Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 #include <linux/export.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51
52 #include "spufs.h"
53
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56
57 #if 0
58 #define POLL_WHILE_TRUE(_c) {                           \
59     do {                                                \
60     } while (_c);                                       \
61   }
62 #else
63 #define RELAX_SPIN_COUNT                                1000
64 #define POLL_WHILE_TRUE(_c) {                           \
65     do {                                                \
66         int _i;                                         \
67         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68             cpu_relax();                                \
69         }                                               \
70         if (unlikely(_c)) yield();                      \
71         else break;                                     \
72     } while (_c);                                       \
73   }
74 #endif                          /* debug */
75
76 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
77
78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80         /* Save, Step 1:
81          * Restore, Step 1:
82          *    Acquire SPU-specific mutual exclusion lock.
83          *    TBD.
84          */
85 }
86
87 static inline void release_spu_lock(struct spu *spu)
88 {
89         /* Restore, Step 76:
90          *    Release SPU-specific mutual exclusion lock.
91          *    TBD.
92          */
93 }
94
95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97         struct spu_problem __iomem *prob = spu->problem;
98         u32 isolate_state;
99
100         /* Save, Step 2:
101          * Save, Step 6:
102          *     If SPU_Status[E,L,IS] any field is '1', this
103          *     SPU is in isolate state and cannot be context
104          *     saved at this time.
105          */
106         isolate_state = SPU_STATUS_ISOLATED_STATE |
107             SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110
111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113         /* Save, Step 3:
114          * Restore, Step 2:
115          *     Save INT_Mask_class0 in CSA.
116          *     Write INT_MASK_class0 with value of 0.
117          *     Save INT_Mask_class1 in CSA.
118          *     Write INT_MASK_class1 with value of 0.
119          *     Save INT_Mask_class2 in CSA.
120          *     Write INT_MASK_class2 with value of 0.
121          *     Synchronize all three interrupts to be sure
122          *     we no longer execute a handler on another CPU.
123          */
124         spin_lock_irq(&spu->register_lock);
125         if (csa) {
126                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129         }
130         spu_int_mask_set(spu, 0, 0ul);
131         spu_int_mask_set(spu, 1, 0ul);
132         spu_int_mask_set(spu, 2, 0ul);
133         eieio();
134         spin_unlock_irq(&spu->register_lock);
135
136         /*
137          * This flag needs to be set before calling synchronize_irq so
138          * that the update will be visible to the relevant handlers
139          * via a simple load.
140          */
141         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
142         clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
143         synchronize_irq(spu->irqs[0]);
144         synchronize_irq(spu->irqs[1]);
145         synchronize_irq(spu->irqs[2]);
146 }
147
148 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
149 {
150         /* Save, Step 4:
151          * Restore, Step 25.
152          *    Set a software watchdog timer, which specifies the
153          *    maximum allowable time for a context save sequence.
154          *
155          *    For present, this implementation will not set a global
156          *    watchdog timer, as virtualization & variable system load
157          *    may cause unpredictable execution times.
158          */
159 }
160
161 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
162 {
163         /* Save, Step 5:
164          * Restore, Step 3:
165          *     Inhibit user-space access (if provided) to this
166          *     SPU by unmapping the virtual pages assigned to
167          *     the SPU memory-mapped I/O (MMIO) for problem
168          *     state. TBD.
169          */
170 }
171
172 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
173 {
174         /* Save, Step 7:
175          * Restore, Step 5:
176          *     Set a software context switch pending flag.
177          *     Done above in Step 3 - disable_interrupts().
178          */
179 }
180
181 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
182 {
183         struct spu_priv2 __iomem *priv2 = spu->priv2;
184
185         /* Save, Step 8:
186          *     Suspend DMA and save MFC_CNTL.
187          */
188         switch (in_be64(&priv2->mfc_control_RW) &
189                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
190         case MFC_CNTL_SUSPEND_IN_PROGRESS:
191                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193                                  MFC_CNTL_SUSPEND_COMPLETE);
194                 /* fall through */
195         case MFC_CNTL_SUSPEND_COMPLETE:
196                 if (csa)
197                         csa->priv2.mfc_control_RW =
198                                 in_be64(&priv2->mfc_control_RW) |
199                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
200                 break;
201         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
202                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
203                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
204                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
205                                  MFC_CNTL_SUSPEND_COMPLETE);
206                 if (csa)
207                         csa->priv2.mfc_control_RW =
208                                 in_be64(&priv2->mfc_control_RW) &
209                                 ~MFC_CNTL_SUSPEND_DMA_QUEUE &
210                                 ~MFC_CNTL_SUSPEND_MASK;
211                 break;
212         }
213 }
214
215 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
216 {
217         struct spu_problem __iomem *prob = spu->problem;
218
219         /* Save, Step 9:
220          *     Save SPU_Runcntl in the CSA.  This value contains
221          *     the "Application Desired State".
222          */
223         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
224 }
225
226 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
227 {
228         /* Save, Step 10:
229          *     Save MFC_SR1 in the CSA.
230          */
231         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
232 }
233
234 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
235 {
236         struct spu_problem __iomem *prob = spu->problem;
237
238         /* Save, Step 11:
239          *     Read SPU_Status[R], and save to CSA.
240          */
241         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
242                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243         } else {
244                 u32 stopped;
245
246                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
247                 eieio();
248                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
249                                 SPU_STATUS_RUNNING);
250                 stopped =
251                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
252                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
253                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
254                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
255                 else
256                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
257         }
258 }
259
260 static inline void save_mfc_stopped_status(struct spu_state *csa,
261                 struct spu *spu)
262 {
263         struct spu_priv2 __iomem *priv2 = spu->priv2;
264         const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
265                         MFC_CNTL_DMA_QUEUES_EMPTY;
266
267         /* Save, Step 12:
268          *     Read MFC_CNTL[Ds].  Update saved copy of
269          *     CSA.MFC_CNTL[Ds].
270          *
271          * update: do the same with MFC_CNTL[Q].
272          */
273         csa->priv2.mfc_control_RW &= ~mask;
274         csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
275 }
276
277 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
278 {
279         struct spu_priv2 __iomem *priv2 = spu->priv2;
280
281         /* Save, Step 13:
282          *     Write MFC_CNTL[Dh] set to a '1' to halt
283          *     the decrementer.
284          */
285         out_be64(&priv2->mfc_control_RW,
286                  MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
287         eieio();
288 }
289
290 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
291 {
292         /* Save, Step 14:
293          *    Read PPE Timebase High and Timebase low registers
294          *    and save in CSA.  TBD.
295          */
296         csa->suspend_time = get_cycles();
297 }
298
299 static inline void remove_other_spu_access(struct spu_state *csa,
300                                            struct spu *spu)
301 {
302         /* Save, Step 15:
303          *     Remove other SPU access to this SPU by unmapping
304          *     this SPU's pages from their address space.  TBD.
305          */
306 }
307
308 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
309 {
310         struct spu_problem __iomem *prob = spu->problem;
311
312         /* Save, Step 16:
313          * Restore, Step 11.
314          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
315          *     for a value of 0.
316          */
317         out_be64(&prob->spc_mssync_RW, 1UL);
318         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
319 }
320
321 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
322 {
323         /* Save, Step 17:
324          * Restore, Step 12.
325          * Restore, Step 48.
326          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
327          *     Then issue a PPE sync instruction.
328          */
329         spu_tlb_invalidate(spu);
330         mb();
331 }
332
333 static inline void handle_pending_interrupts(struct spu_state *csa,
334                                              struct spu *spu)
335 {
336         /* Save, Step 18:
337          *     Handle any pending interrupts from this SPU
338          *     here.  This is OS or hypervisor specific.  One
339          *     option is to re-enable interrupts to handle any
340          *     pending interrupts, with the interrupt handlers
341          *     recognizing the software Context Switch Pending
342          *     flag, to ensure the SPU execution or MFC command
343          *     queue is not restarted.  TBD.
344          */
345 }
346
347 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
348 {
349         struct spu_priv2 __iomem *priv2 = spu->priv2;
350         int i;
351
352         /* Save, Step 19:
353          *     If MFC_Cntl[Se]=0 then save
354          *     MFC command queues.
355          */
356         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
357                 for (i = 0; i < 8; i++) {
358                         csa->priv2.puq[i].mfc_cq_data0_RW =
359                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
360                         csa->priv2.puq[i].mfc_cq_data1_RW =
361                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
362                         csa->priv2.puq[i].mfc_cq_data2_RW =
363                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
364                         csa->priv2.puq[i].mfc_cq_data3_RW =
365                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
366                 }
367                 for (i = 0; i < 16; i++) {
368                         csa->priv2.spuq[i].mfc_cq_data0_RW =
369                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
370                         csa->priv2.spuq[i].mfc_cq_data1_RW =
371                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
372                         csa->priv2.spuq[i].mfc_cq_data2_RW =
373                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
374                         csa->priv2.spuq[i].mfc_cq_data3_RW =
375                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
376                 }
377         }
378 }
379
380 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
381 {
382         struct spu_problem __iomem *prob = spu->problem;
383
384         /* Save, Step 20:
385          *     Save the PPU_QueryMask register
386          *     in the CSA.
387          */
388         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
389 }
390
391 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
392 {
393         struct spu_problem __iomem *prob = spu->problem;
394
395         /* Save, Step 21:
396          *     Save the PPU_QueryType register
397          *     in the CSA.
398          */
399         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
400 }
401
402 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
403 {
404         struct spu_problem __iomem *prob = spu->problem;
405
406         /* Save the Prxy_TagStatus register in the CSA.
407          *
408          * It is unnecessary to restore dma_tagstatus_R, however,
409          * dma_tagstatus_R in the CSA is accessed via backing_ops, so
410          * we must save it.
411          */
412         csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
413 }
414
415 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
416 {
417         struct spu_priv2 __iomem *priv2 = spu->priv2;
418
419         /* Save, Step 22:
420          *     Save the MFC_CSR_TSQ register
421          *     in the LSCSA.
422          */
423         csa->priv2.spu_tag_status_query_RW =
424             in_be64(&priv2->spu_tag_status_query_RW);
425 }
426
427 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
428 {
429         struct spu_priv2 __iomem *priv2 = spu->priv2;
430
431         /* Save, Step 23:
432          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
433          *     registers in the CSA.
434          */
435         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
436         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
437 }
438
439 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
440 {
441         struct spu_priv2 __iomem *priv2 = spu->priv2;
442
443         /* Save, Step 24:
444          *     Save the MFC_CSR_ATO register in
445          *     the CSA.
446          */
447         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
448 }
449
450 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
451 {
452         /* Save, Step 25:
453          *     Save the MFC_TCLASS_ID register in
454          *     the CSA.
455          */
456         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
457 }
458
459 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
460 {
461         /* Save, Step 26:
462          * Restore, Step 23.
463          *     Write the MFC_TCLASS_ID register with
464          *     the value 0x10000000.
465          */
466         spu_mfc_tclass_id_set(spu, 0x10000000);
467         eieio();
468 }
469
470 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
471 {
472         struct spu_priv2 __iomem *priv2 = spu->priv2;
473
474         /* Save, Step 27:
475          * Restore, Step 14.
476          *     Write MFC_CNTL[Pc]=1 (purge queue).
477          */
478         out_be64(&priv2->mfc_control_RW,
479                         MFC_CNTL_PURGE_DMA_REQUEST |
480                         MFC_CNTL_SUSPEND_MASK);
481         eieio();
482 }
483
484 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
485 {
486         struct spu_priv2 __iomem *priv2 = spu->priv2;
487
488         /* Save, Step 28:
489          *     Poll MFC_CNTL[Ps] until value '11' is read
490          *     (purge complete).
491          */
492         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
493                          MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
494                          MFC_CNTL_PURGE_DMA_COMPLETE);
495 }
496
497 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
498 {
499         /* Save, Step 30:
500          * Restore, Step 18:
501          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
502          *     MFC_SR1[TL,R,Pr,T] set correctly for the
503          *     OS specific environment.
504          *
505          *     Implementation note: The SPU-side code
506          *     for save/restore is privileged, so the
507          *     MFC_SR1[Pr] bit is not set.
508          *
509          */
510         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
511                               MFC_STATE1_RELOCATE_MASK |
512                               MFC_STATE1_BUS_TLBIE_MASK));
513 }
514
515 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
516 {
517         struct spu_problem __iomem *prob = spu->problem;
518
519         /* Save, Step 31:
520          *     Save SPU_NPC in the CSA.
521          */
522         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
523 }
524
525 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
526 {
527         struct spu_priv2 __iomem *priv2 = spu->priv2;
528
529         /* Save, Step 32:
530          *     Save SPU_PrivCntl in the CSA.
531          */
532         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
533 }
534
535 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
536 {
537         struct spu_priv2 __iomem *priv2 = spu->priv2;
538
539         /* Save, Step 33:
540          * Restore, Step 16:
541          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
542          */
543         out_be64(&priv2->spu_privcntl_RW, 0UL);
544         eieio();
545 }
546
547 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
548 {
549         struct spu_priv2 __iomem *priv2 = spu->priv2;
550
551         /* Save, Step 34:
552          *     Save SPU_LSLR in the CSA.
553          */
554         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
555 }
556
557 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
558 {
559         struct spu_priv2 __iomem *priv2 = spu->priv2;
560
561         /* Save, Step 35:
562          * Restore, Step 17.
563          *     Reset SPU_LSLR.
564          */
565         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
566         eieio();
567 }
568
569 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
570 {
571         struct spu_priv2 __iomem *priv2 = spu->priv2;
572
573         /* Save, Step 36:
574          *     Save SPU_Cfg in the CSA.
575          */
576         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
577 }
578
579 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
580 {
581         /* Save, Step 37:
582          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
583          *     Not performed by this implementation.
584          */
585 }
586
587 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
588 {
589         /* Save, Step 38:
590          *     Save RA_GROUP_ID register and the
591          *     RA_ENABLE reigster in the CSA.
592          */
593         csa->priv1.resource_allocation_groupID_RW =
594                 spu_resource_allocation_groupID_get(spu);
595         csa->priv1.resource_allocation_enable_RW =
596                 spu_resource_allocation_enable_get(spu);
597 }
598
599 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
600 {
601         struct spu_problem __iomem *prob = spu->problem;
602
603         /* Save, Step 39:
604          *     Save MB_Stat register in the CSA.
605          */
606         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
607 }
608
609 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
610 {
611         struct spu_problem __iomem *prob = spu->problem;
612
613         /* Save, Step 40:
614          *     Save the PPU_MB register in the CSA.
615          */
616         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
617 }
618
619 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
620 {
621         struct spu_priv2 __iomem *priv2 = spu->priv2;
622
623         /* Save, Step 41:
624          *     Save the PPUINT_MB register in the CSA.
625          */
626         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
627 }
628
629 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
630 {
631         struct spu_priv2 __iomem *priv2 = spu->priv2;
632         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
633         int i;
634
635         /* Save, Step 42:
636          */
637
638         /* Save CH 1, without channel count */
639         out_be64(&priv2->spu_chnlcntptr_RW, 1);
640         csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
641
642         /* Save the following CH: [0,3,4,24,25,27] */
643         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
644                 idx = ch_indices[i];
645                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
646                 eieio();
647                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
648                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
649                 out_be64(&priv2->spu_chnldata_RW, 0UL);
650                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
651                 eieio();
652         }
653 }
654
655 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
656 {
657         struct spu_priv2 __iomem *priv2 = spu->priv2;
658         int i;
659
660         /* Save, Step 43:
661          *     Save SPU Read Mailbox Channel.
662          */
663         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
664         eieio();
665         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
666         for (i = 0; i < 4; i++) {
667                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
668         }
669         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
670         eieio();
671 }
672
673 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
674 {
675         struct spu_priv2 __iomem *priv2 = spu->priv2;
676
677         /* Save, Step 44:
678          *     Save MFC_CMD Channel.
679          */
680         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
681         eieio();
682         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
683         eieio();
684 }
685
686 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
687 {
688         struct spu_priv2 __iomem *priv2 = spu->priv2;
689         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
690         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
691         u64 idx;
692         int i;
693
694         /* Save, Step 45:
695          *     Reset the following CH: [21, 23, 28, 30]
696          */
697         for (i = 0; i < 4; i++) {
698                 idx = ch_indices[i];
699                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
700                 eieio();
701                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
702                 eieio();
703         }
704 }
705
706 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
707 {
708         struct spu_priv2 __iomem *priv2 = spu->priv2;
709
710         /* Save, Step 46:
711          * Restore, Step 25.
712          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
713          */
714         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
715 }
716
717 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
718                 unsigned int *code, int code_size)
719 {
720         /* Save, Step 47:
721          * Restore, Step 30.
722          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
723          *     register, then initialize SLB_VSID and SLB_ESID
724          *     to provide access to SPU context save code and
725          *     LSCSA.
726          *
727          *     This implementation places both the context
728          *     switch code and LSCSA in kernel address space.
729          *
730          *     Further this implementation assumes that the
731          *     MFC_SR1[R]=1 (in other words, assume that
732          *     translation is desired by OS environment).
733          */
734         spu_invalidate_slbs(spu);
735         spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
736 }
737
738 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
739 {
740         /* Save, Step 48:
741          * Restore, Step 23.
742          *     Change the software context switch pending flag
743          *     to context switch active.  This implementation does
744          *     not uses a switch active flag.
745          *
746          * Now that we have saved the mfc in the csa, we can add in the
747          * restart command if an exception occurred.
748          */
749         if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
750                 csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
751         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
752         mb();
753 }
754
755 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
756 {
757         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
758             CLASS1_ENABLE_STORAGE_FAULT_INTR;
759
760         /* Save, Step 49:
761          * Restore, Step 22:
762          *     Reset and then enable interrupts, as
763          *     needed by OS.
764          *
765          *     This implementation enables only class1
766          *     (translation) interrupts.
767          */
768         spin_lock_irq(&spu->register_lock);
769         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
770         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
771         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
772         spu_int_mask_set(spu, 0, 0ul);
773         spu_int_mask_set(spu, 1, class1_mask);
774         spu_int_mask_set(spu, 2, 0ul);
775         spin_unlock_irq(&spu->register_lock);
776 }
777
778 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
779                                unsigned int ls_offset, unsigned int size,
780                                unsigned int tag, unsigned int rclass,
781                                unsigned int cmd)
782 {
783         struct spu_problem __iomem *prob = spu->problem;
784         union mfc_tag_size_class_cmd command;
785         unsigned int transfer_size;
786         volatile unsigned int status = 0x0;
787
788         while (size > 0) {
789                 transfer_size =
790                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
791                 command.u.mfc_size = transfer_size;
792                 command.u.mfc_tag = tag;
793                 command.u.mfc_rclassid = rclass;
794                 command.u.mfc_cmd = cmd;
795                 do {
796                         out_be32(&prob->mfc_lsa_W, ls_offset);
797                         out_be64(&prob->mfc_ea_W, ea);
798                         out_be64(&prob->mfc_union_W.all64, command.all64);
799                         status =
800                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
801                         if (unlikely(status & 0x2)) {
802                                 cpu_relax();
803                         }
804                 } while (status & 0x3);
805                 size -= transfer_size;
806                 ea += transfer_size;
807                 ls_offset += transfer_size;
808         }
809         return 0;
810 }
811
812 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
813 {
814         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
815         unsigned int ls_offset = 0x0;
816         unsigned int size = 16384;
817         unsigned int tag = 0;
818         unsigned int rclass = 0;
819         unsigned int cmd = MFC_PUT_CMD;
820
821         /* Save, Step 50:
822          *     Issue a DMA command to copy the first 16K bytes
823          *     of local storage to the CSA.
824          */
825         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
826 }
827
828 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
829 {
830         struct spu_problem __iomem *prob = spu->problem;
831
832         /* Save, Step 51:
833          * Restore, Step 31.
834          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
835          *     point address of context save code in local
836          *     storage.
837          *
838          *     This implementation uses SPU-side save/restore
839          *     programs with entry points at LSA of 0.
840          */
841         out_be32(&prob->spu_npc_RW, 0);
842         eieio();
843 }
844
845 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
846 {
847         struct spu_problem __iomem *prob = spu->problem;
848         union {
849                 u64 ull;
850                 u32 ui[2];
851         } addr64;
852
853         /* Save, Step 52:
854          * Restore, Step 32:
855          *    Write SPU_Sig_Notify_1 register with upper 32-bits
856          *    of the CSA.LSCSA effective address.
857          */
858         addr64.ull = (u64) csa->lscsa;
859         out_be32(&prob->signal_notify1, addr64.ui[0]);
860         eieio();
861 }
862
863 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
864 {
865         struct spu_problem __iomem *prob = spu->problem;
866         union {
867                 u64 ull;
868                 u32 ui[2];
869         } addr64;
870
871         /* Save, Step 53:
872          * Restore, Step 33:
873          *    Write SPU_Sig_Notify_2 register with lower 32-bits
874          *    of the CSA.LSCSA effective address.
875          */
876         addr64.ull = (u64) csa->lscsa;
877         out_be32(&prob->signal_notify2, addr64.ui[1]);
878         eieio();
879 }
880
881 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
882 {
883         unsigned long addr = (unsigned long)&spu_save_code[0];
884         unsigned int ls_offset = 0x0;
885         unsigned int size = sizeof(spu_save_code);
886         unsigned int tag = 0;
887         unsigned int rclass = 0;
888         unsigned int cmd = MFC_GETFS_CMD;
889
890         /* Save, Step 54:
891          *     Issue a DMA command to copy context save code
892          *     to local storage and start SPU.
893          */
894         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
895 }
896
897 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
898 {
899         struct spu_problem __iomem *prob = spu->problem;
900
901         /* Save, Step 55:
902          * Restore, Step 38.
903          *     Write PPU_QueryMask=1 (enable Tag Group 0)
904          *     and issue eieio instruction.
905          */
906         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
907         eieio();
908 }
909
910 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
911 {
912         struct spu_problem __iomem *prob = spu->problem;
913         u32 mask = MFC_TAGID_TO_TAGMASK(0);
914         unsigned long flags;
915
916         /* Save, Step 56:
917          * Restore, Step 39.
918          * Restore, Step 39.
919          * Restore, Step 46.
920          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
921          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
922          *     Complete Interrupt.  Write INT_Stat_Class0 or
923          *     INT_Stat_Class2 with value of 'handled'.
924          */
925         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
926
927         local_irq_save(flags);
928         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
929         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
930         local_irq_restore(flags);
931 }
932
933 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
934 {
935         struct spu_problem __iomem *prob = spu->problem;
936         unsigned long flags;
937
938         /* Save, Step 57:
939          * Restore, Step 40.
940          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
941          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
942          *     or INT_Stat_class2 with value of handled.
943          */
944         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
945
946         local_irq_save(flags);
947         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
948         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
949         local_irq_restore(flags);
950 }
951
952 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
953 {
954         struct spu_problem __iomem *prob = spu->problem;
955         u32 complete;
956
957         /* Save, Step 54:
958          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
959          *     context save succeeded, otherwise context save
960          *     failed.
961          */
962         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
963                     SPU_STATUS_STOPPED_BY_STOP);
964         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
965 }
966
967 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
968 {
969         /* Restore, Step 4:
970          *    If required, notify the "using application" that
971          *    the SPU task has been terminated.  TBD.
972          */
973 }
974
975 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
976                 struct spu *spu)
977 {
978         struct spu_priv2 __iomem *priv2 = spu->priv2;
979
980         /* Restore, Step 7:
981          *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
982          *     the queue and halt the decrementer.
983          */
984         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
985                  MFC_CNTL_DECREMENTER_HALTED);
986         eieio();
987 }
988
989 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
990                                              struct spu *spu)
991 {
992         struct spu_priv2 __iomem *priv2 = spu->priv2;
993
994         /* Restore, Step 8:
995          * Restore, Step 47.
996          *     Poll MFC_CNTL[Ss] until 11 is returned.
997          */
998         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
999                          MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1000                          MFC_CNTL_SUSPEND_COMPLETE);
1001 }
1002
1003 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1004 {
1005         struct spu_problem __iomem *prob = spu->problem;
1006
1007         /* Restore, Step 9:
1008          *    If SPU_Status[R]=1, stop SPU execution
1009          *    and wait for stop to complete.
1010          *
1011          *    Returns       1 if SPU_Status[R]=1 on entry.
1012          *                  0 otherwise
1013          */
1014         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1015                 if (in_be32(&prob->spu_status_R) &
1016                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1017                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1018                                         SPU_STATUS_RUNNING);
1019                 }
1020                 if ((in_be32(&prob->spu_status_R) &
1021                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1022                     || (in_be32(&prob->spu_status_R) &
1023                         SPU_STATUS_ISOLATED_STATE)) {
1024                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1025                         eieio();
1026                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1027                                         SPU_STATUS_RUNNING);
1028                         out_be32(&prob->spu_runcntl_RW, 0x2);
1029                         eieio();
1030                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1031                                         SPU_STATUS_RUNNING);
1032                 }
1033                 if (in_be32(&prob->spu_status_R) &
1034                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1035                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1036                         eieio();
1037                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1038                                         SPU_STATUS_RUNNING);
1039                 }
1040                 return 1;
1041         }
1042         return 0;
1043 }
1044
1045 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1046 {
1047         struct spu_problem __iomem *prob = spu->problem;
1048
1049         /* Restore, Step 10:
1050          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1051          *    release SPU from isolate state.
1052          */
1053         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1054                 if (in_be32(&prob->spu_status_R) &
1055                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1056                         spu_mfc_sr1_set(spu,
1057                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1058                         eieio();
1059                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1060                         eieio();
1061                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1062                                         SPU_STATUS_RUNNING);
1063                 }
1064                 if ((in_be32(&prob->spu_status_R) &
1065                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1066                     || (in_be32(&prob->spu_status_R) &
1067                         SPU_STATUS_ISOLATED_STATE)) {
1068                         spu_mfc_sr1_set(spu,
1069                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1070                         eieio();
1071                         out_be32(&prob->spu_runcntl_RW, 0x2);
1072                         eieio();
1073                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1074                                         SPU_STATUS_RUNNING);
1075                 }
1076         }
1077 }
1078
1079 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1080 {
1081         struct spu_priv2 __iomem *priv2 = spu->priv2;
1082         u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1083         u64 idx;
1084         int i;
1085
1086         /* Restore, Step 20:
1087          */
1088
1089         /* Reset CH 1 */
1090         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1091         out_be64(&priv2->spu_chnldata_RW, 0UL);
1092
1093         /* Reset the following CH: [0,3,4,24,25,27] */
1094         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1095                 idx = ch_indices[i];
1096                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1097                 eieio();
1098                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1099                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1100                 eieio();
1101         }
1102 }
1103
1104 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1105 {
1106         struct spu_priv2 __iomem *priv2 = spu->priv2;
1107         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1108         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1109         u64 idx;
1110         int i;
1111
1112         /* Restore, Step 21:
1113          *     Reset the following CH: [21, 23, 28, 29, 30]
1114          */
1115         for (i = 0; i < 5; i++) {
1116                 idx = ch_indices[i];
1117                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1118                 eieio();
1119                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1120                 eieio();
1121         }
1122 }
1123
1124 static inline void setup_spu_status_part1(struct spu_state *csa,
1125                                           struct spu *spu)
1126 {
1127         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1128         u32 status_I = SPU_STATUS_INVALID_INSTR;
1129         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1130         u32 status_S = SPU_STATUS_SINGLE_STEP;
1131         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1132         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1133         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1134         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1135         u32 status_code;
1136
1137         /* Restore, Step 27:
1138          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1139          *     instruction sequence to the end of the SPU based restore
1140          *     code (after the "context restored" stop and signal) to
1141          *     restore the correct SPU status.
1142          *
1143          *     NOTE: Rather than modifying the SPU executable, we
1144          *     instead add a new 'stopped_status' field to the
1145          *     LSCSA.  The SPU-side restore reads this field and
1146          *     takes the appropriate action when exiting.
1147          */
1148
1149         status_code =
1150             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1151         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1152
1153                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1154                  * by Stop and Signal instruction, followed by 'br -4'.
1155                  *
1156                  */
1157                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1158                 csa->lscsa->stopped_status.slot[1] = status_code;
1159
1160         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1161
1162                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1163                  * by Stop and Signal instruction, followed by
1164                  * 'br -4'.
1165                  */
1166                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1167                 csa->lscsa->stopped_status.slot[1] = status_code;
1168
1169         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1170
1171                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1172                  * followed by 'br -4'.
1173                  */
1174                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1175                 csa->lscsa->stopped_status.slot[1] = status_code;
1176
1177         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1178
1179                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1180                  * by 'br -4'.
1181                  */
1182                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1183                 csa->lscsa->stopped_status.slot[1] = status_code;
1184
1185         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1186
1187                 /* SPU_Status[P]=1 - Stop and Signal instruction
1188                  * followed by 'br -4'.
1189                  */
1190                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1191                 csa->lscsa->stopped_status.slot[1] = status_code;
1192
1193         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1194
1195                 /* SPU_Status[H]=1 - Halt Conditional, followed
1196                  * by 'br -4'.
1197                  */
1198                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1199
1200         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1201
1202                 /* SPU_Status[S]=1 - Two nop instructions.
1203                  */
1204                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1205
1206         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1207
1208                 /* SPU_Status[I]=1 - Illegal instruction followed
1209                  * by 'br -4'.
1210                  */
1211                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1212
1213         }
1214 }
1215
1216 static inline void setup_spu_status_part2(struct spu_state *csa,
1217                                           struct spu *spu)
1218 {
1219         u32 mask;
1220
1221         /* Restore, Step 28:
1222          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1223          *     add a 'br *' instruction to the end of
1224          *     the SPU based restore code.
1225          *
1226          *     NOTE: Rather than modifying the SPU executable, we
1227          *     instead add a new 'stopped_status' field to the
1228          *     LSCSA.  The SPU-side restore reads this field and
1229          *     takes the appropriate action when exiting.
1230          */
1231         mask = SPU_STATUS_INVALID_INSTR |
1232             SPU_STATUS_SINGLE_STEP |
1233             SPU_STATUS_STOPPED_BY_HALT |
1234             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1235         if (!(csa->prob.spu_status_R & mask)) {
1236                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1237         }
1238 }
1239
1240 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1241 {
1242         /* Restore, Step 29:
1243          *     Restore RA_GROUP_ID register and the
1244          *     RA_ENABLE reigster from the CSA.
1245          */
1246         spu_resource_allocation_groupID_set(spu,
1247                         csa->priv1.resource_allocation_groupID_RW);
1248         spu_resource_allocation_enable_set(spu,
1249                         csa->priv1.resource_allocation_enable_RW);
1250 }
1251
1252 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1253 {
1254         unsigned long addr = (unsigned long)&spu_restore_code[0];
1255         unsigned int ls_offset = 0x0;
1256         unsigned int size = sizeof(spu_restore_code);
1257         unsigned int tag = 0;
1258         unsigned int rclass = 0;
1259         unsigned int cmd = MFC_GETFS_CMD;
1260
1261         /* Restore, Step 37:
1262          *     Issue MFC DMA command to copy context
1263          *     restore code to local storage.
1264          */
1265         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1266 }
1267
1268 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1269 {
1270         /* Restore, Step 34:
1271          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1272          *     running) then adjust decrementer, set
1273          *     decrementer running status in LSCSA,
1274          *     and set decrementer "wrapped" status
1275          *     in LSCSA.
1276          */
1277         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1278                 cycles_t resume_time = get_cycles();
1279                 cycles_t delta_time = resume_time - csa->suspend_time;
1280
1281                 csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1282                 if (csa->lscsa->decr.slot[0] < delta_time) {
1283                         csa->lscsa->decr_status.slot[0] |=
1284                                  SPU_DECR_STATUS_WRAPPED;
1285                 }
1286
1287                 csa->lscsa->decr.slot[0] -= delta_time;
1288         } else {
1289                 csa->lscsa->decr_status.slot[0] = 0;
1290         }
1291 }
1292
1293 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1294 {
1295         /* Restore, Step 35:
1296          *     Copy the CSA.PU_MB data into the LSCSA.
1297          */
1298         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1299 }
1300
1301 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1302 {
1303         /* Restore, Step 36:
1304          *     Copy the CSA.PUINT_MB data into the LSCSA.
1305          */
1306         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1307 }
1308
1309 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1310 {
1311         struct spu_problem __iomem *prob = spu->problem;
1312         u32 complete;
1313
1314         /* Restore, Step 40:
1315          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1316          *     context restore succeeded, otherwise context restore
1317          *     failed.
1318          */
1319         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1320                     SPU_STATUS_STOPPED_BY_STOP);
1321         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1322 }
1323
1324 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1325 {
1326         struct spu_priv2 __iomem *priv2 = spu->priv2;
1327
1328         /* Restore, Step 41:
1329          *     Restore SPU_PrivCntl from the CSA.
1330          */
1331         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1332         eieio();
1333 }
1334
1335 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1336 {
1337         struct spu_problem __iomem *prob = spu->problem;
1338         u32 mask;
1339
1340         /* Restore, Step 42:
1341          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1342          *     restore the error or single step state.
1343          */
1344         mask = SPU_STATUS_INVALID_INSTR |
1345             SPU_STATUS_SINGLE_STEP |
1346             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1347         if (csa->prob.spu_status_R & mask) {
1348                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1349                 eieio();
1350                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1351                                 SPU_STATUS_RUNNING);
1352         }
1353 }
1354
1355 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1356 {
1357         struct spu_problem __iomem *prob = spu->problem;
1358         u32 mask;
1359
1360         /* Restore, Step 43:
1361          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1362          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1363          *     then write '00' to SPU_RunCntl[R0R1] and wait
1364          *     for SPU_Status[R]=0.
1365          */
1366         mask = SPU_STATUS_INVALID_INSTR |
1367             SPU_STATUS_SINGLE_STEP |
1368             SPU_STATUS_STOPPED_BY_HALT |
1369             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1370         if (!(csa->prob.spu_status_R & mask)) {
1371                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1372                 eieio();
1373                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1374                                  SPU_STATUS_RUNNING);
1375                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1376                 eieio();
1377                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1378                                 SPU_STATUS_RUNNING);
1379         }
1380 }
1381
1382 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1383 {
1384         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1385         unsigned int ls_offset = 0x0;
1386         unsigned int size = 16384;
1387         unsigned int tag = 0;
1388         unsigned int rclass = 0;
1389         unsigned int cmd = MFC_GET_CMD;
1390
1391         /* Restore, Step 44:
1392          *     Issue a DMA command to restore the first
1393          *     16kb of local storage from CSA.
1394          */
1395         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1396 }
1397
1398 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1399 {
1400         struct spu_priv2 __iomem *priv2 = spu->priv2;
1401
1402         /* Restore, Step 47.
1403          *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1404          *     the queue.
1405          */
1406         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1407         eieio();
1408 }
1409
1410 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1411 {
1412         /* Restore, Step 49:
1413          *     Write INT_MASK_class0 with value of 0.
1414          *     Write INT_MASK_class1 with value of 0.
1415          *     Write INT_MASK_class2 with value of 0.
1416          *     Write INT_STAT_class0 with value of -1.
1417          *     Write INT_STAT_class1 with value of -1.
1418          *     Write INT_STAT_class2 with value of -1.
1419          */
1420         spin_lock_irq(&spu->register_lock);
1421         spu_int_mask_set(spu, 0, 0ul);
1422         spu_int_mask_set(spu, 1, 0ul);
1423         spu_int_mask_set(spu, 2, 0ul);
1424         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1425         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1426         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1427         spin_unlock_irq(&spu->register_lock);
1428 }
1429
1430 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1431 {
1432         struct spu_priv2 __iomem *priv2 = spu->priv2;
1433         int i;
1434
1435         /* Restore, Step 50:
1436          *     If MFC_Cntl[Se]!=0 then restore
1437          *     MFC command queues.
1438          */
1439         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1440                 for (i = 0; i < 8; i++) {
1441                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1442                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1443                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1444                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1445                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1446                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1447                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1448                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1449                 }
1450                 for (i = 0; i < 16; i++) {
1451                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1452                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1453                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1454                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1455                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1456                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1457                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1458                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1459                 }
1460         }
1461         eieio();
1462 }
1463
1464 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1465 {
1466         struct spu_problem __iomem *prob = spu->problem;
1467
1468         /* Restore, Step 51:
1469          *     Restore the PPU_QueryMask register from CSA.
1470          */
1471         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1472         eieio();
1473 }
1474
1475 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1476 {
1477         struct spu_problem __iomem *prob = spu->problem;
1478
1479         /* Restore, Step 52:
1480          *     Restore the PPU_QueryType register from CSA.
1481          */
1482         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1483         eieio();
1484 }
1485
1486 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1487 {
1488         struct spu_priv2 __iomem *priv2 = spu->priv2;
1489
1490         /* Restore, Step 53:
1491          *     Restore the MFC_CSR_TSQ register from CSA.
1492          */
1493         out_be64(&priv2->spu_tag_status_query_RW,
1494                  csa->priv2.spu_tag_status_query_RW);
1495         eieio();
1496 }
1497
1498 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1499 {
1500         struct spu_priv2 __iomem *priv2 = spu->priv2;
1501
1502         /* Restore, Step 54:
1503          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1504          *     registers from CSA.
1505          */
1506         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1507         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1508         eieio();
1509 }
1510
1511 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1512 {
1513         struct spu_priv2 __iomem *priv2 = spu->priv2;
1514
1515         /* Restore, Step 55:
1516          *     Restore the MFC_CSR_ATO register from CSA.
1517          */
1518         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1519 }
1520
1521 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1522 {
1523         /* Restore, Step 56:
1524          *     Restore the MFC_TCLASS_ID register from CSA.
1525          */
1526         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1527         eieio();
1528 }
1529
1530 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1531 {
1532         u64 ch0_cnt, ch0_data;
1533         u64 ch1_data;
1534
1535         /* Restore, Step 57:
1536          *    Set the Lock Line Reservation Lost Event by:
1537          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1538          *      2. If CSA.SPU_Channel_0_Count=0 and
1539          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1540          *         CSA.SPU_Event_Status[Lr]=0 then set
1541          *         CSA.SPU_Event_Status_Count=1.
1542          */
1543         ch0_cnt = csa->spu_chnlcnt_RW[0];
1544         ch0_data = csa->spu_chnldata_RW[0];
1545         ch1_data = csa->spu_chnldata_RW[1];
1546         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1547         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1548             (ch1_data & MFC_LLR_LOST_EVENT)) {
1549                 csa->spu_chnlcnt_RW[0] = 1;
1550         }
1551 }
1552
1553 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1554 {
1555         /* Restore, Step 58:
1556          *     If the status of the CSA software decrementer
1557          *     "wrapped" flag is set, OR in a '1' to
1558          *     CSA.SPU_Event_Status[Tm].
1559          */
1560         if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1561                 return;
1562
1563         if ((csa->spu_chnlcnt_RW[0] == 0) &&
1564             (csa->spu_chnldata_RW[1] & 0x20) &&
1565             !(csa->spu_chnldata_RW[0] & 0x20))
1566                 csa->spu_chnlcnt_RW[0] = 1;
1567
1568         csa->spu_chnldata_RW[0] |= 0x20;
1569 }
1570
1571 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1572 {
1573         struct spu_priv2 __iomem *priv2 = spu->priv2;
1574         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1575         int i;
1576
1577         /* Restore, Step 59:
1578          *      Restore the following CH: [0,3,4,24,25,27]
1579          */
1580         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1581                 idx = ch_indices[i];
1582                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1583                 eieio();
1584                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1585                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1586                 eieio();
1587         }
1588 }
1589
1590 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1591 {
1592         struct spu_priv2 __iomem *priv2 = spu->priv2;
1593         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1594         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1595         u64 idx;
1596         int i;
1597
1598         /* Restore, Step 60:
1599          *     Restore the following CH: [9,21,23].
1600          */
1601         ch_counts[0] = 1UL;
1602         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1603         ch_counts[2] = 1UL;
1604         for (i = 0; i < 3; i++) {
1605                 idx = ch_indices[i];
1606                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1607                 eieio();
1608                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1609                 eieio();
1610         }
1611 }
1612
1613 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1614 {
1615         struct spu_priv2 __iomem *priv2 = spu->priv2;
1616
1617         /* Restore, Step 61:
1618          *     Restore the SPU_LSLR register from CSA.
1619          */
1620         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1621         eieio();
1622 }
1623
1624 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1625 {
1626         struct spu_priv2 __iomem *priv2 = spu->priv2;
1627
1628         /* Restore, Step 62:
1629          *     Restore the SPU_Cfg register from CSA.
1630          */
1631         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1632         eieio();
1633 }
1634
1635 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1636 {
1637         /* Restore, Step 63:
1638          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1639          *     Not performed by this implementation.
1640          */
1641 }
1642
1643 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1644 {
1645         struct spu_problem __iomem *prob = spu->problem;
1646
1647         /* Restore, Step 64:
1648          *     Restore SPU_NPC from CSA.
1649          */
1650         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1651         eieio();
1652 }
1653
1654 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1655 {
1656         struct spu_priv2 __iomem *priv2 = spu->priv2;
1657         int i;
1658
1659         /* Restore, Step 65:
1660          *     Restore MFC_RdSPU_MB from CSA.
1661          */
1662         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1663         eieio();
1664         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1665         for (i = 0; i < 4; i++) {
1666                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1667         }
1668         eieio();
1669 }
1670
1671 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1672 {
1673         struct spu_problem __iomem *prob = spu->problem;
1674         u32 dummy = 0;
1675
1676         /* Restore, Step 66:
1677          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1678          *     read from the PPU_MB register.
1679          */
1680         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1681                 dummy = in_be32(&prob->pu_mb_R);
1682                 eieio();
1683         }
1684 }
1685
1686 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1687 {
1688         struct spu_priv2 __iomem *priv2 = spu->priv2;
1689         u64 dummy = 0UL;
1690
1691         /* Restore, Step 66:
1692          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1693          *     read from the PPUINT_MB register.
1694          */
1695         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1696                 dummy = in_be64(&priv2->puint_mb_R);
1697                 eieio();
1698                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1699                 eieio();
1700         }
1701 }
1702
1703 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1704 {
1705         /* Restore, Step 69:
1706          *     Restore the MFC_SR1 register from CSA.
1707          */
1708         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1709         eieio();
1710 }
1711
1712 static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1713 {
1714         struct spu_context *ctx = spu->ctx;
1715
1716         spu_cpu_affinity_set(spu, ctx->last_ran);
1717 }
1718
1719 static inline void restore_other_spu_access(struct spu_state *csa,
1720                                             struct spu *spu)
1721 {
1722         /* Restore, Step 70:
1723          *     Restore other SPU mappings to this SPU. TBD.
1724          */
1725 }
1726
1727 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1728 {
1729         struct spu_problem __iomem *prob = spu->problem;
1730
1731         /* Restore, Step 71:
1732          *     If CSA.SPU_Status[R]=1 then write
1733          *     SPU_RunCntl[R0R1]='01'.
1734          */
1735         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1736                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1737                 eieio();
1738         }
1739 }
1740
1741 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1742 {
1743         struct spu_priv2 __iomem *priv2 = spu->priv2;
1744
1745         /* Restore, Step 72:
1746          *    Restore the MFC_CNTL register for the CSA.
1747          */
1748         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1749         eieio();
1750
1751         /*
1752          * The queue is put back into the same state that was evident prior to
1753          * the context switch. The suspend flag is added to the saved state in
1754          * the csa, if the operational state was suspending or suspended. In
1755          * this case, the code that suspended the mfc is responsible for
1756          * continuing it. Note that SPE faults do not change the operational
1757          * state of the spu.
1758          */
1759 }
1760
1761 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1762 {
1763         /* Restore, Step 73:
1764          *     Enable user-space access (if provided) to this
1765          *     SPU by mapping the virtual pages assigned to
1766          *     the SPU memory-mapped I/O (MMIO) for problem
1767          *     state. TBD.
1768          */
1769 }
1770
1771 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1772 {
1773         /* Restore, Step 74:
1774          *     Reset the "context switch active" flag.
1775          *     Not performed by this implementation.
1776          */
1777 }
1778
1779 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1780 {
1781         /* Restore, Step 75:
1782          *     Re-enable SPU interrupts.
1783          */
1784         spin_lock_irq(&spu->register_lock);
1785         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1786         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1787         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1788         spin_unlock_irq(&spu->register_lock);
1789 }
1790
1791 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1792 {
1793         /*
1794          * Combined steps 2-18 of SPU context save sequence, which
1795          * quiesce the SPU state (disable SPU execution, MFC command
1796          * queues, decrementer, SPU interrupts, etc.).
1797          *
1798          * Returns      0 on success.
1799          *              2 if failed step 2.
1800          *              6 if failed step 6.
1801          */
1802
1803         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1804                 return 2;
1805         }
1806         disable_interrupts(prev, spu);          /* Step 3. */
1807         set_watchdog_timer(prev, spu);          /* Step 4. */
1808         inhibit_user_access(prev, spu);         /* Step 5. */
1809         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1810                 return 6;
1811         }
1812         set_switch_pending(prev, spu);          /* Step 7. */
1813         save_mfc_cntl(prev, spu);               /* Step 8. */
1814         save_spu_runcntl(prev, spu);            /* Step 9. */
1815         save_mfc_sr1(prev, spu);                /* Step 10. */
1816         save_spu_status(prev, spu);             /* Step 11. */
1817         save_mfc_stopped_status(prev, spu);     /* Step 12. */
1818         halt_mfc_decr(prev, spu);               /* Step 13. */
1819         save_timebase(prev, spu);               /* Step 14. */
1820         remove_other_spu_access(prev, spu);     /* Step 15. */
1821         do_mfc_mssync(prev, spu);               /* Step 16. */
1822         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1823         handle_pending_interrupts(prev, spu);   /* Step 18. */
1824
1825         return 0;
1826 }
1827
1828 static void save_csa(struct spu_state *prev, struct spu *spu)
1829 {
1830         /*
1831          * Combine steps 19-44 of SPU context save sequence, which
1832          * save regions of the privileged & problem state areas.
1833          */
1834
1835         save_mfc_queues(prev, spu);     /* Step 19. */
1836         save_ppu_querymask(prev, spu);  /* Step 20. */
1837         save_ppu_querytype(prev, spu);  /* Step 21. */
1838         save_ppu_tagstatus(prev, spu);  /* NEW.     */
1839         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1840         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1841         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1842         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1843         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1844         save_mfc_cmd(prev, spu);        /* Step 26a - moved from 44. */
1845         purge_mfc_queue(prev, spu);     /* Step 27. */
1846         wait_purge_complete(prev, spu); /* Step 28. */
1847         setup_mfc_sr1(prev, spu);       /* Step 30. */
1848         save_spu_npc(prev, spu);        /* Step 31. */
1849         save_spu_privcntl(prev, spu);   /* Step 32. */
1850         reset_spu_privcntl(prev, spu);  /* Step 33. */
1851         save_spu_lslr(prev, spu);       /* Step 34. */
1852         reset_spu_lslr(prev, spu);      /* Step 35. */
1853         save_spu_cfg(prev, spu);        /* Step 36. */
1854         save_pm_trace(prev, spu);       /* Step 37. */
1855         save_mfc_rag(prev, spu);        /* Step 38. */
1856         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1857         save_ppu_mb(prev, spu);         /* Step 40. */
1858         save_ppuint_mb(prev, spu);      /* Step 41. */
1859         save_ch_part1(prev, spu);       /* Step 42. */
1860         save_spu_mb(prev, spu);         /* Step 43. */
1861         reset_ch(prev, spu);            /* Step 45. */
1862 }
1863
1864 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1865 {
1866         /*
1867          * Perform steps 46-57 of SPU context save sequence,
1868          * which save regions of the local store and register
1869          * file.
1870          */
1871
1872         resume_mfc_queue(prev, spu);    /* Step 46. */
1873         /* Step 47. */
1874         setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1875         set_switch_active(prev, spu);   /* Step 48. */
1876         enable_interrupts(prev, spu);   /* Step 49. */
1877         save_ls_16kb(prev, spu);        /* Step 50. */
1878         set_spu_npc(prev, spu);         /* Step 51. */
1879         set_signot1(prev, spu);         /* Step 52. */
1880         set_signot2(prev, spu);         /* Step 53. */
1881         send_save_code(prev, spu);      /* Step 54. */
1882         set_ppu_querymask(prev, spu);   /* Step 55. */
1883         wait_tag_complete(prev, spu);   /* Step 56. */
1884         wait_spu_stopped(prev, spu);    /* Step 57. */
1885 }
1886
1887 static void force_spu_isolate_exit(struct spu *spu)
1888 {
1889         struct spu_problem __iomem *prob = spu->problem;
1890         struct spu_priv2 __iomem *priv2 = spu->priv2;
1891
1892         /* Stop SPE execution and wait for completion. */
1893         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1894         iobarrier_rw();
1895         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1896
1897         /* Restart SPE master runcntl. */
1898         spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1899         iobarrier_w();
1900
1901         /* Initiate isolate exit request and wait for completion. */
1902         out_be64(&priv2->spu_privcntl_RW, 4LL);
1903         iobarrier_w();
1904         out_be32(&prob->spu_runcntl_RW, 2);
1905         iobarrier_rw();
1906         POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1907                                 & SPU_STATUS_STOPPED_BY_STOP));
1908
1909         /* Reset load request to normal. */
1910         out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1911         iobarrier_w();
1912 }
1913
1914 /**
1915  * stop_spu_isolate
1916  *      Check SPU run-control state and force isolated
1917  *      exit function as necessary.
1918  */
1919 static void stop_spu_isolate(struct spu *spu)
1920 {
1921         struct spu_problem __iomem *prob = spu->problem;
1922
1923         if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1924                 /* The SPU is in isolated state; the only way
1925                  * to get it out is to perform an isolated
1926                  * exit (clean) operation.
1927                  */
1928                 force_spu_isolate_exit(spu);
1929         }
1930 }
1931
1932 static void harvest(struct spu_state *prev, struct spu *spu)
1933 {
1934         /*
1935          * Perform steps 2-25 of SPU context restore sequence,
1936          * which resets an SPU either after a failed save, or
1937          * when using SPU for first time.
1938          */
1939
1940         disable_interrupts(prev, spu);          /* Step 2.  */
1941         inhibit_user_access(prev, spu);         /* Step 3.  */
1942         terminate_spu_app(prev, spu);           /* Step 4.  */
1943         set_switch_pending(prev, spu);          /* Step 5.  */
1944         stop_spu_isolate(spu);                  /* NEW.     */
1945         remove_other_spu_access(prev, spu);     /* Step 6.  */
1946         suspend_mfc_and_halt_decr(prev, spu);   /* Step 7.  */
1947         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1948         if (!suspend_spe(prev, spu))            /* Step 9.  */
1949                 clear_spu_status(prev, spu);    /* Step 10. */
1950         do_mfc_mssync(prev, spu);               /* Step 11. */
1951         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1952         handle_pending_interrupts(prev, spu);   /* Step 13. */
1953         purge_mfc_queue(prev, spu);             /* Step 14. */
1954         wait_purge_complete(prev, spu);         /* Step 15. */
1955         reset_spu_privcntl(prev, spu);          /* Step 16. */
1956         reset_spu_lslr(prev, spu);              /* Step 17. */
1957         setup_mfc_sr1(prev, spu);               /* Step 18. */
1958         spu_invalidate_slbs(spu);               /* Step 19. */
1959         reset_ch_part1(prev, spu);              /* Step 20. */
1960         reset_ch_part2(prev, spu);              /* Step 21. */
1961         enable_interrupts(prev, spu);           /* Step 22. */
1962         set_switch_active(prev, spu);           /* Step 23. */
1963         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1964         resume_mfc_queue(prev, spu);            /* Step 25. */
1965 }
1966
1967 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1968 {
1969         /*
1970          * Perform steps 26-40 of SPU context restore sequence,
1971          * which restores regions of the local store and register
1972          * file.
1973          */
1974
1975         set_watchdog_timer(next, spu);          /* Step 26. */
1976         setup_spu_status_part1(next, spu);      /* Step 27. */
1977         setup_spu_status_part2(next, spu);      /* Step 28. */
1978         restore_mfc_rag(next, spu);             /* Step 29. */
1979         /* Step 30. */
1980         setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1981         set_spu_npc(next, spu);                 /* Step 31. */
1982         set_signot1(next, spu);                 /* Step 32. */
1983         set_signot2(next, spu);                 /* Step 33. */
1984         setup_decr(next, spu);                  /* Step 34. */
1985         setup_ppu_mb(next, spu);                /* Step 35. */
1986         setup_ppuint_mb(next, spu);             /* Step 36. */
1987         send_restore_code(next, spu);           /* Step 37. */
1988         set_ppu_querymask(next, spu);           /* Step 38. */
1989         wait_tag_complete(next, spu);           /* Step 39. */
1990         wait_spu_stopped(next, spu);            /* Step 40. */
1991 }
1992
1993 static void restore_csa(struct spu_state *next, struct spu *spu)
1994 {
1995         /*
1996          * Combine steps 41-76 of SPU context restore sequence, which
1997          * restore regions of the privileged & problem state areas.
1998          */
1999
2000         restore_spu_privcntl(next, spu);        /* Step 41. */
2001         restore_status_part1(next, spu);        /* Step 42. */
2002         restore_status_part2(next, spu);        /* Step 43. */
2003         restore_ls_16kb(next, spu);             /* Step 44. */
2004         wait_tag_complete(next, spu);           /* Step 45. */
2005         suspend_mfc(next, spu);                 /* Step 46. */
2006         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
2007         issue_mfc_tlbie(next, spu);             /* Step 48. */
2008         clear_interrupts(next, spu);            /* Step 49. */
2009         restore_mfc_queues(next, spu);          /* Step 50. */
2010         restore_ppu_querymask(next, spu);       /* Step 51. */
2011         restore_ppu_querytype(next, spu);       /* Step 52. */
2012         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
2013         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
2014         restore_mfc_csr_ato(next, spu);         /* Step 55. */
2015         restore_mfc_tclass_id(next, spu);       /* Step 56. */
2016         set_llr_event(next, spu);               /* Step 57. */
2017         restore_decr_wrapped(next, spu);        /* Step 58. */
2018         restore_ch_part1(next, spu);            /* Step 59. */
2019         restore_ch_part2(next, spu);            /* Step 60. */
2020         restore_spu_lslr(next, spu);            /* Step 61. */
2021         restore_spu_cfg(next, spu);             /* Step 62. */
2022         restore_pm_trace(next, spu);            /* Step 63. */
2023         restore_spu_npc(next, spu);             /* Step 64. */
2024         restore_spu_mb(next, spu);              /* Step 65. */
2025         check_ppu_mb_stat(next, spu);           /* Step 66. */
2026         check_ppuint_mb_stat(next, spu);        /* Step 67. */
2027         spu_invalidate_slbs(spu);               /* Modified Step 68. */
2028         restore_mfc_sr1(next, spu);             /* Step 69. */
2029         set_int_route(next, spu);               /* NEW      */
2030         restore_other_spu_access(next, spu);    /* Step 70. */
2031         restore_spu_runcntl(next, spu);         /* Step 71. */
2032         restore_mfc_cntl(next, spu);            /* Step 72. */
2033         enable_user_access(next, spu);          /* Step 73. */
2034         reset_switch_active(next, spu);         /* Step 74. */
2035         reenable_interrupts(next, spu);         /* Step 75. */
2036 }
2037
2038 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2039 {
2040         int rc;
2041
2042         /*
2043          * SPU context save can be broken into three phases:
2044          *
2045          *     (a) quiesce [steps 2-16].
2046          *     (b) save of CSA, performed by PPE [steps 17-42]
2047          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2048          *
2049          * Returns      0 on success.
2050          *              2,6 if failed to quiece SPU
2051          *              53 if SPU-side of save failed.
2052          */
2053
2054         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2055         switch (rc) {
2056         default:
2057         case 2:
2058         case 6:
2059                 harvest(prev, spu);
2060                 return rc;
2061                 break;
2062         case 0:
2063                 break;
2064         }
2065         save_csa(prev, spu);                    /* Steps 17-43. */
2066         save_lscsa(prev, spu);                  /* Steps 44-53. */
2067         return check_save_status(prev, spu);    /* Step 54.     */
2068 }
2069
2070 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2071 {
2072         int rc;
2073
2074         /*
2075          * SPU context restore can be broken into three phases:
2076          *
2077          *    (a) harvest (or reset) SPU [steps 2-24].
2078          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2079          *    (c) restore CSA [steps 41-76], performed by PPE.
2080          *
2081          * The 'harvest' step is not performed here, but rather
2082          * as needed below.
2083          */
2084
2085         restore_lscsa(next, spu);               /* Steps 24-39. */
2086         rc = check_restore_status(next, spu);   /* Step 40.     */
2087         switch (rc) {
2088         default:
2089                 /* Failed. Return now. */
2090                 return rc;
2091                 break;
2092         case 0:
2093                 /* Fall through to next step. */
2094                 break;
2095         }
2096         restore_csa(next, spu);
2097
2098         return 0;
2099 }
2100
2101 /**
2102  * spu_save - SPU context save, with locking.
2103  * @prev: pointer to SPU context save area, to be saved.
2104  * @spu: pointer to SPU iomem structure.
2105  *
2106  * Acquire locks, perform the save operation then return.
2107  */
2108 int spu_save(struct spu_state *prev, struct spu *spu)
2109 {
2110         int rc;
2111
2112         acquire_spu_lock(spu);          /* Step 1.     */
2113         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2114         release_spu_lock(spu);
2115         if (rc != 0 && rc != 2 && rc != 6) {
2116                 panic("%s failed on SPU[%d], rc=%d.\n",
2117                       __func__, spu->number, rc);
2118         }
2119         return 0;
2120 }
2121 EXPORT_SYMBOL_GPL(spu_save);
2122
2123 /**
2124  * spu_restore - SPU context restore, with harvest and locking.
2125  * @new: pointer to SPU context save area, to be restored.
2126  * @spu: pointer to SPU iomem structure.
2127  *
2128  * Perform harvest + restore, as we may not be coming
2129  * from a previous successful save operation, and the
2130  * hardware state is unknown.
2131  */
2132 int spu_restore(struct spu_state *new, struct spu *spu)
2133 {
2134         int rc;
2135
2136         acquire_spu_lock(spu);
2137         harvest(NULL, spu);
2138         spu->slb_replace = 0;
2139         rc = __do_spu_restore(new, spu);
2140         release_spu_lock(spu);
2141         if (rc) {
2142                 panic("%s failed on SPU[%d] rc=%d.\n",
2143                        __func__, spu->number, rc);
2144         }
2145         return rc;
2146 }
2147 EXPORT_SYMBOL_GPL(spu_restore);
2148
2149 static void init_prob(struct spu_state *csa)
2150 {
2151         csa->spu_chnlcnt_RW[9] = 1;
2152         csa->spu_chnlcnt_RW[21] = 16;
2153         csa->spu_chnlcnt_RW[23] = 1;
2154         csa->spu_chnlcnt_RW[28] = 1;
2155         csa->spu_chnlcnt_RW[30] = 1;
2156         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2157         csa->prob.mb_stat_R = 0x000400;
2158 }
2159
2160 static void init_priv1(struct spu_state *csa)
2161 {
2162         /* Enable decode, relocate, tlbie response, master runcntl. */
2163         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2164             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2165             MFC_STATE1_PROBLEM_STATE_MASK |
2166             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2167
2168         /* Enable OS-specific set of interrupts. */
2169         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2170             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2171             CLASS0_ENABLE_SPU_ERROR_INTR;
2172         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2173             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2174         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2175             CLASS2_ENABLE_SPU_HALT_INTR |
2176             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2177 }
2178
2179 static void init_priv2(struct spu_state *csa)
2180 {
2181         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2182         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2183             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2184             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2185 }
2186
2187 /**
2188  * spu_alloc_csa - allocate and initialize an SPU context save area.
2189  *
2190  * Allocate and initialize the contents of an SPU context save area.
2191  * This includes enabling address translation, interrupt masks, etc.,
2192  * as appropriate for the given OS environment.
2193  *
2194  * Note that storage for the 'lscsa' is allocated separately,
2195  * as it is by far the largest of the context save regions,
2196  * and may need to be pinned or otherwise specially aligned.
2197  */
2198 int spu_init_csa(struct spu_state *csa)
2199 {
2200         int rc;
2201
2202         if (!csa)
2203                 return -EINVAL;
2204         memset(csa, 0, sizeof(struct spu_state));
2205
2206         rc = spu_alloc_lscsa(csa);
2207         if (rc)
2208                 return rc;
2209
2210         spin_lock_init(&csa->register_lock);
2211
2212         init_prob(csa);
2213         init_priv1(csa);
2214         init_priv2(csa);
2215
2216         return 0;
2217 }
2218
2219 void spu_fini_csa(struct spu_state *csa)
2220 {
2221         spu_free_lscsa(csa);
2222 }