Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / platforms / powernv / opal.c
1 /*
2  * PowerNV OPAL high level interfaces
3  *
4  * Copyright 2011 IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #define pr_fmt(fmt)     "opal: " fmt
13
14 #include <linux/printk.h>
15 #include <linux/types.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/interrupt.h>
20 #include <linux/notifier.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/kobject.h>
24 #include <linux/delay.h>
25 #include <linux/memblock.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28
29 #include <asm/machdep.h>
30 #include <asm/opal.h>
31 #include <asm/firmware.h>
32 #include <asm/mce.h>
33
34 #include "powernv.h"
35
36 /* /sys/firmware/opal */
37 struct kobject *opal_kobj;
38
39 struct opal {
40         u64 base;
41         u64 entry;
42         u64 size;
43 } opal;
44
45 struct mcheck_recoverable_range {
46         u64 start_addr;
47         u64 end_addr;
48         u64 recover_addr;
49 };
50
51 static struct mcheck_recoverable_range *mc_recoverable_range;
52 static int mc_recoverable_range_len;
53
54 struct device_node *opal_node;
55 static DEFINE_SPINLOCK(opal_write_lock);
56 static unsigned int *opal_irqs;
57 static unsigned int opal_irq_count;
58 static ATOMIC_NOTIFIER_HEAD(opal_notifier_head);
59 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
60 static DEFINE_SPINLOCK(opal_notifier_lock);
61 static uint64_t last_notified_mask = 0x0ul;
62 static atomic_t opal_notifier_hold = ATOMIC_INIT(0);
63 static uint32_t opal_heartbeat;
64
65 static void opal_reinit_cores(void)
66 {
67         /* Do the actual re-init, This will clobber all FPRs, VRs, etc...
68          *
69          * It will preserve non volatile GPRs and HSPRG0/1. It will
70          * also restore HIDs and other SPRs to their original value
71          * but it might clobber a bunch.
72          */
73 #ifdef __BIG_ENDIAN__
74         opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_BE);
75 #else
76         opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_LE);
77 #endif
78 }
79
80 int __init early_init_dt_scan_opal(unsigned long node,
81                                    const char *uname, int depth, void *data)
82 {
83         const void *basep, *entryp, *sizep;
84         int basesz, entrysz, runtimesz;
85
86         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
87                 return 0;
88
89         basep  = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
90         entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
91         sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
92
93         if (!basep || !entryp || !sizep)
94                 return 1;
95
96         opal.base = of_read_number(basep, basesz/4);
97         opal.entry = of_read_number(entryp, entrysz/4);
98         opal.size = of_read_number(sizep, runtimesz/4);
99
100         pr_debug("OPAL Base  = 0x%llx (basep=%p basesz=%d)\n",
101                  opal.base, basep, basesz);
102         pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
103                  opal.entry, entryp, entrysz);
104         pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
105                  opal.size, sizep, runtimesz);
106
107         powerpc_firmware_features |= FW_FEATURE_OPAL;
108         if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
109                 powerpc_firmware_features |= FW_FEATURE_OPALv2;
110                 powerpc_firmware_features |= FW_FEATURE_OPALv3;
111                 pr_info("OPAL V3 detected !\n");
112         } else if (of_flat_dt_is_compatible(node, "ibm,opal-v2")) {
113                 powerpc_firmware_features |= FW_FEATURE_OPALv2;
114                 pr_info("OPAL V2 detected !\n");
115         } else {
116                 pr_info("OPAL V1 detected !\n");
117         }
118
119         /* Reinit all cores with the right endian */
120         opal_reinit_cores();
121
122         /* Restore some bits */
123         if (cur_cpu_spec->cpu_restore)
124                 cur_cpu_spec->cpu_restore();
125
126         return 1;
127 }
128
129 int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
130                                    const char *uname, int depth, void *data)
131 {
132         int i, psize, size;
133         const __be32 *prop;
134
135         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
136                 return 0;
137
138         prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
139
140         if (!prop)
141                 return 1;
142
143         pr_debug("Found machine check recoverable ranges.\n");
144
145         /*
146          * Calculate number of available entries.
147          *
148          * Each recoverable address range entry is (start address, len,
149          * recovery address), 2 cells each for start and recovery address,
150          * 1 cell for len, totalling 5 cells per entry.
151          */
152         mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
153
154         /* Sanity check */
155         if (!mc_recoverable_range_len)
156                 return 1;
157
158         /* Size required to hold all the entries. */
159         size = mc_recoverable_range_len *
160                         sizeof(struct mcheck_recoverable_range);
161
162         /*
163          * Allocate a buffer to hold the MC recoverable ranges. We would be
164          * accessing them in real mode, hence it needs to be within
165          * RMO region.
166          */
167         mc_recoverable_range =__va(memblock_alloc_base(size, __alignof__(u64),
168                                                         ppc64_rma_size));
169         memset(mc_recoverable_range, 0, size);
170
171         for (i = 0; i < mc_recoverable_range_len; i++) {
172                 mc_recoverable_range[i].start_addr =
173                                         of_read_number(prop + (i * 5) + 0, 2);
174                 mc_recoverable_range[i].end_addr =
175                                         mc_recoverable_range[i].start_addr +
176                                         of_read_number(prop + (i * 5) + 2, 1);
177                 mc_recoverable_range[i].recover_addr =
178                                         of_read_number(prop + (i * 5) + 3, 2);
179
180                 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
181                                 mc_recoverable_range[i].start_addr,
182                                 mc_recoverable_range[i].end_addr,
183                                 mc_recoverable_range[i].recover_addr);
184         }
185         return 1;
186 }
187
188 static int __init opal_register_exception_handlers(void)
189 {
190 #ifdef __BIG_ENDIAN__
191         u64 glue;
192
193         if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
194                 return -ENODEV;
195
196         /* Hookup some exception handlers except machine check. We use the
197          * fwnmi area at 0x7000 to provide the glue space to OPAL
198          */
199         glue = 0x7000;
200
201         /*
202          * Check if we are running on newer firmware that exports
203          * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch
204          * the HMI interrupt and we catch it directly in Linux.
205          *
206          * For older firmware (i.e currently released POWER8 System Firmware
207          * as of today <= SV810_087), we fallback to old behavior and let OPAL
208          * patch the HMI vector and handle it inside OPAL firmware.
209          *
210          * For newer firmware (in development/yet to be released) we will
211          * start catching/handling HMI directly in Linux.
212          */
213         if (!opal_check_token(OPAL_HANDLE_HMI)) {
214                 pr_info("Old firmware detected, OPAL handles HMIs.\n");
215                 opal_register_exception_handler(
216                                 OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
217                                 0, glue);
218                 glue += 128;
219         }
220
221         opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
222 #endif
223
224         return 0;
225 }
226 machine_early_initcall(powernv, opal_register_exception_handlers);
227
228 int opal_notifier_register(struct notifier_block *nb)
229 {
230         if (!nb) {
231                 pr_warning("%s: Invalid argument (%p)\n",
232                            __func__, nb);
233                 return -EINVAL;
234         }
235
236         atomic_notifier_chain_register(&opal_notifier_head, nb);
237         return 0;
238 }
239 EXPORT_SYMBOL_GPL(opal_notifier_register);
240
241 int opal_notifier_unregister(struct notifier_block *nb)
242 {
243         if (!nb) {
244                 pr_warning("%s: Invalid argument (%p)\n",
245                            __func__, nb);
246                 return -EINVAL;
247         }
248
249         atomic_notifier_chain_unregister(&opal_notifier_head, nb);
250         return 0;
251 }
252 EXPORT_SYMBOL_GPL(opal_notifier_unregister);
253
254 static void opal_do_notifier(uint64_t events)
255 {
256         unsigned long flags;
257         uint64_t changed_mask;
258
259         if (atomic_read(&opal_notifier_hold))
260                 return;
261
262         spin_lock_irqsave(&opal_notifier_lock, flags);
263         changed_mask = last_notified_mask ^ events;
264         last_notified_mask = events;
265         spin_unlock_irqrestore(&opal_notifier_lock, flags);
266
267         /*
268          * We feed with the event bits and changed bits for
269          * enough information to the callback.
270          */
271         atomic_notifier_call_chain(&opal_notifier_head,
272                                    events, (void *)changed_mask);
273 }
274
275 void opal_notifier_update_evt(uint64_t evt_mask,
276                               uint64_t evt_val)
277 {
278         unsigned long flags;
279
280         spin_lock_irqsave(&opal_notifier_lock, flags);
281         last_notified_mask &= ~evt_mask;
282         last_notified_mask |= evt_val;
283         spin_unlock_irqrestore(&opal_notifier_lock, flags);
284 }
285
286 void opal_notifier_enable(void)
287 {
288         int64_t rc;
289         __be64 evt = 0;
290
291         atomic_set(&opal_notifier_hold, 0);
292
293         /* Process pending events */
294         rc = opal_poll_events(&evt);
295         if (rc == OPAL_SUCCESS && evt)
296                 opal_do_notifier(be64_to_cpu(evt));
297 }
298
299 void opal_notifier_disable(void)
300 {
301         atomic_set(&opal_notifier_hold, 1);
302 }
303
304 /*
305  * Opal message notifier based on message type. Allow subscribers to get
306  * notified for specific messgae type.
307  */
308 int opal_message_notifier_register(enum opal_msg_type msg_type,
309                                         struct notifier_block *nb)
310 {
311         if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
312                 pr_warning("%s: Invalid arguments, msg_type:%d\n",
313                            __func__, msg_type);
314                 return -EINVAL;
315         }
316
317         return atomic_notifier_chain_register(
318                                 &opal_msg_notifier_head[msg_type], nb);
319 }
320
321 int opal_message_notifier_unregister(enum opal_msg_type msg_type,
322                                      struct notifier_block *nb)
323 {
324         return atomic_notifier_chain_unregister(
325                         &opal_msg_notifier_head[msg_type], nb);
326 }
327
328 static void opal_message_do_notify(uint32_t msg_type, void *msg)
329 {
330         /* notify subscribers */
331         atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
332                                         msg_type, msg);
333 }
334
335 static void opal_handle_message(void)
336 {
337         s64 ret;
338         /*
339          * TODO: pre-allocate a message buffer depending on opal-msg-size
340          * value in /proc/device-tree.
341          */
342         static struct opal_msg msg;
343         u32 type;
344
345         ret = opal_get_msg(__pa(&msg), sizeof(msg));
346         /* No opal message pending. */
347         if (ret == OPAL_RESOURCE)
348                 return;
349
350         /* check for errors. */
351         if (ret) {
352                 pr_warning("%s: Failed to retrieve opal message, err=%lld\n",
353                                 __func__, ret);
354                 return;
355         }
356
357         type = be32_to_cpu(msg.msg_type);
358
359         /* Sanity check */
360         if (type >= OPAL_MSG_TYPE_MAX) {
361                 pr_warning("%s: Unknown message type: %u\n", __func__, type);
362                 return;
363         }
364         opal_message_do_notify(type, (void *)&msg);
365 }
366
367 static int opal_message_notify(struct notifier_block *nb,
368                           unsigned long events, void *change)
369 {
370         if (events & OPAL_EVENT_MSG_PENDING)
371                 opal_handle_message();
372         return 0;
373 }
374
375 static struct notifier_block opal_message_nb = {
376         .notifier_call  = opal_message_notify,
377         .next           = NULL,
378         .priority       = 0,
379 };
380
381 static int __init opal_message_init(void)
382 {
383         int ret, i;
384
385         for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
386                 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
387
388         ret = opal_notifier_register(&opal_message_nb);
389         if (ret) {
390                 pr_err("%s: Can't register OPAL event notifier (%d)\n",
391                        __func__, ret);
392                 return ret;
393         }
394         return 0;
395 }
396 machine_early_initcall(powernv, opal_message_init);
397
398 int opal_get_chars(uint32_t vtermno, char *buf, int count)
399 {
400         s64 rc;
401         __be64 evt, len;
402
403         if (!opal.entry)
404                 return -ENODEV;
405         opal_poll_events(&evt);
406         if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
407                 return 0;
408         len = cpu_to_be64(count);
409         rc = opal_console_read(vtermno, &len, buf);
410         if (rc == OPAL_SUCCESS)
411                 return be64_to_cpu(len);
412         return 0;
413 }
414
415 int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
416 {
417         int written = 0;
418         __be64 olen;
419         s64 len, rc;
420         unsigned long flags;
421         __be64 evt;
422
423         if (!opal.entry)
424                 return -ENODEV;
425
426         /* We want put_chars to be atomic to avoid mangling of hvsi
427          * packets. To do that, we first test for room and return
428          * -EAGAIN if there isn't enough.
429          *
430          * Unfortunately, opal_console_write_buffer_space() doesn't
431          * appear to work on opal v1, so we just assume there is
432          * enough room and be done with it
433          */
434         spin_lock_irqsave(&opal_write_lock, flags);
435         if (firmware_has_feature(FW_FEATURE_OPALv2)) {
436                 rc = opal_console_write_buffer_space(vtermno, &olen);
437                 len = be64_to_cpu(olen);
438                 if (rc || len < total_len) {
439                         spin_unlock_irqrestore(&opal_write_lock, flags);
440                         /* Closed -> drop characters */
441                         if (rc)
442                                 return total_len;
443                         opal_poll_events(NULL);
444                         return -EAGAIN;
445                 }
446         }
447
448         /* We still try to handle partial completions, though they
449          * should no longer happen.
450          */
451         rc = OPAL_BUSY;
452         while(total_len > 0 && (rc == OPAL_BUSY ||
453                                 rc == OPAL_BUSY_EVENT || rc == OPAL_SUCCESS)) {
454                 olen = cpu_to_be64(total_len);
455                 rc = opal_console_write(vtermno, &olen, data);
456                 len = be64_to_cpu(olen);
457
458                 /* Closed or other error drop */
459                 if (rc != OPAL_SUCCESS && rc != OPAL_BUSY &&
460                     rc != OPAL_BUSY_EVENT) {
461                         written = total_len;
462                         break;
463                 }
464                 if (rc == OPAL_SUCCESS) {
465                         total_len -= len;
466                         data += len;
467                         written += len;
468                 }
469                 /* This is a bit nasty but we need that for the console to
470                  * flush when there aren't any interrupts. We will clean
471                  * things a bit later to limit that to synchronous path
472                  * such as the kernel console and xmon/udbg
473                  */
474                 do
475                         opal_poll_events(&evt);
476                 while(rc == OPAL_SUCCESS &&
477                         (be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT));
478         }
479         spin_unlock_irqrestore(&opal_write_lock, flags);
480         return written;
481 }
482
483 static int opal_recover_mce(struct pt_regs *regs,
484                                         struct machine_check_event *evt)
485 {
486         int recovered = 0;
487         uint64_t ea = get_mce_fault_addr(evt);
488
489         if (!(regs->msr & MSR_RI)) {
490                 /* If MSR_RI isn't set, we cannot recover */
491                 recovered = 0;
492         } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
493                 /* Platform corrected itself */
494                 recovered = 1;
495         } else if (ea && !is_kernel_addr(ea)) {
496                 /*
497                  * Faulting address is not in kernel text. We should be fine.
498                  * We need to find which process uses this address.
499                  * For now, kill the task if we have received exception when
500                  * in userspace.
501                  *
502                  * TODO: Queue up this address for hwpoisioning later.
503                  */
504                 if (user_mode(regs) && !is_global_init(current)) {
505                         _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
506                         recovered = 1;
507                 } else
508                         recovered = 0;
509         } else if (user_mode(regs) && !is_global_init(current) &&
510                 evt->severity == MCE_SEV_ERROR_SYNC) {
511                 /*
512                  * If we have received a synchronous error when in userspace
513                  * kill the task.
514                  */
515                 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
516                 recovered = 1;
517         }
518         return recovered;
519 }
520
521 int opal_machine_check(struct pt_regs *regs)
522 {
523         struct machine_check_event evt;
524
525         if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
526                 return 0;
527
528         /* Print things out */
529         if (evt.version != MCE_V1) {
530                 pr_err("Machine Check Exception, Unknown event version %d !\n",
531                        evt.version);
532                 return 0;
533         }
534         machine_check_print_event_info(&evt);
535
536         if (opal_recover_mce(regs, &evt))
537                 return 1;
538         return 0;
539 }
540
541 /* Early hmi handler called in real mode. */
542 int opal_hmi_exception_early(struct pt_regs *regs)
543 {
544         s64 rc;
545
546         /*
547          * call opal hmi handler. Pass paca address as token.
548          * The return value OPAL_SUCCESS is an indication that there is
549          * an HMI event generated waiting to pull by Linux.
550          */
551         rc = opal_handle_hmi();
552         if (rc == OPAL_SUCCESS) {
553                 local_paca->hmi_event_available = 1;
554                 return 1;
555         }
556         return 0;
557 }
558
559 /* HMI exception handler called in virtual mode during check_irq_replay. */
560 int opal_handle_hmi_exception(struct pt_regs *regs)
561 {
562         s64 rc;
563         __be64 evt = 0;
564
565         /*
566          * Check if HMI event is available.
567          * if Yes, then call opal_poll_events to pull opal messages and
568          * process them.
569          */
570         if (!local_paca->hmi_event_available)
571                 return 0;
572
573         local_paca->hmi_event_available = 0;
574         rc = opal_poll_events(&evt);
575         if (rc == OPAL_SUCCESS && evt)
576                 opal_do_notifier(be64_to_cpu(evt));
577
578         return 1;
579 }
580
581 static uint64_t find_recovery_address(uint64_t nip)
582 {
583         int i;
584
585         for (i = 0; i < mc_recoverable_range_len; i++)
586                 if ((nip >= mc_recoverable_range[i].start_addr) &&
587                     (nip < mc_recoverable_range[i].end_addr))
588                     return mc_recoverable_range[i].recover_addr;
589         return 0;
590 }
591
592 bool opal_mce_check_early_recovery(struct pt_regs *regs)
593 {
594         uint64_t recover_addr = 0;
595
596         if (!opal.base || !opal.size)
597                 goto out;
598
599         if ((regs->nip >= opal.base) &&
600                         (regs->nip <= (opal.base + opal.size)))
601                 recover_addr = find_recovery_address(regs->nip);
602
603         /*
604          * Setup regs->nip to rfi into fixup address.
605          */
606         if (recover_addr)
607                 regs->nip = recover_addr;
608
609 out:
610         return !!recover_addr;
611 }
612
613 static irqreturn_t opal_interrupt(int irq, void *data)
614 {
615         __be64 events;
616
617         opal_handle_interrupt(virq_to_hw(irq), &events);
618
619         opal_do_notifier(be64_to_cpu(events));
620
621         return IRQ_HANDLED;
622 }
623
624 static int opal_sysfs_init(void)
625 {
626         opal_kobj = kobject_create_and_add("opal", firmware_kobj);
627         if (!opal_kobj) {
628                 pr_warn("kobject_create_and_add opal failed\n");
629                 return -ENOMEM;
630         }
631
632         return 0;
633 }
634
635 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj,
636                                struct bin_attribute *bin_attr,
637                                char *buf, loff_t off, size_t count)
638 {
639         return memory_read_from_buffer(buf, count, &off, bin_attr->private,
640                                        bin_attr->size);
641 }
642
643 static BIN_ATTR_RO(symbol_map, 0);
644
645 static void opal_export_symmap(void)
646 {
647         const __be64 *syms;
648         unsigned int size;
649         struct device_node *fw;
650         int rc;
651
652         fw = of_find_node_by_path("/ibm,opal/firmware");
653         if (!fw)
654                 return;
655         syms = of_get_property(fw, "symbol-map", &size);
656         if (!syms || size != 2 * sizeof(__be64))
657                 return;
658
659         /* Setup attributes */
660         bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0]));
661         bin_attr_symbol_map.size = be64_to_cpu(syms[1]);
662
663         rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map);
664         if (rc)
665                 pr_warn("Error %d creating OPAL symbols file\n", rc);
666 }
667
668 static void __init opal_dump_region_init(void)
669 {
670         void *addr;
671         uint64_t size;
672         int rc;
673
674         if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
675                 return;
676
677         /* Register kernel log buffer */
678         addr = log_buf_addr_get();
679         if (addr == NULL)
680                 return;
681
682         size = log_buf_len_get();
683         if (size == 0)
684                 return;
685
686         rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
687                                        __pa(addr), size);
688         /* Don't warn if this is just an older OPAL that doesn't
689          * know about that call
690          */
691         if (rc && rc != OPAL_UNSUPPORTED)
692                 pr_warn("DUMP: Failed to register kernel log buffer. "
693                         "rc = %d\n", rc);
694 }
695
696 static void opal_flash_init(struct device_node *opal_node)
697 {
698         struct device_node *np;
699
700         for_each_child_of_node(opal_node, np)
701                 if (of_device_is_compatible(np, "ibm,opal-flash"))
702                         of_platform_device_create(np, NULL, NULL);
703 }
704
705 static void opal_ipmi_init(struct device_node *opal_node)
706 {
707         struct device_node *np;
708
709         for_each_child_of_node(opal_node, np)
710                 if (of_device_is_compatible(np, "ibm,opal-ipmi"))
711                         of_platform_device_create(np, NULL, NULL);
712 }
713
714 static void opal_i2c_create_devs(void)
715 {
716         struct device_node *np;
717
718         for_each_compatible_node(np, NULL, "ibm,opal-i2c")
719                 of_platform_device_create(np, NULL, NULL);
720 }
721
722 static void __init opal_irq_init(struct device_node *dn)
723 {
724         const __be32 *irqs;
725         int i, irqlen;
726
727         /* Get interrupt property */
728         irqs = of_get_property(opal_node, "opal-interrupts", &irqlen);
729         opal_irq_count = irqs ? (irqlen / 4) : 0;
730         pr_debug("Found %d interrupts reserved for OPAL\n", opal_irq_count);
731         if (!opal_irq_count)
732                 return;
733
734         /* Install interrupt handlers */
735         opal_irqs = kzalloc(opal_irq_count * sizeof(unsigned int), GFP_KERNEL);
736         for (i = 0; irqs && i < opal_irq_count; i++, irqs++) {
737                 unsigned int irq, virq;
738                 int rc;
739
740                 /* Get hardware and virtual IRQ */
741                 irq = be32_to_cpup(irqs);
742                 virq = irq_create_mapping(NULL, irq);
743                 if (virq == NO_IRQ) {
744                         pr_warn("Failed to map irq 0x%x\n", irq);
745                         continue;
746                 }
747
748                 /* Install interrupt handler */
749                 rc = request_irq(virq, opal_interrupt, 0, "opal", NULL);
750                 if (rc) {
751                         irq_dispose_mapping(virq);
752                         pr_warn("Error %d requesting irq %d (0x%x)\n",
753                                  rc, virq, irq);
754                         continue;
755                 }
756
757                 /* Cache IRQ */
758                 opal_irqs[i] = virq;
759         }
760 }
761
762 static int kopald(void *unused)
763 {
764         set_freezable();
765         do {
766                 try_to_freeze();
767                 opal_poll_events(NULL);
768                 msleep_interruptible(opal_heartbeat);
769         } while (!kthread_should_stop());
770
771         return 0;
772 }
773
774 static void opal_init_heartbeat(void)
775 {
776         /* Old firwmware, we assume the HVC heartbeat is sufficient */
777         if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
778                                  &opal_heartbeat) != 0)
779                 opal_heartbeat = 0;
780
781         if (opal_heartbeat)
782                 kthread_run(kopald, NULL, "kopald");
783 }
784
785 static int __init opal_init(void)
786 {
787         struct device_node *np, *consoles;
788         int rc;
789
790         opal_node = of_find_node_by_path("/ibm,opal");
791         if (!opal_node) {
792                 pr_warn("Device node not found\n");
793                 return -ENODEV;
794         }
795
796         /* Register OPAL consoles if any ports */
797         if (firmware_has_feature(FW_FEATURE_OPALv2))
798                 consoles = of_find_node_by_path("/ibm,opal/consoles");
799         else
800                 consoles = of_node_get(opal_node);
801         if (consoles) {
802                 for_each_child_of_node(consoles, np) {
803                         if (strcmp(np->name, "serial"))
804                                 continue;
805                         of_platform_device_create(np, NULL, NULL);
806                 }
807                 of_node_put(consoles);
808         }
809
810         /* Create i2c platform devices */
811         opal_i2c_create_devs();
812
813         /* Setup a heatbeat thread if requested by OPAL */
814         opal_init_heartbeat();
815
816         /* Find all OPAL interrupts and request them */
817         opal_irq_init(opal_node);
818
819         /* Create "opal" kobject under /sys/firmware */
820         rc = opal_sysfs_init();
821         if (rc == 0) {
822                 /* Export symbol map to userspace */
823                 opal_export_symmap();
824                 /* Setup dump region interface */
825                 opal_dump_region_init();
826                 /* Setup error log interface */
827                 rc = opal_elog_init();
828                 /* Setup code update interface */
829                 opal_flash_update_init();
830                 /* Setup platform dump extract interface */
831                 opal_platform_dump_init();
832                 /* Setup system parameters interface */
833                 opal_sys_param_init();
834                 /* Setup message log interface. */
835                 opal_msglog_init();
836         }
837
838         /* Initialize OPAL IPMI backend */
839         opal_ipmi_init(opal_node);
840
841         opal_flash_init(opal_node);
842
843         return 0;
844 }
845 machine_subsys_initcall(powernv, opal_init);
846
847 void opal_shutdown(void)
848 {
849         unsigned int i;
850         long rc = OPAL_BUSY;
851
852         /* First free interrupts, which will also mask them */
853         for (i = 0; i < opal_irq_count; i++) {
854                 if (opal_irqs[i])
855                         free_irq(opal_irqs[i], NULL);
856                 opal_irqs[i] = 0;
857         }
858
859         /*
860          * Then sync with OPAL which ensure anything that can
861          * potentially write to our memory has completed such
862          * as an ongoing dump retrieval
863          */
864         while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
865                 rc = opal_sync_host_reboot();
866                 if (rc == OPAL_BUSY)
867                         opal_poll_events(NULL);
868                 else
869                         mdelay(10);
870         }
871
872         /* Unregister memory dump region */
873         if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
874                 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
875 }
876
877 /* Export this so that test modules can use it */
878 EXPORT_SYMBOL_GPL(opal_invalid_call);
879 EXPORT_SYMBOL_GPL(opal_ipmi_send);
880 EXPORT_SYMBOL_GPL(opal_ipmi_recv);
881 EXPORT_SYMBOL_GPL(opal_flash_read);
882 EXPORT_SYMBOL_GPL(opal_flash_write);
883 EXPORT_SYMBOL_GPL(opal_flash_erase);
884
885 /* Convert a region of vmalloc memory to an opal sg list */
886 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
887                                              unsigned long vmalloc_size)
888 {
889         struct opal_sg_list *sg, *first = NULL;
890         unsigned long i = 0;
891
892         sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
893         if (!sg)
894                 goto nomem;
895
896         first = sg;
897
898         while (vmalloc_size > 0) {
899                 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
900                 uint64_t length = min(vmalloc_size, PAGE_SIZE);
901
902                 sg->entry[i].data = cpu_to_be64(data);
903                 sg->entry[i].length = cpu_to_be64(length);
904                 i++;
905
906                 if (i >= SG_ENTRIES_PER_NODE) {
907                         struct opal_sg_list *next;
908
909                         next = kzalloc(PAGE_SIZE, GFP_KERNEL);
910                         if (!next)
911                                 goto nomem;
912
913                         sg->length = cpu_to_be64(
914                                         i * sizeof(struct opal_sg_entry) + 16);
915                         i = 0;
916                         sg->next = cpu_to_be64(__pa(next));
917                         sg = next;
918                 }
919
920                 vmalloc_addr += length;
921                 vmalloc_size -= length;
922         }
923
924         sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
925
926         return first;
927
928 nomem:
929         pr_err("%s : Failed to allocate memory\n", __func__);
930         opal_free_sg_list(first);
931         return NULL;
932 }
933
934 void opal_free_sg_list(struct opal_sg_list *sg)
935 {
936         while (sg) {
937                 uint64_t next = be64_to_cpu(sg->next);
938
939                 kfree(sg);
940
941                 if (next)
942                         sg = __va(next);
943                 else
944                         sg = NULL;
945         }
946 }
947
948 int opal_error_code(int rc)
949 {
950         switch (rc) {
951         case OPAL_SUCCESS:              return 0;
952
953         case OPAL_PARAMETER:            return -EINVAL;
954         case OPAL_ASYNC_COMPLETION:     return -EINPROGRESS;
955         case OPAL_BUSY_EVENT:           return -EBUSY;
956         case OPAL_NO_MEM:               return -ENOMEM;
957
958         case OPAL_UNSUPPORTED:          return -EIO;
959         case OPAL_HARDWARE:             return -EIO;
960         case OPAL_INTERNAL_ERROR:       return -EIO;
961         default:
962                 pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
963                 return -EIO;
964         }
965 }
966
967 EXPORT_SYMBOL_GPL(opal_poll_events);
968 EXPORT_SYMBOL_GPL(opal_rtc_read);
969 EXPORT_SYMBOL_GPL(opal_rtc_write);
970 EXPORT_SYMBOL_GPL(opal_tpo_read);
971 EXPORT_SYMBOL_GPL(opal_tpo_write);
972 EXPORT_SYMBOL_GPL(opal_i2c_request);