 /**
1517  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1518  * @regs:pt_regs which contains kernel stack pointer.
1519  * @n:stack entry number.
1520  *
1521  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1522  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1523  * this returns 0.
1524  */
1525 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1526 {
1527         unsigned long addr;
1528
1529         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1530         if (!regs_within_kernel_stack(regs, addr))
1531                 return 0;
1532         return *(unsigned long *)addr;
1533 }