These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43         struct pt_regs *regs = task_pt_regs(task);
44         struct thread_struct *thread = &task->thread;
45         struct per_regs old, new;
46
47         /* Take care of the enable/disable of transactional execution. */
48         if (MACHINE_HAS_TE) {
49                 unsigned long cr, cr_new;
50
51                 __ctl_store(cr, 0, 0);
52                 /* Set or clear transaction execution TXC bit 8. */
53                 cr_new = cr | (1UL << 55);
54                 if (task->thread.per_flags & PER_FLAG_NO_TE)
55                         cr_new &= ~(1UL << 55);
56                 if (cr_new != cr)
57                         __ctl_load(cr_new, 0, 0);
58                 /* Set or clear transaction execution TDC bits 62 and 63. */
59                 __ctl_store(cr, 2, 2);
60                 cr_new = cr & ~3UL;
61                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63                                 cr_new |= 1UL;
64                         else
65                                 cr_new |= 2UL;
66                 }
67                 if (cr_new != cr)
68                         __ctl_load(cr_new, 2, 2);
69         }
70         /* Copy user specified PER registers */
71         new.control = thread->per_user.control;
72         new.start = thread->per_user.start;
73         new.end = thread->per_user.end;
74
75         /* merge TIF_SINGLE_STEP into user specified PER registers. */
76         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
77             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
78                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
79                         new.control |= PER_EVENT_BRANCH;
80                 else
81                         new.control |= PER_EVENT_IFETCH;
82                 new.control |= PER_CONTROL_SUSPENSION;
83                 new.control |= PER_EVENT_TRANSACTION_END;
84                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
85                         new.control |= PER_EVENT_IFETCH;
86                 new.start = 0;
87                 new.end = PSW_ADDR_INSN;
88         }
89
90         /* Take care of the PER enablement bit in the PSW. */
91         if (!(new.control & PER_EVENT_MASK)) {
92                 regs->psw.mask &= ~PSW_MASK_PER;
93                 return;
94         }
95         regs->psw.mask |= PSW_MASK_PER;
96         __ctl_store(old, 9, 11);
97         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
98                 __ctl_load(new, 9, 11);
99 }
100
101 void user_enable_single_step(struct task_struct *task)
102 {
103         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
104         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
105 }
106
107 void user_disable_single_step(struct task_struct *task)
108 {
109         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
110         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
111 }
112
113 void user_enable_block_step(struct task_struct *task)
114 {
115         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
117 }
118
119 /*
120  * Called by kernel/ptrace.c when detaching..
121  *
122  * Clear all debugging related fields.
123  */
124 void ptrace_disable(struct task_struct *task)
125 {
126         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
127         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
128         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
129         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
130         task->thread.per_flags = 0;
131 }
132
133 #define __ADDR_MASK 7
134
135 static inline unsigned long __peek_user_per(struct task_struct *child,
136                                             addr_t addr)
137 {
138         struct per_struct_kernel *dummy = NULL;
139
140         if (addr == (addr_t) &dummy->cr9)
141                 /* Control bits of the active per set. */
142                 return test_thread_flag(TIF_SINGLE_STEP) ?
143                         PER_EVENT_IFETCH : child->thread.per_user.control;
144         else if (addr == (addr_t) &dummy->cr10)
145                 /* Start address of the active per set. */
146                 return test_thread_flag(TIF_SINGLE_STEP) ?
147                         0 : child->thread.per_user.start;
148         else if (addr == (addr_t) &dummy->cr11)
149                 /* End address of the active per set. */
150                 return test_thread_flag(TIF_SINGLE_STEP) ?
151                         PSW_ADDR_INSN : child->thread.per_user.end;
152         else if (addr == (addr_t) &dummy->bits)
153                 /* Single-step bit. */
154                 return test_thread_flag(TIF_SINGLE_STEP) ?
155                         (1UL << (BITS_PER_LONG - 1)) : 0;
156         else if (addr == (addr_t) &dummy->starting_addr)
157                 /* Start address of the user specified per set. */
158                 return child->thread.per_user.start;
159         else if (addr == (addr_t) &dummy->ending_addr)
160                 /* End address of the user specified per set. */
161                 return child->thread.per_user.end;
162         else if (addr == (addr_t) &dummy->perc_atmid)
163                 /* PER code, ATMID and AI of the last PER trap */
164                 return (unsigned long)
165                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
166         else if (addr == (addr_t) &dummy->address)
167                 /* Address of the last PER trap */
168                 return child->thread.per_event.address;
169         else if (addr == (addr_t) &dummy->access_id)
170                 /* Access id of the last PER trap */
171                 return (unsigned long)
172                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
173         return 0;
174 }
175
176 /*
177  * Read the word at offset addr from the user area of a process. The
178  * trouble here is that the information is littered over different
179  * locations. The process registers are found on the kernel stack,
180  * the floating point stuff and the trace settings are stored in
181  * the task structure. In addition the different structures in
182  * struct user contain pad bytes that should be read as zeroes.
183  * Lovely...
184  */
185 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
186 {
187         struct user *dummy = NULL;
188         addr_t offset, tmp;
189
190         if (addr < (addr_t) &dummy->regs.acrs) {
191                 /*
192                  * psw and gprs are stored on the stack
193                  */
194                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
195                 if (addr == (addr_t) &dummy->regs.psw.mask) {
196                         /* Return a clean psw mask. */
197                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
198                         tmp |= PSW_USER_BITS;
199                 }
200
201         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
202                 /*
203                  * access registers are stored in the thread structure
204                  */
205                 offset = addr - (addr_t) &dummy->regs.acrs;
206                 /*
207                  * Very special case: old & broken 64 bit gdb reading
208                  * from acrs[15]. Result is a 64 bit value. Read the
209                  * 32 bit acrs[15] value and shift it by 32. Sick...
210                  */
211                 if (addr == (addr_t) &dummy->regs.acrs[15])
212                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
213                 else
214                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
215
216         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
217                 /*
218                  * orig_gpr2 is stored on the kernel stack
219                  */
220                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
221
222         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
223                 /*
224                  * prevent reads of padding hole between
225                  * orig_gpr2 and fp_regs on s390.
226                  */
227                 tmp = 0;
228
229         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
230                 /*
231                  * floating point control reg. is in the thread structure
232                  */
233                 tmp = child->thread.fpu.fpc;
234                 tmp <<= BITS_PER_LONG - 32;
235
236         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
237                 /*
238                  * floating point regs. are either in child->thread.fpu
239                  * or the child->thread.fpu.vxrs array
240                  */
241                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
242                 if (MACHINE_HAS_VX)
243                         tmp = *(addr_t *)
244                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
245                 else
246                         tmp = *(addr_t *)
247                                ((addr_t) child->thread.fpu.fprs + offset);
248
249         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
250                 /*
251                  * Handle access to the per_info structure.
252                  */
253                 addr -= (addr_t) &dummy->regs.per_info;
254                 tmp = __peek_user_per(child, addr);
255
256         } else
257                 tmp = 0;
258
259         return tmp;
260 }
261
262 static int
263 peek_user(struct task_struct *child, addr_t addr, addr_t data)
264 {
265         addr_t tmp, mask;
266
267         /*
268          * Stupid gdb peeks/pokes the access registers in 64 bit with
269          * an alignment of 4. Programmers from hell...
270          */
271         mask = __ADDR_MASK;
272         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
273             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
274                 mask = 3;
275         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
276                 return -EIO;
277
278         tmp = __peek_user(child, addr);
279         return put_user(tmp, (addr_t __user *) data);
280 }
281
282 static inline void __poke_user_per(struct task_struct *child,
283                                    addr_t addr, addr_t data)
284 {
285         struct per_struct_kernel *dummy = NULL;
286
287         /*
288          * There are only three fields in the per_info struct that the
289          * debugger user can write to.
290          * 1) cr9: the debugger wants to set a new PER event mask
291          * 2) starting_addr: the debugger wants to set a new starting
292          *    address to use with the PER event mask.
293          * 3) ending_addr: the debugger wants to set a new ending
294          *    address to use with the PER event mask.
295          * The user specified PER event mask and the start and end
296          * addresses are used only if single stepping is not in effect.
297          * Writes to any other field in per_info are ignored.
298          */
299         if (addr == (addr_t) &dummy->cr9)
300                 /* PER event mask of the user specified per set. */
301                 child->thread.per_user.control =
302                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
303         else if (addr == (addr_t) &dummy->starting_addr)
304                 /* Starting address of the user specified per set. */
305                 child->thread.per_user.start = data;
306         else if (addr == (addr_t) &dummy->ending_addr)
307                 /* Ending address of the user specified per set. */
308                 child->thread.per_user.end = data;
309 }
310
311 /*
312  * Write a word to the user area of a process at location addr. This
313  * operation does have an additional problem compared to peek_user.
314  * Stores to the program status word and on the floating point
315  * control register needs to get checked for validity.
316  */
317 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
318 {
319         struct user *dummy = NULL;
320         addr_t offset;
321
322         if (addr < (addr_t) &dummy->regs.acrs) {
323                 /*
324                  * psw and gprs are stored on the stack
325                  */
326                 if (addr == (addr_t) &dummy->regs.psw.mask) {
327                         unsigned long mask = PSW_MASK_USER;
328
329                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
330                         if ((data ^ PSW_USER_BITS) & ~mask)
331                                 /* Invalid psw mask. */
332                                 return -EINVAL;
333                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
334                                 /* Invalid address-space-control bits */
335                                 return -EINVAL;
336                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
337                                 /* Invalid addressing mode bits */
338                                 return -EINVAL;
339                 }
340                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
341
342         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
343                 /*
344                  * access registers are stored in the thread structure
345                  */
346                 offset = addr - (addr_t) &dummy->regs.acrs;
347                 /*
348                  * Very special case: old & broken 64 bit gdb writing
349                  * to acrs[15] with a 64 bit value. Ignore the lower
350                  * half of the value and write the upper 32 bit to
351                  * acrs[15]. Sick...
352                  */
353                 if (addr == (addr_t) &dummy->regs.acrs[15])
354                         child->thread.acrs[15] = (unsigned int) (data >> 32);
355                 else
356                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
357
358         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
359                 /*
360                  * orig_gpr2 is stored on the kernel stack
361                  */
362                 task_pt_regs(child)->orig_gpr2 = data;
363
364         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
365                 /*
366                  * prevent writes of padding hole between
367                  * orig_gpr2 and fp_regs on s390.
368                  */
369                 return 0;
370
371         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
372                 /*
373                  * floating point control reg. is in the thread structure
374                  */
375                 if ((unsigned int) data != 0 ||
376                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
377                         return -EINVAL;
378                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
379
380         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
381                 /*
382                  * floating point regs. are either in child->thread.fpu
383                  * or the child->thread.fpu.vxrs array
384                  */
385                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
386                 if (MACHINE_HAS_VX)
387                         *(addr_t *)((addr_t)
388                                 child->thread.fpu.vxrs + 2*offset) = data;
389                 else
390                         *(addr_t *)((addr_t)
391                                 child->thread.fpu.fprs + offset) = data;
392
393         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
394                 /*
395                  * Handle access to the per_info structure.
396                  */
397                 addr -= (addr_t) &dummy->regs.per_info;
398                 __poke_user_per(child, addr, data);
399
400         }
401
402         return 0;
403 }
404
405 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
406 {
407         addr_t mask;
408
409         /*
410          * Stupid gdb peeks/pokes the access registers in 64 bit with
411          * an alignment of 4. Programmers from hell indeed...
412          */
413         mask = __ADDR_MASK;
414         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
415             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
416                 mask = 3;
417         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418                 return -EIO;
419
420         return __poke_user(child, addr, data);
421 }
422
423 long arch_ptrace(struct task_struct *child, long request,
424                  unsigned long addr, unsigned long data)
425 {
426         ptrace_area parea; 
427         int copied, ret;
428
429         switch (request) {
430         case PTRACE_PEEKUSR:
431                 /* read the word at location addr in the USER area. */
432                 return peek_user(child, addr, data);
433
434         case PTRACE_POKEUSR:
435                 /* write the word at location addr in the USER area */
436                 return poke_user(child, addr, data);
437
438         case PTRACE_PEEKUSR_AREA:
439         case PTRACE_POKEUSR_AREA:
440                 if (copy_from_user(&parea, (void __force __user *) addr,
441                                                         sizeof(parea)))
442                         return -EFAULT;
443                 addr = parea.kernel_addr;
444                 data = parea.process_addr;
445                 copied = 0;
446                 while (copied < parea.len) {
447                         if (request == PTRACE_PEEKUSR_AREA)
448                                 ret = peek_user(child, addr, data);
449                         else {
450                                 addr_t utmp;
451                                 if (get_user(utmp,
452                                              (addr_t __force __user *) data))
453                                         return -EFAULT;
454                                 ret = poke_user(child, addr, utmp);
455                         }
456                         if (ret)
457                                 return ret;
458                         addr += sizeof(unsigned long);
459                         data += sizeof(unsigned long);
460                         copied += sizeof(unsigned long);
461                 }
462                 return 0;
463         case PTRACE_GET_LAST_BREAK:
464                 put_user(task_thread_info(child)->last_break,
465                          (unsigned long __user *) data);
466                 return 0;
467         case PTRACE_ENABLE_TE:
468                 if (!MACHINE_HAS_TE)
469                         return -EIO;
470                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
471                 return 0;
472         case PTRACE_DISABLE_TE:
473                 if (!MACHINE_HAS_TE)
474                         return -EIO;
475                 child->thread.per_flags |= PER_FLAG_NO_TE;
476                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477                 return 0;
478         case PTRACE_TE_ABORT_RAND:
479                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480                         return -EIO;
481                 switch (data) {
482                 case 0UL:
483                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484                         break;
485                 case 1UL:
486                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488                         break;
489                 case 2UL:
490                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492                         break;
493                 default:
494                         return -EINVAL;
495                 }
496                 return 0;
497         default:
498                 /* Removing high order bit from addr (only for 31 bit). */
499                 addr &= PSW_ADDR_INSN;
500                 return ptrace_request(child, request, addr, data);
501         }
502 }
503
504 #ifdef CONFIG_COMPAT
505 /*
506  * Now the fun part starts... a 31 bit program running in the
507  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
508  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
509  * to handle, the difference to the 64 bit versions of the requests
510  * is that the access is done in multiples of 4 byte instead of
511  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
512  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
513  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
514  * is a 31 bit program too, the content of struct user can be
515  * emulated. A 31 bit program peeking into the struct user of
516  * a 64 bit program is a no-no.
517  */
518
519 /*
520  * Same as peek_user_per but for a 31 bit program.
521  */
522 static inline __u32 __peek_user_per_compat(struct task_struct *child,
523                                            addr_t addr)
524 {
525         struct compat_per_struct_kernel *dummy32 = NULL;
526
527         if (addr == (addr_t) &dummy32->cr9)
528                 /* Control bits of the active per set. */
529                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
530                         PER_EVENT_IFETCH : child->thread.per_user.control;
531         else if (addr == (addr_t) &dummy32->cr10)
532                 /* Start address of the active per set. */
533                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
534                         0 : child->thread.per_user.start;
535         else if (addr == (addr_t) &dummy32->cr11)
536                 /* End address of the active per set. */
537                 return test_thread_flag(TIF_SINGLE_STEP) ?
538                         PSW32_ADDR_INSN : child->thread.per_user.end;
539         else if (addr == (addr_t) &dummy32->bits)
540                 /* Single-step bit. */
541                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
542                         0x80000000 : 0;
543         else if (addr == (addr_t) &dummy32->starting_addr)
544                 /* Start address of the user specified per set. */
545                 return (__u32) child->thread.per_user.start;
546         else if (addr == (addr_t) &dummy32->ending_addr)
547                 /* End address of the user specified per set. */
548                 return (__u32) child->thread.per_user.end;
549         else if (addr == (addr_t) &dummy32->perc_atmid)
550                 /* PER code, ATMID and AI of the last PER trap */
551                 return (__u32) child->thread.per_event.cause << 16;
552         else if (addr == (addr_t) &dummy32->address)
553                 /* Address of the last PER trap */
554                 return (__u32) child->thread.per_event.address;
555         else if (addr == (addr_t) &dummy32->access_id)
556                 /* Access id of the last PER trap */
557                 return (__u32) child->thread.per_event.paid << 24;
558         return 0;
559 }
560
561 /*
562  * Same as peek_user but for a 31 bit program.
563  */
564 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
565 {
566         struct compat_user *dummy32 = NULL;
567         addr_t offset;
568         __u32 tmp;
569
570         if (addr < (addr_t) &dummy32->regs.acrs) {
571                 struct pt_regs *regs = task_pt_regs(child);
572                 /*
573                  * psw and gprs are stored on the stack
574                  */
575                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
576                         /* Fake a 31 bit psw mask. */
577                         tmp = (__u32)(regs->psw.mask >> 32);
578                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
579                         tmp |= PSW32_USER_BITS;
580                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
581                         /* Fake a 31 bit psw address. */
582                         tmp = (__u32) regs->psw.addr |
583                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
584                 } else {
585                         /* gpr 0-15 */
586                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
587                 }
588         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
589                 /*
590                  * access registers are stored in the thread structure
591                  */
592                 offset = addr - (addr_t) &dummy32->regs.acrs;
593                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
594
595         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
596                 /*
597                  * orig_gpr2 is stored on the kernel stack
598                  */
599                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
600
601         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
602                 /*
603                  * prevent reads of padding hole between
604                  * orig_gpr2 and fp_regs on s390.
605                  */
606                 tmp = 0;
607
608         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
609                 /*
610                  * floating point control reg. is in the thread structure
611                  */
612                 tmp = child->thread.fpu.fpc;
613
614         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
615                 /*
616                  * floating point regs. are either in child->thread.fpu
617                  * or the child->thread.fpu.vxrs array
618                  */
619                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
620                 if (MACHINE_HAS_VX)
621                         tmp = *(__u32 *)
622                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
623                 else
624                         tmp = *(__u32 *)
625                                ((addr_t) child->thread.fpu.fprs + offset);
626
627         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
628                 /*
629                  * Handle access to the per_info structure.
630                  */
631                 addr -= (addr_t) &dummy32->regs.per_info;
632                 tmp = __peek_user_per_compat(child, addr);
633
634         } else
635                 tmp = 0;
636
637         return tmp;
638 }
639
640 static int peek_user_compat(struct task_struct *child,
641                             addr_t addr, addr_t data)
642 {
643         __u32 tmp;
644
645         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
646                 return -EIO;
647
648         tmp = __peek_user_compat(child, addr);
649         return put_user(tmp, (__u32 __user *) data);
650 }
651
652 /*
653  * Same as poke_user_per but for a 31 bit program.
654  */
655 static inline void __poke_user_per_compat(struct task_struct *child,
656                                           addr_t addr, __u32 data)
657 {
658         struct compat_per_struct_kernel *dummy32 = NULL;
659
660         if (addr == (addr_t) &dummy32->cr9)
661                 /* PER event mask of the user specified per set. */
662                 child->thread.per_user.control =
663                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
664         else if (addr == (addr_t) &dummy32->starting_addr)
665                 /* Starting address of the user specified per set. */
666                 child->thread.per_user.start = data;
667         else if (addr == (addr_t) &dummy32->ending_addr)
668                 /* Ending address of the user specified per set. */
669                 child->thread.per_user.end = data;
670 }
671
672 /*
673  * Same as poke_user but for a 31 bit program.
674  */
675 static int __poke_user_compat(struct task_struct *child,
676                               addr_t addr, addr_t data)
677 {
678         struct compat_user *dummy32 = NULL;
679         __u32 tmp = (__u32) data;
680         addr_t offset;
681
682         if (addr < (addr_t) &dummy32->regs.acrs) {
683                 struct pt_regs *regs = task_pt_regs(child);
684                 /*
685                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
686                  */
687                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
688                         __u32 mask = PSW32_MASK_USER;
689
690                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
691                         /* Build a 64 bit psw mask from 31 bit mask. */
692                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
693                                 /* Invalid psw mask. */
694                                 return -EINVAL;
695                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
696                                 /* Invalid address-space-control bits */
697                                 return -EINVAL;
698                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
699                                 (regs->psw.mask & PSW_MASK_BA) |
700                                 (__u64)(tmp & mask) << 32;
701                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
702                         /* Build a 64 bit psw address from 31 bit address. */
703                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
704                         /* Transfer 31 bit amode bit to psw mask. */
705                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
706                                 (__u64)(tmp & PSW32_ADDR_AMODE);
707                 } else {
708                         /* gpr 0-15 */
709                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
710                 }
711         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
712                 /*
713                  * access registers are stored in the thread structure
714                  */
715                 offset = addr - (addr_t) &dummy32->regs.acrs;
716                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
717
718         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
719                 /*
720                  * orig_gpr2 is stored on the kernel stack
721                  */
722                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
723
724         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
725                 /*
726                  * prevent writess of padding hole between
727                  * orig_gpr2 and fp_regs on s390.
728                  */
729                 return 0;
730
731         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
732                 /*
733                  * floating point control reg. is in the thread structure
734                  */
735                 if (test_fp_ctl(tmp))
736                         return -EINVAL;
737                 child->thread.fpu.fpc = data;
738
739         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
740                 /*
741                  * floating point regs. are either in child->thread.fpu
742                  * or the child->thread.fpu.vxrs array
743                  */
744                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
745                 if (MACHINE_HAS_VX)
746                         *(__u32 *)((addr_t)
747                                 child->thread.fpu.vxrs + 2*offset) = tmp;
748                 else
749                         *(__u32 *)((addr_t)
750                                 child->thread.fpu.fprs + offset) = tmp;
751
752         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
753                 /*
754                  * Handle access to the per_info structure.
755                  */
756                 addr -= (addr_t) &dummy32->regs.per_info;
757                 __poke_user_per_compat(child, addr, data);
758         }
759
760         return 0;
761 }
762
763 static int poke_user_compat(struct task_struct *child,
764                             addr_t addr, addr_t data)
765 {
766         if (!is_compat_task() || (addr & 3) ||
767             addr > sizeof(struct compat_user) - 3)
768                 return -EIO;
769
770         return __poke_user_compat(child, addr, data);
771 }
772
773 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
774                         compat_ulong_t caddr, compat_ulong_t cdata)
775 {
776         unsigned long addr = caddr;
777         unsigned long data = cdata;
778         compat_ptrace_area parea;
779         int copied, ret;
780
781         switch (request) {
782         case PTRACE_PEEKUSR:
783                 /* read the word at location addr in the USER area. */
784                 return peek_user_compat(child, addr, data);
785
786         case PTRACE_POKEUSR:
787                 /* write the word at location addr in the USER area */
788                 return poke_user_compat(child, addr, data);
789
790         case PTRACE_PEEKUSR_AREA:
791         case PTRACE_POKEUSR_AREA:
792                 if (copy_from_user(&parea, (void __force __user *) addr,
793                                                         sizeof(parea)))
794                         return -EFAULT;
795                 addr = parea.kernel_addr;
796                 data = parea.process_addr;
797                 copied = 0;
798                 while (copied < parea.len) {
799                         if (request == PTRACE_PEEKUSR_AREA)
800                                 ret = peek_user_compat(child, addr, data);
801                         else {
802                                 __u32 utmp;
803                                 if (get_user(utmp,
804                                              (__u32 __force __user *) data))
805                                         return -EFAULT;
806                                 ret = poke_user_compat(child, addr, utmp);
807                         }
808                         if (ret)
809                                 return ret;
810                         addr += sizeof(unsigned int);
811                         data += sizeof(unsigned int);
812                         copied += sizeof(unsigned int);
813                 }
814                 return 0;
815         case PTRACE_GET_LAST_BREAK:
816                 put_user(task_thread_info(child)->last_break,
817                          (unsigned int __user *) data);
818                 return 0;
819         }
820         return compat_ptrace_request(child, request, addr, data);
821 }
822 #endif
823
824 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
825 {
826         long ret = 0;
827
828         /* Do the secure computing check first. */
829         if (secure_computing()) {
830                 /* seccomp failures shouldn't expose any additional code. */
831                 ret = -1;
832                 goto out;
833         }
834
835         /*
836          * The sysc_tracesys code in entry.S stored the system
837          * call number to gprs[2].
838          */
839         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
840             (tracehook_report_syscall_entry(regs) ||
841              regs->gprs[2] >= NR_syscalls)) {
842                 /*
843                  * Tracing decided this syscall should not happen or the
844                  * debugger stored an invalid system call number. Skip
845                  * the system call and the system call restart handling.
846                  */
847                 clear_pt_regs_flag(regs, PIF_SYSCALL);
848                 ret = -1;
849         }
850
851         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
852                 trace_sys_enter(regs, regs->gprs[2]);
853
854         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
855                             regs->gprs[3], regs->gprs[4],
856                             regs->gprs[5]);
857 out:
858         return ret ?: regs->gprs[2];
859 }
860
861 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
862 {
863         audit_syscall_exit(regs);
864
865         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
866                 trace_sys_exit(regs, regs->gprs[2]);
867
868         if (test_thread_flag(TIF_SYSCALL_TRACE))
869                 tracehook_report_syscall_exit(regs, 0);
870 }
871
872 /*
873  * user_regset definitions.
874  */
875
876 static int s390_regs_get(struct task_struct *target,
877                          const struct user_regset *regset,
878                          unsigned int pos, unsigned int count,
879                          void *kbuf, void __user *ubuf)
880 {
881         if (target == current)
882                 save_access_regs(target->thread.acrs);
883
884         if (kbuf) {
885                 unsigned long *k = kbuf;
886                 while (count > 0) {
887                         *k++ = __peek_user(target, pos);
888                         count -= sizeof(*k);
889                         pos += sizeof(*k);
890                 }
891         } else {
892                 unsigned long __user *u = ubuf;
893                 while (count > 0) {
894                         if (__put_user(__peek_user(target, pos), u++))
895                                 return -EFAULT;
896                         count -= sizeof(*u);
897                         pos += sizeof(*u);
898                 }
899         }
900         return 0;
901 }
902
903 static int s390_regs_set(struct task_struct *target,
904                          const struct user_regset *regset,
905                          unsigned int pos, unsigned int count,
906                          const void *kbuf, const void __user *ubuf)
907 {
908         int rc = 0;
909
910         if (target == current)
911                 save_access_regs(target->thread.acrs);
912
913         if (kbuf) {
914                 const unsigned long *k = kbuf;
915                 while (count > 0 && !rc) {
916                         rc = __poke_user(target, pos, *k++);
917                         count -= sizeof(*k);
918                         pos += sizeof(*k);
919                 }
920         } else {
921                 const unsigned long  __user *u = ubuf;
922                 while (count > 0 && !rc) {
923                         unsigned long word;
924                         rc = __get_user(word, u++);
925                         if (rc)
926                                 break;
927                         rc = __poke_user(target, pos, word);
928                         count -= sizeof(*u);
929                         pos += sizeof(*u);
930                 }
931         }
932
933         if (rc == 0 && target == current)
934                 restore_access_regs(target->thread.acrs);
935
936         return rc;
937 }
938
939 static int s390_fpregs_get(struct task_struct *target,
940                            const struct user_regset *regset, unsigned int pos,
941                            unsigned int count, void *kbuf, void __user *ubuf)
942 {
943         _s390_fp_regs fp_regs;
944
945         if (target == current)
946                 save_fpu_regs();
947
948         fp_regs.fpc = target->thread.fpu.fpc;
949         fpregs_store(&fp_regs, &target->thread.fpu);
950
951         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
952                                    &fp_regs, 0, -1);
953 }
954
955 static int s390_fpregs_set(struct task_struct *target,
956                            const struct user_regset *regset, unsigned int pos,
957                            unsigned int count, const void *kbuf,
958                            const void __user *ubuf)
959 {
960         int rc = 0;
961         freg_t fprs[__NUM_FPRS];
962
963         if (target == current)
964                 save_fpu_regs();
965
966         /* If setting FPC, must validate it first. */
967         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
968                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
969                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
970                                         0, offsetof(s390_fp_regs, fprs));
971                 if (rc)
972                         return rc;
973                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
974                         return -EINVAL;
975                 target->thread.fpu.fpc = ufpc[0];
976         }
977
978         if (rc == 0 && count > 0)
979                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
980                                         fprs, offsetof(s390_fp_regs, fprs), -1);
981         if (rc)
982                 return rc;
983
984         if (MACHINE_HAS_VX)
985                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
986         else
987                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
988
989         return rc;
990 }
991
992 static int s390_last_break_get(struct task_struct *target,
993                                const struct user_regset *regset,
994                                unsigned int pos, unsigned int count,
995                                void *kbuf, void __user *ubuf)
996 {
997         if (count > 0) {
998                 if (kbuf) {
999                         unsigned long *k = kbuf;
1000                         *k = task_thread_info(target)->last_break;
1001                 } else {
1002                         unsigned long  __user *u = ubuf;
1003                         if (__put_user(task_thread_info(target)->last_break, u))
1004                                 return -EFAULT;
1005                 }
1006         }
1007         return 0;
1008 }
1009
1010 static int s390_last_break_set(struct task_struct *target,
1011                                const struct user_regset *regset,
1012                                unsigned int pos, unsigned int count,
1013                                const void *kbuf, const void __user *ubuf)
1014 {
1015         return 0;
1016 }
1017
1018 static int s390_tdb_get(struct task_struct *target,
1019                         const struct user_regset *regset,
1020                         unsigned int pos, unsigned int count,
1021                         void *kbuf, void __user *ubuf)
1022 {
1023         struct pt_regs *regs = task_pt_regs(target);
1024         unsigned char *data;
1025
1026         if (!(regs->int_code & 0x200))
1027                 return -ENODATA;
1028         data = target->thread.trap_tdb;
1029         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1030 }
1031
1032 static int s390_tdb_set(struct task_struct *target,
1033                         const struct user_regset *regset,
1034                         unsigned int pos, unsigned int count,
1035                         const void *kbuf, const void __user *ubuf)
1036 {
1037         return 0;
1038 }
1039
1040 static int s390_vxrs_low_get(struct task_struct *target,
1041                              const struct user_regset *regset,
1042                              unsigned int pos, unsigned int count,
1043                              void *kbuf, void __user *ubuf)
1044 {
1045         __u64 vxrs[__NUM_VXRS_LOW];
1046         int i;
1047
1048         if (!MACHINE_HAS_VX)
1049                 return -ENODEV;
1050         if (target == current)
1051                 save_fpu_regs();
1052         for (i = 0; i < __NUM_VXRS_LOW; i++)
1053                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1054         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1055 }
1056
1057 static int s390_vxrs_low_set(struct task_struct *target,
1058                              const struct user_regset *regset,
1059                              unsigned int pos, unsigned int count,
1060                              const void *kbuf, const void __user *ubuf)
1061 {
1062         __u64 vxrs[__NUM_VXRS_LOW];
1063         int i, rc;
1064
1065         if (!MACHINE_HAS_VX)
1066                 return -ENODEV;
1067         if (target == current)
1068                 save_fpu_regs();
1069
1070         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1071         if (rc == 0)
1072                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1073                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1074
1075         return rc;
1076 }
1077
1078 static int s390_vxrs_high_get(struct task_struct *target,
1079                               const struct user_regset *regset,
1080                               unsigned int pos, unsigned int count,
1081                               void *kbuf, void __user *ubuf)
1082 {
1083         __vector128 vxrs[__NUM_VXRS_HIGH];
1084
1085         if (!MACHINE_HAS_VX)
1086                 return -ENODEV;
1087         if (target == current)
1088                 save_fpu_regs();
1089         memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1090
1091         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1092 }
1093
1094 static int s390_vxrs_high_set(struct task_struct *target,
1095                               const struct user_regset *regset,
1096                               unsigned int pos, unsigned int count,
1097                               const void *kbuf, const void __user *ubuf)
1098 {
1099         int rc;
1100
1101         if (!MACHINE_HAS_VX)
1102                 return -ENODEV;
1103         if (target == current)
1104                 save_fpu_regs();
1105
1106         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1107                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1108         return rc;
1109 }
1110
1111 static int s390_system_call_get(struct task_struct *target,
1112                                 const struct user_regset *regset,
1113                                 unsigned int pos, unsigned int count,
1114                                 void *kbuf, void __user *ubuf)
1115 {
1116         unsigned int *data = &task_thread_info(target)->system_call;
1117         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1118                                    data, 0, sizeof(unsigned int));
1119 }
1120
1121 static int s390_system_call_set(struct task_struct *target,
1122                                 const struct user_regset *regset,
1123                                 unsigned int pos, unsigned int count,
1124                                 const void *kbuf, const void __user *ubuf)
1125 {
1126         unsigned int *data = &task_thread_info(target)->system_call;
1127         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1128                                   data, 0, sizeof(unsigned int));
1129 }
1130
1131 static const struct user_regset s390_regsets[] = {
1132         {
1133                 .core_note_type = NT_PRSTATUS,
1134                 .n = sizeof(s390_regs) / sizeof(long),
1135                 .size = sizeof(long),
1136                 .align = sizeof(long),
1137                 .get = s390_regs_get,
1138                 .set = s390_regs_set,
1139         },
1140         {
1141                 .core_note_type = NT_PRFPREG,
1142                 .n = sizeof(s390_fp_regs) / sizeof(long),
1143                 .size = sizeof(long),
1144                 .align = sizeof(long),
1145                 .get = s390_fpregs_get,
1146                 .set = s390_fpregs_set,
1147         },
1148         {
1149                 .core_note_type = NT_S390_SYSTEM_CALL,
1150                 .n = 1,
1151                 .size = sizeof(unsigned int),
1152                 .align = sizeof(unsigned int),
1153                 .get = s390_system_call_get,
1154                 .set = s390_system_call_set,
1155         },
1156         {
1157                 .core_note_type = NT_S390_LAST_BREAK,
1158                 .n = 1,
1159                 .size = sizeof(long),
1160                 .align = sizeof(long),
1161                 .get = s390_last_break_get,
1162                 .set = s390_last_break_set,
1163         },
1164         {
1165                 .core_note_type = NT_S390_TDB,
1166                 .n = 1,
1167                 .size = 256,
1168                 .align = 1,
1169                 .get = s390_tdb_get,
1170                 .set = s390_tdb_set,
1171         },
1172         {
1173                 .core_note_type = NT_S390_VXRS_LOW,
1174                 .n = __NUM_VXRS_LOW,
1175                 .size = sizeof(__u64),
1176                 .align = sizeof(__u64),
1177                 .get = s390_vxrs_low_get,
1178                 .set = s390_vxrs_low_set,
1179         },
1180         {
1181                 .core_note_type = NT_S390_VXRS_HIGH,
1182                 .n = __NUM_VXRS_HIGH,
1183                 .size = sizeof(__vector128),
1184                 .align = sizeof(__vector128),
1185                 .get = s390_vxrs_high_get,
1186                 .set = s390_vxrs_high_set,
1187         },
1188 };
1189
1190 static const struct user_regset_view user_s390_view = {
1191         .name = UTS_MACHINE,
1192         .e_machine = EM_S390,
1193         .regsets = s390_regsets,
1194         .n = ARRAY_SIZE(s390_regsets)
1195 };
1196
1197 #ifdef CONFIG_COMPAT
1198 static int s390_compat_regs_get(struct task_struct *target,
1199                                 const struct user_regset *regset,
1200                                 unsigned int pos, unsigned int count,
1201                                 void *kbuf, void __user *ubuf)
1202 {
1203         if (target == current)
1204                 save_access_regs(target->thread.acrs);
1205
1206         if (kbuf) {
1207                 compat_ulong_t *k = kbuf;
1208                 while (count > 0) {
1209                         *k++ = __peek_user_compat(target, pos);
1210                         count -= sizeof(*k);
1211                         pos += sizeof(*k);
1212                 }
1213         } else {
1214                 compat_ulong_t __user *u = ubuf;
1215                 while (count > 0) {
1216                         if (__put_user(__peek_user_compat(target, pos), u++))
1217                                 return -EFAULT;
1218                         count -= sizeof(*u);
1219                         pos += sizeof(*u);
1220                 }
1221         }
1222         return 0;
1223 }
1224
1225 static int s390_compat_regs_set(struct task_struct *target,
1226                                 const struct user_regset *regset,
1227                                 unsigned int pos, unsigned int count,
1228                                 const void *kbuf, const void __user *ubuf)
1229 {
1230         int rc = 0;
1231
1232         if (target == current)
1233                 save_access_regs(target->thread.acrs);
1234
1235         if (kbuf) {
1236                 const compat_ulong_t *k = kbuf;
1237                 while (count > 0 && !rc) {
1238                         rc = __poke_user_compat(target, pos, *k++);
1239                         count -= sizeof(*k);
1240                         pos += sizeof(*k);
1241                 }
1242         } else {
1243                 const compat_ulong_t  __user *u = ubuf;
1244                 while (count > 0 && !rc) {
1245                         compat_ulong_t word;
1246                         rc = __get_user(word, u++);
1247                         if (rc)
1248                                 break;
1249                         rc = __poke_user_compat(target, pos, word);
1250                         count -= sizeof(*u);
1251                         pos += sizeof(*u);
1252                 }
1253         }
1254
1255         if (rc == 0 && target == current)
1256                 restore_access_regs(target->thread.acrs);
1257
1258         return rc;
1259 }
1260
1261 static int s390_compat_regs_high_get(struct task_struct *target,
1262                                      const struct user_regset *regset,
1263                                      unsigned int pos, unsigned int count,
1264                                      void *kbuf, void __user *ubuf)
1265 {
1266         compat_ulong_t *gprs_high;
1267
1268         gprs_high = (compat_ulong_t *)
1269                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1270         if (kbuf) {
1271                 compat_ulong_t *k = kbuf;
1272                 while (count > 0) {
1273                         *k++ = *gprs_high;
1274                         gprs_high += 2;
1275                         count -= sizeof(*k);
1276                 }
1277         } else {
1278                 compat_ulong_t __user *u = ubuf;
1279                 while (count > 0) {
1280                         if (__put_user(*gprs_high, u++))
1281                                 return -EFAULT;
1282                         gprs_high += 2;
1283                         count -= sizeof(*u);
1284                 }
1285         }
1286         return 0;
1287 }
1288
1289 static int s390_compat_regs_high_set(struct task_struct *target,
1290                                      const struct user_regset *regset,
1291                                      unsigned int pos, unsigned int count,
1292                                      const void *kbuf, const void __user *ubuf)
1293 {
1294         compat_ulong_t *gprs_high;
1295         int rc = 0;
1296
1297         gprs_high = (compat_ulong_t *)
1298                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1299         if (kbuf) {
1300                 const compat_ulong_t *k = kbuf;
1301                 while (count > 0) {
1302                         *gprs_high = *k++;
1303                         *gprs_high += 2;
1304                         count -= sizeof(*k);
1305                 }
1306         } else {
1307                 const compat_ulong_t  __user *u = ubuf;
1308                 while (count > 0 && !rc) {
1309                         unsigned long word;
1310                         rc = __get_user(word, u++);
1311                         if (rc)
1312                                 break;
1313                         *gprs_high = word;
1314                         *gprs_high += 2;
1315                         count -= sizeof(*u);
1316                 }
1317         }
1318
1319         return rc;
1320 }
1321
1322 static int s390_compat_last_break_get(struct task_struct *target,
1323                                       const struct user_regset *regset,
1324                                       unsigned int pos, unsigned int count,
1325                                       void *kbuf, void __user *ubuf)
1326 {
1327         compat_ulong_t last_break;
1328
1329         if (count > 0) {
1330                 last_break = task_thread_info(target)->last_break;
1331                 if (kbuf) {
1332                         unsigned long *k = kbuf;
1333                         *k = last_break;
1334                 } else {
1335                         unsigned long  __user *u = ubuf;
1336                         if (__put_user(last_break, u))
1337                                 return -EFAULT;
1338                 }
1339         }
1340         return 0;
1341 }
1342
1343 static int s390_compat_last_break_set(struct task_struct *target,
1344                                       const struct user_regset *regset,
1345                                       unsigned int pos, unsigned int count,
1346                                       const void *kbuf, const void __user *ubuf)
1347 {
1348         return 0;
1349 }
1350
1351 static const struct user_regset s390_compat_regsets[] = {
1352         {
1353                 .core_note_type = NT_PRSTATUS,
1354                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1355                 .size = sizeof(compat_long_t),
1356                 .align = sizeof(compat_long_t),
1357                 .get = s390_compat_regs_get,
1358                 .set = s390_compat_regs_set,
1359         },
1360         {
1361                 .core_note_type = NT_PRFPREG,
1362                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1363                 .size = sizeof(compat_long_t),
1364                 .align = sizeof(compat_long_t),
1365                 .get = s390_fpregs_get,
1366                 .set = s390_fpregs_set,
1367         },
1368         {
1369                 .core_note_type = NT_S390_SYSTEM_CALL,
1370                 .n = 1,
1371                 .size = sizeof(compat_uint_t),
1372                 .align = sizeof(compat_uint_t),
1373                 .get = s390_system_call_get,
1374                 .set = s390_system_call_set,
1375         },
1376         {
1377                 .core_note_type = NT_S390_LAST_BREAK,
1378                 .n = 1,
1379                 .size = sizeof(long),
1380                 .align = sizeof(long),
1381                 .get = s390_compat_last_break_get,
1382                 .set = s390_compat_last_break_set,
1383         },
1384         {
1385                 .core_note_type = NT_S390_TDB,
1386                 .n = 1,
1387                 .size = 256,
1388                 .align = 1,
1389                 .get = s390_tdb_get,
1390                 .set = s390_tdb_set,
1391         },
1392         {
1393                 .core_note_type = NT_S390_VXRS_LOW,
1394                 .n = __NUM_VXRS_LOW,
1395                 .size = sizeof(__u64),
1396                 .align = sizeof(__u64),
1397                 .get = s390_vxrs_low_get,
1398                 .set = s390_vxrs_low_set,
1399         },
1400         {
1401                 .core_note_type = NT_S390_VXRS_HIGH,
1402                 .n = __NUM_VXRS_HIGH,
1403                 .size = sizeof(__vector128),
1404                 .align = sizeof(__vector128),
1405                 .get = s390_vxrs_high_get,
1406                 .set = s390_vxrs_high_set,
1407         },
1408         {
1409                 .core_note_type = NT_S390_HIGH_GPRS,
1410                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1411                 .size = sizeof(compat_long_t),
1412                 .align = sizeof(compat_long_t),
1413                 .get = s390_compat_regs_high_get,
1414                 .set = s390_compat_regs_high_set,
1415         },
1416 };
1417
1418 static const struct user_regset_view user_s390_compat_view = {
1419         .name = "s390",
1420         .e_machine = EM_S390,
1421         .regsets = s390_compat_regsets,
1422         .n = ARRAY_SIZE(s390_compat_regsets)
1423 };
1424 #endif
1425
1426 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1427 {
1428 #ifdef CONFIG_COMPAT
1429         if (test_tsk_thread_flag(task, TIF_31BIT))
1430                 return &user_s390_compat_view;
1431 #endif
1432         return &user_s390_view;
1433 }
1434
1435 static const char *gpr_names[NUM_GPRS] = {
1436         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1437         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1438 };
1439
1440 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1441 {
1442         if (offset >= NUM_GPRS)
1443                 return 0;
1444         return regs->gprs[offset];
1445 }
1446
1447 int regs_query_register_offset(const char *name)
1448 {
1449         unsigned long offset;
1450
1451         if (!name || *name != 'r')
1452                 return -EINVAL;
1453         if (kstrtoul(name + 1, 10, &offset))
1454                 return -EINVAL;
1455         if (offset >= NUM_GPRS)
1456                 return -EINVAL;
1457         return offset;
1458 }
1459
1460 const char *regs_query_register_name(unsigned int offset)
1461 {
1462         if (offset >= NUM_GPRS)
1463                 return NULL;
1464         return gpr_names[offset];
1465 }
1466
1467 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1468 {
1469         unsigned long ksp = kernel_stack_pointer(regs);
1470
1471         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1472 }
1473
1474 /**
1475  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1476  * @regs:pt_regs which contains kernel stack pointer.
1477  * @n:stack entry number.
1478  *
1479  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1480  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1481  * this returns 0.
1482  */
1483 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1484 {
1485         unsigned long addr;
1486
1487         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1488         if (!regs_within_kernel_stack(regs, addr))
1489                 return 0;
1490         return *(unsigned long *)addr;
1491 }