Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39
40 #include "spufs.h"
41 #include "sputrace.h"
42
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44
45 /* Simple attribute files */
46 struct spufs_attr {
47         int (*get)(void *, u64 *);
48         int (*set)(void *, u64);
49         char get_buf[24];       /* enough to store a u64 and "\n\0" */
50         char set_buf[24];
51         void *data;
52         const char *fmt;        /* format for read operation */
53         struct mutex mutex;     /* protects access to these buffers */
54 };
55
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57                 int (*get)(void *, u64 *), int (*set)(void *, u64),
58                 const char *fmt)
59 {
60         struct spufs_attr *attr;
61
62         attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63         if (!attr)
64                 return -ENOMEM;
65
66         attr->get = get;
67         attr->set = set;
68         attr->data = inode->i_private;
69         attr->fmt = fmt;
70         mutex_init(&attr->mutex);
71         file->private_data = attr;
72
73         return nonseekable_open(inode, file);
74 }
75
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79         return 0;
80 }
81
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83                 size_t len, loff_t *ppos)
84 {
85         struct spufs_attr *attr;
86         size_t size;
87         ssize_t ret;
88
89         attr = file->private_data;
90         if (!attr->get)
91                 return -EACCES;
92
93         ret = mutex_lock_interruptible(&attr->mutex);
94         if (ret)
95                 return ret;
96
97         if (*ppos) {            /* continued read */
98                 size = strlen(attr->get_buf);
99         } else {                /* first read */
100                 u64 val;
101                 ret = attr->get(attr->data, &val);
102                 if (ret)
103                         goto out;
104
105                 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106                                  attr->fmt, (unsigned long long)val);
107         }
108
109         ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111         mutex_unlock(&attr->mutex);
112         return ret;
113 }
114
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116                 size_t len, loff_t *ppos)
117 {
118         struct spufs_attr *attr;
119         u64 val;
120         size_t size;
121         ssize_t ret;
122
123         attr = file->private_data;
124         if (!attr->set)
125                 return -EACCES;
126
127         ret = mutex_lock_interruptible(&attr->mutex);
128         if (ret)
129                 return ret;
130
131         ret = -EFAULT;
132         size = min(sizeof(attr->set_buf) - 1, len);
133         if (copy_from_user(attr->set_buf, buf, size))
134                 goto out;
135
136         ret = len; /* claim we got the whole input */
137         attr->set_buf[size] = '\0';
138         val = simple_strtol(attr->set_buf, NULL, 0);
139         attr->set(attr->data, val);
140 out:
141         mutex_unlock(&attr->mutex);
142         return ret;
143 }
144
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)      \
146 static int __fops ## _open(struct inode *inode, struct file *file)      \
147 {                                                                       \
148         __simple_attr_check_format(__fmt, 0ull);                        \
149         return spufs_attr_open(inode, file, __get, __set, __fmt);       \
150 }                                                                       \
151 static const struct file_operations __fops = {                          \
152         .open    = __fops ## _open,                                     \
153         .release = spufs_attr_release,                                  \
154         .read    = spufs_attr_read,                                     \
155         .write   = spufs_attr_write,                                    \
156         .llseek  = generic_file_llseek,                                 \
157 };
158
159
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163         struct spufs_inode_info *i = SPUFS_I(inode);
164         struct spu_context *ctx = i->i_ctx;
165
166         mutex_lock(&ctx->mapping_lock);
167         file->private_data = ctx;
168         if (!i->i_openers++)
169                 ctx->local_store = inode->i_mapping;
170         mutex_unlock(&ctx->mapping_lock);
171         return 0;
172 }
173
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177         struct spufs_inode_info *i = SPUFS_I(inode);
178         struct spu_context *ctx = i->i_ctx;
179
180         mutex_lock(&ctx->mapping_lock);
181         if (!--i->i_openers)
182                 ctx->local_store = NULL;
183         mutex_unlock(&ctx->mapping_lock);
184         return 0;
185 }
186
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189                         size_t size, loff_t *pos)
190 {
191         char *local_store = ctx->ops->get_ls(ctx);
192         return simple_read_from_buffer(buffer, size, pos, local_store,
193                                         LS_SIZE);
194 }
195
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198                                 size_t size, loff_t *pos)
199 {
200         struct spu_context *ctx = file->private_data;
201         ssize_t ret;
202
203         ret = spu_acquire(ctx);
204         if (ret)
205                 return ret;
206         ret = __spufs_mem_read(ctx, buffer, size, pos);
207         spu_release(ctx);
208
209         return ret;
210 }
211
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214                                         size_t size, loff_t *ppos)
215 {
216         struct spu_context *ctx = file->private_data;
217         char *local_store;
218         loff_t pos = *ppos;
219         int ret;
220
221         if (pos > LS_SIZE)
222                 return -EFBIG;
223
224         ret = spu_acquire(ctx);
225         if (ret)
226                 return ret;
227
228         local_store = ctx->ops->get_ls(ctx);
229         size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230         spu_release(ctx);
231
232         return size;
233 }
234
235 static int
236 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
237 {
238         struct spu_context *ctx = vma->vm_file->private_data;
239         unsigned long address = (unsigned long)vmf->virtual_address;
240         unsigned long pfn, offset;
241
242 #ifdef CONFIG_SPU_FS_64K_LS
243         struct spu_state *csa = &ctx->csa;
244         int psize;
245
246         /* Check what page size we are using */
247         psize = get_slice_psize(vma->vm_mm, address);
248
249         /* Some sanity checking */
250         BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
251
252         /* Wow, 64K, cool, we need to align the address though */
253         if (csa->use_big_pages) {
254                 BUG_ON(vma->vm_start & 0xffff);
255                 address &= ~0xfffful;
256         }
257 #endif /* CONFIG_SPU_FS_64K_LS */
258
259         offset = vmf->pgoff << PAGE_SHIFT;
260         if (offset >= LS_SIZE)
261                 return VM_FAULT_SIGBUS;
262
263         pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
264                         address, offset);
265
266         if (spu_acquire(ctx))
267                 return VM_FAULT_NOPAGE;
268
269         if (ctx->state == SPU_STATE_SAVED) {
270                 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
271                 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
272         } else {
273                 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
274                 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
275         }
276         vm_insert_pfn(vma, address, pfn);
277
278         spu_release(ctx);
279
280         return VM_FAULT_NOPAGE;
281 }
282
283 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
284                                 unsigned long address,
285                                 void *buf, int len, int write)
286 {
287         struct spu_context *ctx = vma->vm_file->private_data;
288         unsigned long offset = address - vma->vm_start;
289         char *local_store;
290
291         if (write && !(vma->vm_flags & VM_WRITE))
292                 return -EACCES;
293         if (spu_acquire(ctx))
294                 return -EINTR;
295         if ((offset + len) > vma->vm_end)
296                 len = vma->vm_end - offset;
297         local_store = ctx->ops->get_ls(ctx);
298         if (write)
299                 memcpy_toio(local_store + offset, buf, len);
300         else
301                 memcpy_fromio(buf, local_store + offset, len);
302         spu_release(ctx);
303         return len;
304 }
305
306 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
307         .fault = spufs_mem_mmap_fault,
308         .access = spufs_mem_mmap_access,
309 };
310
311 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
312 {
313 #ifdef CONFIG_SPU_FS_64K_LS
314         struct spu_context      *ctx = file->private_data;
315         struct spu_state        *csa = &ctx->csa;
316
317         /* Sanity check VMA alignment */
318         if (csa->use_big_pages) {
319                 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
320                          " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
321                          vma->vm_pgoff);
322                 if (vma->vm_start & 0xffff)
323                         return -EINVAL;
324                 if (vma->vm_pgoff & 0xf)
325                         return -EINVAL;
326         }
327 #endif /* CONFIG_SPU_FS_64K_LS */
328
329         if (!(vma->vm_flags & VM_SHARED))
330                 return -EINVAL;
331
332         vma->vm_flags |= VM_IO | VM_PFNMAP;
333         vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
334
335         vma->vm_ops = &spufs_mem_mmap_vmops;
336         return 0;
337 }
338
339 #ifdef CONFIG_SPU_FS_64K_LS
340 static unsigned long spufs_get_unmapped_area(struct file *file,
341                 unsigned long addr, unsigned long len, unsigned long pgoff,
342                 unsigned long flags)
343 {
344         struct spu_context      *ctx = file->private_data;
345         struct spu_state        *csa = &ctx->csa;
346
347         /* If not using big pages, fallback to normal MM g_u_a */
348         if (!csa->use_big_pages)
349                 return current->mm->get_unmapped_area(file, addr, len,
350                                                       pgoff, flags);
351
352         /* Else, try to obtain a 64K pages slice */
353         return slice_get_unmapped_area(addr, len, flags,
354                                        MMU_PAGE_64K, 1);
355 }
356 #endif /* CONFIG_SPU_FS_64K_LS */
357
358 static const struct file_operations spufs_mem_fops = {
359         .open                   = spufs_mem_open,
360         .release                = spufs_mem_release,
361         .read                   = spufs_mem_read,
362         .write                  = spufs_mem_write,
363         .llseek                 = generic_file_llseek,
364         .mmap                   = spufs_mem_mmap,
365 #ifdef CONFIG_SPU_FS_64K_LS
366         .get_unmapped_area      = spufs_get_unmapped_area,
367 #endif
368 };
369
370 static int spufs_ps_fault(struct vm_area_struct *vma,
371                                     struct vm_fault *vmf,
372                                     unsigned long ps_offs,
373                                     unsigned long ps_size)
374 {
375         struct spu_context *ctx = vma->vm_file->private_data;
376         unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
377         int ret = 0;
378
379         spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
380
381         if (offset >= ps_size)
382                 return VM_FAULT_SIGBUS;
383
384         if (fatal_signal_pending(current))
385                 return VM_FAULT_SIGBUS;
386
387         /*
388          * Because we release the mmap_sem, the context may be destroyed while
389          * we're in spu_wait. Grab an extra reference so it isn't destroyed
390          * in the meantime.
391          */
392         get_spu_context(ctx);
393
394         /*
395          * We have to wait for context to be loaded before we have
396          * pages to hand out to the user, but we don't want to wait
397          * with the mmap_sem held.
398          * It is possible to drop the mmap_sem here, but then we need
399          * to return VM_FAULT_NOPAGE because the mappings may have
400          * hanged.
401          */
402         if (spu_acquire(ctx))
403                 goto refault;
404
405         if (ctx->state == SPU_STATE_SAVED) {
406                 up_read(&current->mm->mmap_sem);
407                 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
408                 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
409                 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
410                 down_read(&current->mm->mmap_sem);
411         } else {
412                 area = ctx->spu->problem_phys + ps_offs;
413                 vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
414                                         (area + offset) >> PAGE_SHIFT);
415                 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
416         }
417
418         if (!ret)
419                 spu_release(ctx);
420
421 refault:
422         put_spu_context(ctx);
423         return VM_FAULT_NOPAGE;
424 }
425
426 #if SPUFS_MMAP_4K
427 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
428                                            struct vm_fault *vmf)
429 {
430         return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
431 }
432
433 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
434         .fault = spufs_cntl_mmap_fault,
435 };
436
437 /*
438  * mmap support for problem state control area [0x4000 - 0x4fff].
439  */
440 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
441 {
442         if (!(vma->vm_flags & VM_SHARED))
443                 return -EINVAL;
444
445         vma->vm_flags |= VM_IO | VM_PFNMAP;
446         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
447
448         vma->vm_ops = &spufs_cntl_mmap_vmops;
449         return 0;
450 }
451 #else /* SPUFS_MMAP_4K */
452 #define spufs_cntl_mmap NULL
453 #endif /* !SPUFS_MMAP_4K */
454
455 static int spufs_cntl_get(void *data, u64 *val)
456 {
457         struct spu_context *ctx = data;
458         int ret;
459
460         ret = spu_acquire(ctx);
461         if (ret)
462                 return ret;
463         *val = ctx->ops->status_read(ctx);
464         spu_release(ctx);
465
466         return 0;
467 }
468
469 static int spufs_cntl_set(void *data, u64 val)
470 {
471         struct spu_context *ctx = data;
472         int ret;
473
474         ret = spu_acquire(ctx);
475         if (ret)
476                 return ret;
477         ctx->ops->runcntl_write(ctx, val);
478         spu_release(ctx);
479
480         return 0;
481 }
482
483 static int spufs_cntl_open(struct inode *inode, struct file *file)
484 {
485         struct spufs_inode_info *i = SPUFS_I(inode);
486         struct spu_context *ctx = i->i_ctx;
487
488         mutex_lock(&ctx->mapping_lock);
489         file->private_data = ctx;
490         if (!i->i_openers++)
491                 ctx->cntl = inode->i_mapping;
492         mutex_unlock(&ctx->mapping_lock);
493         return simple_attr_open(inode, file, spufs_cntl_get,
494                                         spufs_cntl_set, "0x%08lx");
495 }
496
497 static int
498 spufs_cntl_release(struct inode *inode, struct file *file)
499 {
500         struct spufs_inode_info *i = SPUFS_I(inode);
501         struct spu_context *ctx = i->i_ctx;
502
503         simple_attr_release(inode, file);
504
505         mutex_lock(&ctx->mapping_lock);
506         if (!--i->i_openers)
507                 ctx->cntl = NULL;
508         mutex_unlock(&ctx->mapping_lock);
509         return 0;
510 }
511
512 static const struct file_operations spufs_cntl_fops = {
513         .open = spufs_cntl_open,
514         .release = spufs_cntl_release,
515         .read = simple_attr_read,
516         .write = simple_attr_write,
517         .llseek = generic_file_llseek,
518         .mmap = spufs_cntl_mmap,
519 };
520
521 static int
522 spufs_regs_open(struct inode *inode, struct file *file)
523 {
524         struct spufs_inode_info *i = SPUFS_I(inode);
525         file->private_data = i->i_ctx;
526         return 0;
527 }
528
529 static ssize_t
530 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
531                         size_t size, loff_t *pos)
532 {
533         struct spu_lscsa *lscsa = ctx->csa.lscsa;
534         return simple_read_from_buffer(buffer, size, pos,
535                                       lscsa->gprs, sizeof lscsa->gprs);
536 }
537
538 static ssize_t
539 spufs_regs_read(struct file *file, char __user *buffer,
540                 size_t size, loff_t *pos)
541 {
542         int ret;
543         struct spu_context *ctx = file->private_data;
544
545         /* pre-check for file position: if we'd return EOF, there's no point
546          * causing a deschedule */
547         if (*pos >= sizeof(ctx->csa.lscsa->gprs))
548                 return 0;
549
550         ret = spu_acquire_saved(ctx);
551         if (ret)
552                 return ret;
553         ret = __spufs_regs_read(ctx, buffer, size, pos);
554         spu_release_saved(ctx);
555         return ret;
556 }
557
558 static ssize_t
559 spufs_regs_write(struct file *file, const char __user *buffer,
560                  size_t size, loff_t *pos)
561 {
562         struct spu_context *ctx = file->private_data;
563         struct spu_lscsa *lscsa = ctx->csa.lscsa;
564         int ret;
565
566         if (*pos >= sizeof(lscsa->gprs))
567                 return -EFBIG;
568
569         ret = spu_acquire_saved(ctx);
570         if (ret)
571                 return ret;
572
573         size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
574                                         buffer, size);
575
576         spu_release_saved(ctx);
577         return size;
578 }
579
580 static const struct file_operations spufs_regs_fops = {
581         .open    = spufs_regs_open,
582         .read    = spufs_regs_read,
583         .write   = spufs_regs_write,
584         .llseek  = generic_file_llseek,
585 };
586
587 static ssize_t
588 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
589                         size_t size, loff_t * pos)
590 {
591         struct spu_lscsa *lscsa = ctx->csa.lscsa;
592         return simple_read_from_buffer(buffer, size, pos,
593                                       &lscsa->fpcr, sizeof(lscsa->fpcr));
594 }
595
596 static ssize_t
597 spufs_fpcr_read(struct file *file, char __user * buffer,
598                 size_t size, loff_t * pos)
599 {
600         int ret;
601         struct spu_context *ctx = file->private_data;
602
603         ret = spu_acquire_saved(ctx);
604         if (ret)
605                 return ret;
606         ret = __spufs_fpcr_read(ctx, buffer, size, pos);
607         spu_release_saved(ctx);
608         return ret;
609 }
610
611 static ssize_t
612 spufs_fpcr_write(struct file *file, const char __user * buffer,
613                  size_t size, loff_t * pos)
614 {
615         struct spu_context *ctx = file->private_data;
616         struct spu_lscsa *lscsa = ctx->csa.lscsa;
617         int ret;
618
619         if (*pos >= sizeof(lscsa->fpcr))
620                 return -EFBIG;
621
622         ret = spu_acquire_saved(ctx);
623         if (ret)
624                 return ret;
625
626         size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
627                                         buffer, size);
628
629         spu_release_saved(ctx);
630         return size;
631 }
632
633 static const struct file_operations spufs_fpcr_fops = {
634         .open = spufs_regs_open,
635         .read = spufs_fpcr_read,
636         .write = spufs_fpcr_write,
637         .llseek = generic_file_llseek,
638 };
639
640 /* generic open function for all pipe-like files */
641 static int spufs_pipe_open(struct inode *inode, struct file *file)
642 {
643         struct spufs_inode_info *i = SPUFS_I(inode);
644         file->private_data = i->i_ctx;
645
646         return nonseekable_open(inode, file);
647 }
648
649 /*
650  * Read as many bytes from the mailbox as possible, until
651  * one of the conditions becomes true:
652  *
653  * - no more data available in the mailbox
654  * - end of the user provided buffer
655  * - end of the mapped area
656  */
657 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
658                         size_t len, loff_t *pos)
659 {
660         struct spu_context *ctx = file->private_data;
661         u32 mbox_data, __user *udata;
662         ssize_t count;
663
664         if (len < 4)
665                 return -EINVAL;
666
667         if (!access_ok(VERIFY_WRITE, buf, len))
668                 return -EFAULT;
669
670         udata = (void __user *)buf;
671
672         count = spu_acquire(ctx);
673         if (count)
674                 return count;
675
676         for (count = 0; (count + 4) <= len; count += 4, udata++) {
677                 int ret;
678                 ret = ctx->ops->mbox_read(ctx, &mbox_data);
679                 if (ret == 0)
680                         break;
681
682                 /*
683                  * at the end of the mapped area, we can fault
684                  * but still need to return the data we have
685                  * read successfully so far.
686                  */
687                 ret = __put_user(mbox_data, udata);
688                 if (ret) {
689                         if (!count)
690                                 count = -EFAULT;
691                         break;
692                 }
693         }
694         spu_release(ctx);
695
696         if (!count)
697                 count = -EAGAIN;
698
699         return count;
700 }
701
702 static const struct file_operations spufs_mbox_fops = {
703         .open   = spufs_pipe_open,
704         .read   = spufs_mbox_read,
705         .llseek = no_llseek,
706 };
707
708 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
709                         size_t len, loff_t *pos)
710 {
711         struct spu_context *ctx = file->private_data;
712         ssize_t ret;
713         u32 mbox_stat;
714
715         if (len < 4)
716                 return -EINVAL;
717
718         ret = spu_acquire(ctx);
719         if (ret)
720                 return ret;
721
722         mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
723
724         spu_release(ctx);
725
726         if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
727                 return -EFAULT;
728
729         return 4;
730 }
731
732 static const struct file_operations spufs_mbox_stat_fops = {
733         .open   = spufs_pipe_open,
734         .read   = spufs_mbox_stat_read,
735         .llseek = no_llseek,
736 };
737
738 /* low-level ibox access function */
739 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
740 {
741         return ctx->ops->ibox_read(ctx, data);
742 }
743
744 static int spufs_ibox_fasync(int fd, struct file *file, int on)
745 {
746         struct spu_context *ctx = file->private_data;
747
748         return fasync_helper(fd, file, on, &ctx->ibox_fasync);
749 }
750
751 /* interrupt-level ibox callback function. */
752 void spufs_ibox_callback(struct spu *spu)
753 {
754         struct spu_context *ctx = spu->ctx;
755
756         if (!ctx)
757                 return;
758
759         wake_up_all(&ctx->ibox_wq);
760         kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
761 }
762
763 /*
764  * Read as many bytes from the interrupt mailbox as possible, until
765  * one of the conditions becomes true:
766  *
767  * - no more data available in the mailbox
768  * - end of the user provided buffer
769  * - end of the mapped area
770  *
771  * If the file is opened without O_NONBLOCK, we wait here until
772  * any data is available, but return when we have been able to
773  * read something.
774  */
775 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
776                         size_t len, loff_t *pos)
777 {
778         struct spu_context *ctx = file->private_data;
779         u32 ibox_data, __user *udata;
780         ssize_t count;
781
782         if (len < 4)
783                 return -EINVAL;
784
785         if (!access_ok(VERIFY_WRITE, buf, len))
786                 return -EFAULT;
787
788         udata = (void __user *)buf;
789
790         count = spu_acquire(ctx);
791         if (count)
792                 goto out;
793
794         /* wait only for the first element */
795         count = 0;
796         if (file->f_flags & O_NONBLOCK) {
797                 if (!spu_ibox_read(ctx, &ibox_data)) {
798                         count = -EAGAIN;
799                         goto out_unlock;
800                 }
801         } else {
802                 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
803                 if (count)
804                         goto out;
805         }
806
807         /* if we can't write at all, return -EFAULT */
808         count = __put_user(ibox_data, udata);
809         if (count)
810                 goto out_unlock;
811
812         for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
813                 int ret;
814                 ret = ctx->ops->ibox_read(ctx, &ibox_data);
815                 if (ret == 0)
816                         break;
817                 /*
818                  * at the end of the mapped area, we can fault
819                  * but still need to return the data we have
820                  * read successfully so far.
821                  */
822                 ret = __put_user(ibox_data, udata);
823                 if (ret)
824                         break;
825         }
826
827 out_unlock:
828         spu_release(ctx);
829 out:
830         return count;
831 }
832
833 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
834 {
835         struct spu_context *ctx = file->private_data;
836         unsigned int mask;
837
838         poll_wait(file, &ctx->ibox_wq, wait);
839
840         /*
841          * For now keep this uninterruptible and also ignore the rule
842          * that poll should not sleep.  Will be fixed later.
843          */
844         mutex_lock(&ctx->state_mutex);
845         mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
846         spu_release(ctx);
847
848         return mask;
849 }
850
851 static const struct file_operations spufs_ibox_fops = {
852         .open   = spufs_pipe_open,
853         .read   = spufs_ibox_read,
854         .poll   = spufs_ibox_poll,
855         .fasync = spufs_ibox_fasync,
856         .llseek = no_llseek,
857 };
858
859 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
860                         size_t len, loff_t *pos)
861 {
862         struct spu_context *ctx = file->private_data;
863         ssize_t ret;
864         u32 ibox_stat;
865
866         if (len < 4)
867                 return -EINVAL;
868
869         ret = spu_acquire(ctx);
870         if (ret)
871                 return ret;
872         ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
873         spu_release(ctx);
874
875         if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
876                 return -EFAULT;
877
878         return 4;
879 }
880
881 static const struct file_operations spufs_ibox_stat_fops = {
882         .open   = spufs_pipe_open,
883         .read   = spufs_ibox_stat_read,
884         .llseek = no_llseek,
885 };
886
887 /* low-level mailbox write */
888 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
889 {
890         return ctx->ops->wbox_write(ctx, data);
891 }
892
893 static int spufs_wbox_fasync(int fd, struct file *file, int on)
894 {
895         struct spu_context *ctx = file->private_data;
896         int ret;
897
898         ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
899
900         return ret;
901 }
902
903 /* interrupt-level wbox callback function. */
904 void spufs_wbox_callback(struct spu *spu)
905 {
906         struct spu_context *ctx = spu->ctx;
907
908         if (!ctx)
909                 return;
910
911         wake_up_all(&ctx->wbox_wq);
912         kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
913 }
914
915 /*
916  * Write as many bytes to the interrupt mailbox as possible, until
917  * one of the conditions becomes true:
918  *
919  * - the mailbox is full
920  * - end of the user provided buffer
921  * - end of the mapped area
922  *
923  * If the file is opened without O_NONBLOCK, we wait here until
924  * space is availabyl, but return when we have been able to
925  * write something.
926  */
927 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
928                         size_t len, loff_t *pos)
929 {
930         struct spu_context *ctx = file->private_data;
931         u32 wbox_data, __user *udata;
932         ssize_t count;
933
934         if (len < 4)
935                 return -EINVAL;
936
937         udata = (void __user *)buf;
938         if (!access_ok(VERIFY_READ, buf, len))
939                 return -EFAULT;
940
941         if (__get_user(wbox_data, udata))
942                 return -EFAULT;
943
944         count = spu_acquire(ctx);
945         if (count)
946                 goto out;
947
948         /*
949          * make sure we can at least write one element, by waiting
950          * in case of !O_NONBLOCK
951          */
952         count = 0;
953         if (file->f_flags & O_NONBLOCK) {
954                 if (!spu_wbox_write(ctx, wbox_data)) {
955                         count = -EAGAIN;
956                         goto out_unlock;
957                 }
958         } else {
959                 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
960                 if (count)
961                         goto out;
962         }
963
964
965         /* write as much as possible */
966         for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
967                 int ret;
968                 ret = __get_user(wbox_data, udata);
969                 if (ret)
970                         break;
971
972                 ret = spu_wbox_write(ctx, wbox_data);
973                 if (ret == 0)
974                         break;
975         }
976
977 out_unlock:
978         spu_release(ctx);
979 out:
980         return count;
981 }
982
983 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
984 {
985         struct spu_context *ctx = file->private_data;
986         unsigned int mask;
987
988         poll_wait(file, &ctx->wbox_wq, wait);
989
990         /*
991          * For now keep this uninterruptible and also ignore the rule
992          * that poll should not sleep.  Will be fixed later.
993          */
994         mutex_lock(&ctx->state_mutex);
995         mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
996         spu_release(ctx);
997
998         return mask;
999 }
1000
1001 static const struct file_operations spufs_wbox_fops = {
1002         .open   = spufs_pipe_open,
1003         .write  = spufs_wbox_write,
1004         .poll   = spufs_wbox_poll,
1005         .fasync = spufs_wbox_fasync,
1006         .llseek = no_llseek,
1007 };
1008
1009 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1010                         size_t len, loff_t *pos)
1011 {
1012         struct spu_context *ctx = file->private_data;
1013         ssize_t ret;
1014         u32 wbox_stat;
1015
1016         if (len < 4)
1017                 return -EINVAL;
1018
1019         ret = spu_acquire(ctx);
1020         if (ret)
1021                 return ret;
1022         wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1023         spu_release(ctx);
1024
1025         if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1026                 return -EFAULT;
1027
1028         return 4;
1029 }
1030
1031 static const struct file_operations spufs_wbox_stat_fops = {
1032         .open   = spufs_pipe_open,
1033         .read   = spufs_wbox_stat_read,
1034         .llseek = no_llseek,
1035 };
1036
1037 static int spufs_signal1_open(struct inode *inode, struct file *file)
1038 {
1039         struct spufs_inode_info *i = SPUFS_I(inode);
1040         struct spu_context *ctx = i->i_ctx;
1041
1042         mutex_lock(&ctx->mapping_lock);
1043         file->private_data = ctx;
1044         if (!i->i_openers++)
1045                 ctx->signal1 = inode->i_mapping;
1046         mutex_unlock(&ctx->mapping_lock);
1047         return nonseekable_open(inode, file);
1048 }
1049
1050 static int
1051 spufs_signal1_release(struct inode *inode, struct file *file)
1052 {
1053         struct spufs_inode_info *i = SPUFS_I(inode);
1054         struct spu_context *ctx = i->i_ctx;
1055
1056         mutex_lock(&ctx->mapping_lock);
1057         if (!--i->i_openers)
1058                 ctx->signal1 = NULL;
1059         mutex_unlock(&ctx->mapping_lock);
1060         return 0;
1061 }
1062
1063 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1064                         size_t len, loff_t *pos)
1065 {
1066         int ret = 0;
1067         u32 data;
1068
1069         if (len < 4)
1070                 return -EINVAL;
1071
1072         if (ctx->csa.spu_chnlcnt_RW[3]) {
1073                 data = ctx->csa.spu_chnldata_RW[3];
1074                 ret = 4;
1075         }
1076
1077         if (!ret)
1078                 goto out;
1079
1080         if (copy_to_user(buf, &data, 4))
1081                 return -EFAULT;
1082
1083 out:
1084         return ret;
1085 }
1086
1087 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1088                         size_t len, loff_t *pos)
1089 {
1090         int ret;
1091         struct spu_context *ctx = file->private_data;
1092
1093         ret = spu_acquire_saved(ctx);
1094         if (ret)
1095                 return ret;
1096         ret = __spufs_signal1_read(ctx, buf, len, pos);
1097         spu_release_saved(ctx);
1098
1099         return ret;
1100 }
1101
1102 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1103                         size_t len, loff_t *pos)
1104 {
1105         struct spu_context *ctx;
1106         ssize_t ret;
1107         u32 data;
1108
1109         ctx = file->private_data;
1110
1111         if (len < 4)
1112                 return -EINVAL;
1113
1114         if (copy_from_user(&data, buf, 4))
1115                 return -EFAULT;
1116
1117         ret = spu_acquire(ctx);
1118         if (ret)
1119                 return ret;
1120         ctx->ops->signal1_write(ctx, data);
1121         spu_release(ctx);
1122
1123         return 4;
1124 }
1125
1126 static int
1127 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1128 {
1129 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1130         return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1131 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1132         /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1133          * signal 1 and 2 area
1134          */
1135         return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1136 #else
1137 #error unsupported page size
1138 #endif
1139 }
1140
1141 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1142         .fault = spufs_signal1_mmap_fault,
1143 };
1144
1145 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1146 {
1147         if (!(vma->vm_flags & VM_SHARED))
1148                 return -EINVAL;
1149
1150         vma->vm_flags |= VM_IO | VM_PFNMAP;
1151         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1152
1153         vma->vm_ops = &spufs_signal1_mmap_vmops;
1154         return 0;
1155 }
1156
1157 static const struct file_operations spufs_signal1_fops = {
1158         .open = spufs_signal1_open,
1159         .release = spufs_signal1_release,
1160         .read = spufs_signal1_read,
1161         .write = spufs_signal1_write,
1162         .mmap = spufs_signal1_mmap,
1163         .llseek = no_llseek,
1164 };
1165
1166 static const struct file_operations spufs_signal1_nosched_fops = {
1167         .open = spufs_signal1_open,
1168         .release = spufs_signal1_release,
1169         .write = spufs_signal1_write,
1170         .mmap = spufs_signal1_mmap,
1171         .llseek = no_llseek,
1172 };
1173
1174 static int spufs_signal2_open(struct inode *inode, struct file *file)
1175 {
1176         struct spufs_inode_info *i = SPUFS_I(inode);
1177         struct spu_context *ctx = i->i_ctx;
1178
1179         mutex_lock(&ctx->mapping_lock);
1180         file->private_data = ctx;
1181         if (!i->i_openers++)
1182                 ctx->signal2 = inode->i_mapping;
1183         mutex_unlock(&ctx->mapping_lock);
1184         return nonseekable_open(inode, file);
1185 }
1186
1187 static int
1188 spufs_signal2_release(struct inode *inode, struct file *file)
1189 {
1190         struct spufs_inode_info *i = SPUFS_I(inode);
1191         struct spu_context *ctx = i->i_ctx;
1192
1193         mutex_lock(&ctx->mapping_lock);
1194         if (!--i->i_openers)
1195                 ctx->signal2 = NULL;
1196         mutex_unlock(&ctx->mapping_lock);
1197         return 0;
1198 }
1199
1200 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1201                         size_t len, loff_t *pos)
1202 {
1203         int ret = 0;
1204         u32 data;
1205
1206         if (len < 4)
1207                 return -EINVAL;
1208
1209         if (ctx->csa.spu_chnlcnt_RW[4]) {
1210                 data =  ctx->csa.spu_chnldata_RW[4];
1211                 ret = 4;
1212         }
1213
1214         if (!ret)
1215                 goto out;
1216
1217         if (copy_to_user(buf, &data, 4))
1218                 return -EFAULT;
1219
1220 out:
1221         return ret;
1222 }
1223
1224 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1225                         size_t len, loff_t *pos)
1226 {
1227         struct spu_context *ctx = file->private_data;
1228         int ret;
1229
1230         ret = spu_acquire_saved(ctx);
1231         if (ret)
1232                 return ret;
1233         ret = __spufs_signal2_read(ctx, buf, len, pos);
1234         spu_release_saved(ctx);
1235
1236         return ret;
1237 }
1238
1239 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1240                         size_t len, loff_t *pos)
1241 {
1242         struct spu_context *ctx;
1243         ssize_t ret;
1244         u32 data;
1245
1246         ctx = file->private_data;
1247
1248         if (len < 4)
1249                 return -EINVAL;
1250
1251         if (copy_from_user(&data, buf, 4))
1252                 return -EFAULT;
1253
1254         ret = spu_acquire(ctx);
1255         if (ret)
1256                 return ret;
1257         ctx->ops->signal2_write(ctx, data);
1258         spu_release(ctx);
1259
1260         return 4;
1261 }
1262
1263 #if SPUFS_MMAP_4K
1264 static int
1265 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1266 {
1267 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1268         return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1269 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1270         /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1271          * signal 1 and 2 area
1272          */
1273         return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1274 #else
1275 #error unsupported page size
1276 #endif
1277 }
1278
1279 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1280         .fault = spufs_signal2_mmap_fault,
1281 };
1282
1283 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1284 {
1285         if (!(vma->vm_flags & VM_SHARED))
1286                 return -EINVAL;
1287
1288         vma->vm_flags |= VM_IO | VM_PFNMAP;
1289         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1290
1291         vma->vm_ops = &spufs_signal2_mmap_vmops;
1292         return 0;
1293 }
1294 #else /* SPUFS_MMAP_4K */
1295 #define spufs_signal2_mmap NULL
1296 #endif /* !SPUFS_MMAP_4K */
1297
1298 static const struct file_operations spufs_signal2_fops = {
1299         .open = spufs_signal2_open,
1300         .release = spufs_signal2_release,
1301         .read = spufs_signal2_read,
1302         .write = spufs_signal2_write,
1303         .mmap = spufs_signal2_mmap,
1304         .llseek = no_llseek,
1305 };
1306
1307 static const struct file_operations spufs_signal2_nosched_fops = {
1308         .open = spufs_signal2_open,
1309         .release = spufs_signal2_release,
1310         .write = spufs_signal2_write,
1311         .mmap = spufs_signal2_mmap,
1312         .llseek = no_llseek,
1313 };
1314
1315 /*
1316  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1317  * work of acquiring (or not) the SPU context before calling through
1318  * to the actual get routine. The set routine is called directly.
1319  */
1320 #define SPU_ATTR_NOACQUIRE      0
1321 #define SPU_ATTR_ACQUIRE        1
1322 #define SPU_ATTR_ACQUIRE_SAVED  2
1323
1324 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)  \
1325 static int __##__get(void *data, u64 *val)                              \
1326 {                                                                       \
1327         struct spu_context *ctx = data;                                 \
1328         int ret = 0;                                                    \
1329                                                                         \
1330         if (__acquire == SPU_ATTR_ACQUIRE) {                            \
1331                 ret = spu_acquire(ctx);                                 \
1332                 if (ret)                                                \
1333                         return ret;                                     \
1334                 *val = __get(ctx);                                      \
1335                 spu_release(ctx);                                       \
1336         } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) {               \
1337                 ret = spu_acquire_saved(ctx);                           \
1338                 if (ret)                                                \
1339                         return ret;                                     \
1340                 *val = __get(ctx);                                      \
1341                 spu_release_saved(ctx);                                 \
1342         } else                                                          \
1343                 *val = __get(ctx);                                      \
1344                                                                         \
1345         return 0;                                                       \
1346 }                                                                       \
1347 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1348
1349 static int spufs_signal1_type_set(void *data, u64 val)
1350 {
1351         struct spu_context *ctx = data;
1352         int ret;
1353
1354         ret = spu_acquire(ctx);
1355         if (ret)
1356                 return ret;
1357         ctx->ops->signal1_type_set(ctx, val);
1358         spu_release(ctx);
1359
1360         return 0;
1361 }
1362
1363 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1364 {
1365         return ctx->ops->signal1_type_get(ctx);
1366 }
1367 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1368                        spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1369
1370
1371 static int spufs_signal2_type_set(void *data, u64 val)
1372 {
1373         struct spu_context *ctx = data;
1374         int ret;
1375
1376         ret = spu_acquire(ctx);
1377         if (ret)
1378                 return ret;
1379         ctx->ops->signal2_type_set(ctx, val);
1380         spu_release(ctx);
1381
1382         return 0;
1383 }
1384
1385 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1386 {
1387         return ctx->ops->signal2_type_get(ctx);
1388 }
1389 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1390                        spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1391
1392 #if SPUFS_MMAP_4K
1393 static int
1394 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395 {
1396         return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1397 }
1398
1399 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1400         .fault = spufs_mss_mmap_fault,
1401 };
1402
1403 /*
1404  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1405  */
1406 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1407 {
1408         if (!(vma->vm_flags & VM_SHARED))
1409                 return -EINVAL;
1410
1411         vma->vm_flags |= VM_IO | VM_PFNMAP;
1412         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1413
1414         vma->vm_ops = &spufs_mss_mmap_vmops;
1415         return 0;
1416 }
1417 #else /* SPUFS_MMAP_4K */
1418 #define spufs_mss_mmap NULL
1419 #endif /* !SPUFS_MMAP_4K */
1420
1421 static int spufs_mss_open(struct inode *inode, struct file *file)
1422 {
1423         struct spufs_inode_info *i = SPUFS_I(inode);
1424         struct spu_context *ctx = i->i_ctx;
1425
1426         file->private_data = i->i_ctx;
1427
1428         mutex_lock(&ctx->mapping_lock);
1429         if (!i->i_openers++)
1430                 ctx->mss = inode->i_mapping;
1431         mutex_unlock(&ctx->mapping_lock);
1432         return nonseekable_open(inode, file);
1433 }
1434
1435 static int
1436 spufs_mss_release(struct inode *inode, struct file *file)
1437 {
1438         struct spufs_inode_info *i = SPUFS_I(inode);
1439         struct spu_context *ctx = i->i_ctx;
1440
1441         mutex_lock(&ctx->mapping_lock);
1442         if (!--i->i_openers)
1443                 ctx->mss = NULL;
1444         mutex_unlock(&ctx->mapping_lock);
1445         return 0;
1446 }
1447
1448 static const struct file_operations spufs_mss_fops = {
1449         .open    = spufs_mss_open,
1450         .release = spufs_mss_release,
1451         .mmap    = spufs_mss_mmap,
1452         .llseek  = no_llseek,
1453 };
1454
1455 static int
1456 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1457 {
1458         return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1459 }
1460
1461 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1462         .fault = spufs_psmap_mmap_fault,
1463 };
1464
1465 /*
1466  * mmap support for full problem state area [0x00000 - 0x1ffff].
1467  */
1468 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1469 {
1470         if (!(vma->vm_flags & VM_SHARED))
1471                 return -EINVAL;
1472
1473         vma->vm_flags |= VM_IO | VM_PFNMAP;
1474         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1475
1476         vma->vm_ops = &spufs_psmap_mmap_vmops;
1477         return 0;
1478 }
1479
1480 static int spufs_psmap_open(struct inode *inode, struct file *file)
1481 {
1482         struct spufs_inode_info *i = SPUFS_I(inode);
1483         struct spu_context *ctx = i->i_ctx;
1484
1485         mutex_lock(&ctx->mapping_lock);
1486         file->private_data = i->i_ctx;
1487         if (!i->i_openers++)
1488                 ctx->psmap = inode->i_mapping;
1489         mutex_unlock(&ctx->mapping_lock);
1490         return nonseekable_open(inode, file);
1491 }
1492
1493 static int
1494 spufs_psmap_release(struct inode *inode, struct file *file)
1495 {
1496         struct spufs_inode_info *i = SPUFS_I(inode);
1497         struct spu_context *ctx = i->i_ctx;
1498
1499         mutex_lock(&ctx->mapping_lock);
1500         if (!--i->i_openers)
1501                 ctx->psmap = NULL;
1502         mutex_unlock(&ctx->mapping_lock);
1503         return 0;
1504 }
1505
1506 static const struct file_operations spufs_psmap_fops = {
1507         .open    = spufs_psmap_open,
1508         .release = spufs_psmap_release,
1509         .mmap    = spufs_psmap_mmap,
1510         .llseek  = no_llseek,
1511 };
1512
1513
1514 #if SPUFS_MMAP_4K
1515 static int
1516 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1517 {
1518         return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1519 }
1520
1521 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1522         .fault = spufs_mfc_mmap_fault,
1523 };
1524
1525 /*
1526  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1527  */
1528 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1529 {
1530         if (!(vma->vm_flags & VM_SHARED))
1531                 return -EINVAL;
1532
1533         vma->vm_flags |= VM_IO | VM_PFNMAP;
1534         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1535
1536         vma->vm_ops = &spufs_mfc_mmap_vmops;
1537         return 0;
1538 }
1539 #else /* SPUFS_MMAP_4K */
1540 #define spufs_mfc_mmap NULL
1541 #endif /* !SPUFS_MMAP_4K */
1542
1543 static int spufs_mfc_open(struct inode *inode, struct file *file)
1544 {
1545         struct spufs_inode_info *i = SPUFS_I(inode);
1546         struct spu_context *ctx = i->i_ctx;
1547
1548         /* we don't want to deal with DMA into other processes */
1549         if (ctx->owner != current->mm)
1550                 return -EINVAL;
1551
1552         if (atomic_read(&inode->i_count) != 1)
1553                 return -EBUSY;
1554
1555         mutex_lock(&ctx->mapping_lock);
1556         file->private_data = ctx;
1557         if (!i->i_openers++)
1558                 ctx->mfc = inode->i_mapping;
1559         mutex_unlock(&ctx->mapping_lock);
1560         return nonseekable_open(inode, file);
1561 }
1562
1563 static int
1564 spufs_mfc_release(struct inode *inode, struct file *file)
1565 {
1566         struct spufs_inode_info *i = SPUFS_I(inode);
1567         struct spu_context *ctx = i->i_ctx;
1568
1569         mutex_lock(&ctx->mapping_lock);
1570         if (!--i->i_openers)
1571                 ctx->mfc = NULL;
1572         mutex_unlock(&ctx->mapping_lock);
1573         return 0;
1574 }
1575
1576 /* interrupt-level mfc callback function. */
1577 void spufs_mfc_callback(struct spu *spu)
1578 {
1579         struct spu_context *ctx = spu->ctx;
1580
1581         if (!ctx)
1582                 return;
1583
1584         wake_up_all(&ctx->mfc_wq);
1585
1586         pr_debug("%s %s\n", __func__, spu->name);
1587         if (ctx->mfc_fasync) {
1588                 u32 free_elements, tagstatus;
1589                 unsigned int mask;
1590
1591                 /* no need for spu_acquire in interrupt context */
1592                 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1593                 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1594
1595                 mask = 0;
1596                 if (free_elements & 0xffff)
1597                         mask |= POLLOUT;
1598                 if (tagstatus & ctx->tagwait)
1599                         mask |= POLLIN;
1600
1601                 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1602         }
1603 }
1604
1605 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1606 {
1607         /* See if there is one tag group is complete */
1608         /* FIXME we need locking around tagwait */
1609         *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1610         ctx->tagwait &= ~*status;
1611         if (*status)
1612                 return 1;
1613
1614         /* enable interrupt waiting for any tag group,
1615            may silently fail if interrupts are already enabled */
1616         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1617         return 0;
1618 }
1619
1620 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1621                         size_t size, loff_t *pos)
1622 {
1623         struct spu_context *ctx = file->private_data;
1624         int ret = -EINVAL;
1625         u32 status;
1626
1627         if (size != 4)
1628                 goto out;
1629
1630         ret = spu_acquire(ctx);
1631         if (ret)
1632                 return ret;
1633
1634         ret = -EINVAL;
1635         if (file->f_flags & O_NONBLOCK) {
1636                 status = ctx->ops->read_mfc_tagstatus(ctx);
1637                 if (!(status & ctx->tagwait))
1638                         ret = -EAGAIN;
1639                 else
1640                         /* XXX(hch): shouldn't we clear ret here? */
1641                         ctx->tagwait &= ~status;
1642         } else {
1643                 ret = spufs_wait(ctx->mfc_wq,
1644                            spufs_read_mfc_tagstatus(ctx, &status));
1645                 if (ret)
1646                         goto out;
1647         }
1648         spu_release(ctx);
1649
1650         ret = 4;
1651         if (copy_to_user(buffer, &status, 4))
1652                 ret = -EFAULT;
1653
1654 out:
1655         return ret;
1656 }
1657
1658 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1659 {
1660         pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1661                  cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1662
1663         switch (cmd->cmd) {
1664         case MFC_PUT_CMD:
1665         case MFC_PUTF_CMD:
1666         case MFC_PUTB_CMD:
1667         case MFC_GET_CMD:
1668         case MFC_GETF_CMD:
1669         case MFC_GETB_CMD:
1670                 break;
1671         default:
1672                 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1673                 return -EIO;
1674         }
1675
1676         if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1677                 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1678                                 cmd->ea, cmd->lsa);
1679                 return -EIO;
1680         }
1681
1682         switch (cmd->size & 0xf) {
1683         case 1:
1684                 break;
1685         case 2:
1686                 if (cmd->lsa & 1)
1687                         goto error;
1688                 break;
1689         case 4:
1690                 if (cmd->lsa & 3)
1691                         goto error;
1692                 break;
1693         case 8:
1694                 if (cmd->lsa & 7)
1695                         goto error;
1696                 break;
1697         case 0:
1698                 if (cmd->lsa & 15)
1699                         goto error;
1700                 break;
1701         error:
1702         default:
1703                 pr_debug("invalid DMA alignment %x for size %x\n",
1704                         cmd->lsa & 0xf, cmd->size);
1705                 return -EIO;
1706         }
1707
1708         if (cmd->size > 16 * 1024) {
1709                 pr_debug("invalid DMA size %x\n", cmd->size);
1710                 return -EIO;
1711         }
1712
1713         if (cmd->tag & 0xfff0) {
1714                 /* we reserve the higher tag numbers for kernel use */
1715                 pr_debug("invalid DMA tag\n");
1716                 return -EIO;
1717         }
1718
1719         if (cmd->class) {
1720                 /* not supported in this version */
1721                 pr_debug("invalid DMA class\n");
1722                 return -EIO;
1723         }
1724
1725         return 0;
1726 }
1727
1728 static int spu_send_mfc_command(struct spu_context *ctx,
1729                                 struct mfc_dma_command cmd,
1730                                 int *error)
1731 {
1732         *error = ctx->ops->send_mfc_command(ctx, &cmd);
1733         if (*error == -EAGAIN) {
1734                 /* wait for any tag group to complete
1735                    so we have space for the new command */
1736                 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1737                 /* try again, because the queue might be
1738                    empty again */
1739                 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1740                 if (*error == -EAGAIN)
1741                         return 0;
1742         }
1743         return 1;
1744 }
1745
1746 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1747                         size_t size, loff_t *pos)
1748 {
1749         struct spu_context *ctx = file->private_data;
1750         struct mfc_dma_command cmd;
1751         int ret = -EINVAL;
1752
1753         if (size != sizeof cmd)
1754                 goto out;
1755
1756         ret = -EFAULT;
1757         if (copy_from_user(&cmd, buffer, sizeof cmd))
1758                 goto out;
1759
1760         ret = spufs_check_valid_dma(&cmd);
1761         if (ret)
1762                 goto out;
1763
1764         ret = spu_acquire(ctx);
1765         if (ret)
1766                 goto out;
1767
1768         ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1769         if (ret)
1770                 goto out;
1771
1772         if (file->f_flags & O_NONBLOCK) {
1773                 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1774         } else {
1775                 int status;
1776                 ret = spufs_wait(ctx->mfc_wq,
1777                                  spu_send_mfc_command(ctx, cmd, &status));
1778                 if (ret)
1779                         goto out;
1780                 if (status)
1781                         ret = status;
1782         }
1783
1784         if (ret)
1785                 goto out_unlock;
1786
1787         ctx->tagwait |= 1 << cmd.tag;
1788         ret = size;
1789
1790 out_unlock:
1791         spu_release(ctx);
1792 out:
1793         return ret;
1794 }
1795
1796 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1797 {
1798         struct spu_context *ctx = file->private_data;
1799         u32 free_elements, tagstatus;
1800         unsigned int mask;
1801
1802         poll_wait(file, &ctx->mfc_wq, wait);
1803
1804         /*
1805          * For now keep this uninterruptible and also ignore the rule
1806          * that poll should not sleep.  Will be fixed later.
1807          */
1808         mutex_lock(&ctx->state_mutex);
1809         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1810         free_elements = ctx->ops->get_mfc_free_elements(ctx);
1811         tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1812         spu_release(ctx);
1813
1814         mask = 0;
1815         if (free_elements & 0xffff)
1816                 mask |= POLLOUT | POLLWRNORM;
1817         if (tagstatus & ctx->tagwait)
1818                 mask |= POLLIN | POLLRDNORM;
1819
1820         pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1821                 free_elements, tagstatus, ctx->tagwait);
1822
1823         return mask;
1824 }
1825
1826 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1827 {
1828         struct spu_context *ctx = file->private_data;
1829         int ret;
1830
1831         ret = spu_acquire(ctx);
1832         if (ret)
1833                 goto out;
1834 #if 0
1835 /* this currently hangs */
1836         ret = spufs_wait(ctx->mfc_wq,
1837                          ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1838         if (ret)
1839                 goto out;
1840         ret = spufs_wait(ctx->mfc_wq,
1841                          ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1842         if (ret)
1843                 goto out;
1844 #else
1845         ret = 0;
1846 #endif
1847         spu_release(ctx);
1848 out:
1849         return ret;
1850 }
1851
1852 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1853 {
1854         struct inode *inode = file_inode(file);
1855         int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1856         if (!err) {
1857                 mutex_lock(&inode->i_mutex);
1858                 err = spufs_mfc_flush(file, NULL);
1859                 mutex_unlock(&inode->i_mutex);
1860         }
1861         return err;
1862 }
1863
1864 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1865 {
1866         struct spu_context *ctx = file->private_data;
1867
1868         return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1869 }
1870
1871 static const struct file_operations spufs_mfc_fops = {
1872         .open    = spufs_mfc_open,
1873         .release = spufs_mfc_release,
1874         .read    = spufs_mfc_read,
1875         .write   = spufs_mfc_write,
1876         .poll    = spufs_mfc_poll,
1877         .flush   = spufs_mfc_flush,
1878         .fsync   = spufs_mfc_fsync,
1879         .fasync  = spufs_mfc_fasync,
1880         .mmap    = spufs_mfc_mmap,
1881         .llseek  = no_llseek,
1882 };
1883
1884 static int spufs_npc_set(void *data, u64 val)
1885 {
1886         struct spu_context *ctx = data;
1887         int ret;
1888
1889         ret = spu_acquire(ctx);
1890         if (ret)
1891                 return ret;
1892         ctx->ops->npc_write(ctx, val);
1893         spu_release(ctx);
1894
1895         return 0;
1896 }
1897
1898 static u64 spufs_npc_get(struct spu_context *ctx)
1899 {
1900         return ctx->ops->npc_read(ctx);
1901 }
1902 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1903                        "0x%llx\n", SPU_ATTR_ACQUIRE);
1904
1905 static int spufs_decr_set(void *data, u64 val)
1906 {
1907         struct spu_context *ctx = data;
1908         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1909         int ret;
1910
1911         ret = spu_acquire_saved(ctx);
1912         if (ret)
1913                 return ret;
1914         lscsa->decr.slot[0] = (u32) val;
1915         spu_release_saved(ctx);
1916
1917         return 0;
1918 }
1919
1920 static u64 spufs_decr_get(struct spu_context *ctx)
1921 {
1922         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1923         return lscsa->decr.slot[0];
1924 }
1925 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1926                        "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1927
1928 static int spufs_decr_status_set(void *data, u64 val)
1929 {
1930         struct spu_context *ctx = data;
1931         int ret;
1932
1933         ret = spu_acquire_saved(ctx);
1934         if (ret)
1935                 return ret;
1936         if (val)
1937                 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1938         else
1939                 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1940         spu_release_saved(ctx);
1941
1942         return 0;
1943 }
1944
1945 static u64 spufs_decr_status_get(struct spu_context *ctx)
1946 {
1947         if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1948                 return SPU_DECR_STATUS_RUNNING;
1949         else
1950                 return 0;
1951 }
1952 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1953                        spufs_decr_status_set, "0x%llx\n",
1954                        SPU_ATTR_ACQUIRE_SAVED);
1955
1956 static int spufs_event_mask_set(void *data, u64 val)
1957 {
1958         struct spu_context *ctx = data;
1959         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1960         int ret;
1961
1962         ret = spu_acquire_saved(ctx);
1963         if (ret)
1964                 return ret;
1965         lscsa->event_mask.slot[0] = (u32) val;
1966         spu_release_saved(ctx);
1967
1968         return 0;
1969 }
1970
1971 static u64 spufs_event_mask_get(struct spu_context *ctx)
1972 {
1973         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1974         return lscsa->event_mask.slot[0];
1975 }
1976
1977 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1978                        spufs_event_mask_set, "0x%llx\n",
1979                        SPU_ATTR_ACQUIRE_SAVED);
1980
1981 static u64 spufs_event_status_get(struct spu_context *ctx)
1982 {
1983         struct spu_state *state = &ctx->csa;
1984         u64 stat;
1985         stat = state->spu_chnlcnt_RW[0];
1986         if (stat)
1987                 return state->spu_chnldata_RW[0];
1988         return 0;
1989 }
1990 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1991                        NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1992
1993 static int spufs_srr0_set(void *data, u64 val)
1994 {
1995         struct spu_context *ctx = data;
1996         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1997         int ret;
1998
1999         ret = spu_acquire_saved(ctx);
2000         if (ret)
2001                 return ret;
2002         lscsa->srr0.slot[0] = (u32) val;
2003         spu_release_saved(ctx);
2004
2005         return 0;
2006 }
2007
2008 static u64 spufs_srr0_get(struct spu_context *ctx)
2009 {
2010         struct spu_lscsa *lscsa = ctx->csa.lscsa;
2011         return lscsa->srr0.slot[0];
2012 }
2013 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2014                        "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2015
2016 static u64 spufs_id_get(struct spu_context *ctx)
2017 {
2018         u64 num;
2019
2020         if (ctx->state == SPU_STATE_RUNNABLE)
2021                 num = ctx->spu->number;
2022         else
2023                 num = (unsigned int)-1;
2024
2025         return num;
2026 }
2027 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2028                        SPU_ATTR_ACQUIRE)
2029
2030 static u64 spufs_object_id_get(struct spu_context *ctx)
2031 {
2032         /* FIXME: Should there really be no locking here? */
2033         return ctx->object_id;
2034 }
2035
2036 static int spufs_object_id_set(void *data, u64 id)
2037 {
2038         struct spu_context *ctx = data;
2039         ctx->object_id = id;
2040
2041         return 0;
2042 }
2043
2044 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2045                        spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2046
2047 static u64 spufs_lslr_get(struct spu_context *ctx)
2048 {
2049         return ctx->csa.priv2.spu_lslr_RW;
2050 }
2051 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2052                        SPU_ATTR_ACQUIRE_SAVED);
2053
2054 static int spufs_info_open(struct inode *inode, struct file *file)
2055 {
2056         struct spufs_inode_info *i = SPUFS_I(inode);
2057         struct spu_context *ctx = i->i_ctx;
2058         file->private_data = ctx;
2059         return 0;
2060 }
2061
2062 static int spufs_caps_show(struct seq_file *s, void *private)
2063 {
2064         struct spu_context *ctx = s->private;
2065
2066         if (!(ctx->flags & SPU_CREATE_NOSCHED))
2067                 seq_puts(s, "sched\n");
2068         if (!(ctx->flags & SPU_CREATE_ISOLATE))
2069                 seq_puts(s, "step\n");
2070         return 0;
2071 }
2072
2073 static int spufs_caps_open(struct inode *inode, struct file *file)
2074 {
2075         return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2076 }
2077
2078 static const struct file_operations spufs_caps_fops = {
2079         .open           = spufs_caps_open,
2080         .read           = seq_read,
2081         .llseek         = seq_lseek,
2082         .release        = single_release,
2083 };
2084
2085 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2086                         char __user *buf, size_t len, loff_t *pos)
2087 {
2088         u32 data;
2089
2090         /* EOF if there's no entry in the mbox */
2091         if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2092                 return 0;
2093
2094         data = ctx->csa.prob.pu_mb_R;
2095
2096         return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2097 }
2098
2099 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2100                                    size_t len, loff_t *pos)
2101 {
2102         int ret;
2103         struct spu_context *ctx = file->private_data;
2104
2105         if (!access_ok(VERIFY_WRITE, buf, len))
2106                 return -EFAULT;
2107
2108         ret = spu_acquire_saved(ctx);
2109         if (ret)
2110                 return ret;
2111         spin_lock(&ctx->csa.register_lock);
2112         ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2113         spin_unlock(&ctx->csa.register_lock);
2114         spu_release_saved(ctx);
2115
2116         return ret;
2117 }
2118
2119 static const struct file_operations spufs_mbox_info_fops = {
2120         .open = spufs_info_open,
2121         .read = spufs_mbox_info_read,
2122         .llseek  = generic_file_llseek,
2123 };
2124
2125 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2126                                 char __user *buf, size_t len, loff_t *pos)
2127 {
2128         u32 data;
2129
2130         /* EOF if there's no entry in the ibox */
2131         if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2132                 return 0;
2133
2134         data = ctx->csa.priv2.puint_mb_R;
2135
2136         return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2137 }
2138
2139 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2140                                    size_t len, loff_t *pos)
2141 {
2142         struct spu_context *ctx = file->private_data;
2143         int ret;
2144
2145         if (!access_ok(VERIFY_WRITE, buf, len))
2146                 return -EFAULT;
2147
2148         ret = spu_acquire_saved(ctx);
2149         if (ret)
2150                 return ret;
2151         spin_lock(&ctx->csa.register_lock);
2152         ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2153         spin_unlock(&ctx->csa.register_lock);
2154         spu_release_saved(ctx);
2155
2156         return ret;
2157 }
2158
2159 static const struct file_operations spufs_ibox_info_fops = {
2160         .open = spufs_info_open,
2161         .read = spufs_ibox_info_read,
2162         .llseek  = generic_file_llseek,
2163 };
2164
2165 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2166                         char __user *buf, size_t len, loff_t *pos)
2167 {
2168         int i, cnt;
2169         u32 data[4];
2170         u32 wbox_stat;
2171
2172         wbox_stat = ctx->csa.prob.mb_stat_R;
2173         cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2174         for (i = 0; i < cnt; i++) {
2175                 data[i] = ctx->csa.spu_mailbox_data[i];
2176         }
2177
2178         return simple_read_from_buffer(buf, len, pos, &data,
2179                                 cnt * sizeof(u32));
2180 }
2181
2182 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2183                                    size_t len, loff_t *pos)
2184 {
2185         struct spu_context *ctx = file->private_data;
2186         int ret;
2187
2188         if (!access_ok(VERIFY_WRITE, buf, len))
2189                 return -EFAULT;
2190
2191         ret = spu_acquire_saved(ctx);
2192         if (ret)
2193                 return ret;
2194         spin_lock(&ctx->csa.register_lock);
2195         ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2196         spin_unlock(&ctx->csa.register_lock);
2197         spu_release_saved(ctx);
2198
2199         return ret;
2200 }
2201
2202 static const struct file_operations spufs_wbox_info_fops = {
2203         .open = spufs_info_open,
2204         .read = spufs_wbox_info_read,
2205         .llseek  = generic_file_llseek,
2206 };
2207
2208 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2209                         char __user *buf, size_t len, loff_t *pos)
2210 {
2211         struct spu_dma_info info;
2212         struct mfc_cq_sr *qp, *spuqp;
2213         int i;
2214
2215         info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2216         info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2217         info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2218         info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2219         info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2220         for (i = 0; i < 16; i++) {
2221                 qp = &info.dma_info_command_data[i];
2222                 spuqp = &ctx->csa.priv2.spuq[i];
2223
2224                 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2225                 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2226                 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2227                 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2228         }
2229
2230         return simple_read_from_buffer(buf, len, pos, &info,
2231                                 sizeof info);
2232 }
2233
2234 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2235                               size_t len, loff_t *pos)
2236 {
2237         struct spu_context *ctx = file->private_data;
2238         int ret;
2239
2240         if (!access_ok(VERIFY_WRITE, buf, len))
2241                 return -EFAULT;
2242
2243         ret = spu_acquire_saved(ctx);
2244         if (ret)
2245                 return ret;
2246         spin_lock(&ctx->csa.register_lock);
2247         ret = __spufs_dma_info_read(ctx, buf, len, pos);
2248         spin_unlock(&ctx->csa.register_lock);
2249         spu_release_saved(ctx);
2250
2251         return ret;
2252 }
2253
2254 static const struct file_operations spufs_dma_info_fops = {
2255         .open = spufs_info_open,
2256         .read = spufs_dma_info_read,
2257         .llseek = no_llseek,
2258 };
2259
2260 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2261                         char __user *buf, size_t len, loff_t *pos)
2262 {
2263         struct spu_proxydma_info info;
2264         struct mfc_cq_sr *qp, *puqp;
2265         int ret = sizeof info;
2266         int i;
2267
2268         if (len < ret)
2269                 return -EINVAL;
2270
2271         if (!access_ok(VERIFY_WRITE, buf, len))
2272                 return -EFAULT;
2273
2274         info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2275         info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2276         info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2277         for (i = 0; i < 8; i++) {
2278                 qp = &info.proxydma_info_command_data[i];
2279                 puqp = &ctx->csa.priv2.puq[i];
2280
2281                 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2282                 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2283                 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2284                 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2285         }
2286
2287         return simple_read_from_buffer(buf, len, pos, &info,
2288                                 sizeof info);
2289 }
2290
2291 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2292                                    size_t len, loff_t *pos)
2293 {
2294         struct spu_context *ctx = file->private_data;
2295         int ret;
2296
2297         ret = spu_acquire_saved(ctx);
2298         if (ret)
2299                 return ret;
2300         spin_lock(&ctx->csa.register_lock);
2301         ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2302         spin_unlock(&ctx->csa.register_lock);
2303         spu_release_saved(ctx);
2304
2305         return ret;
2306 }
2307
2308 static const struct file_operations spufs_proxydma_info_fops = {
2309         .open = spufs_info_open,
2310         .read = spufs_proxydma_info_read,
2311         .llseek = no_llseek,
2312 };
2313
2314 static int spufs_show_tid(struct seq_file *s, void *private)
2315 {
2316         struct spu_context *ctx = s->private;
2317
2318         seq_printf(s, "%d\n", ctx->tid);
2319         return 0;
2320 }
2321
2322 static int spufs_tid_open(struct inode *inode, struct file *file)
2323 {
2324         return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2325 }
2326
2327 static const struct file_operations spufs_tid_fops = {
2328         .open           = spufs_tid_open,
2329         .read           = seq_read,
2330         .llseek         = seq_lseek,
2331         .release        = single_release,
2332 };
2333
2334 static const char *ctx_state_names[] = {
2335         "user", "system", "iowait", "loaded"
2336 };
2337
2338 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2339                 enum spu_utilization_state state)
2340 {
2341         unsigned long long time = ctx->stats.times[state];
2342
2343         /*
2344          * In general, utilization statistics are updated by the controlling
2345          * thread as the spu context moves through various well defined
2346          * state transitions, but if the context is lazily loaded its
2347          * utilization statistics are not updated as the controlling thread
2348          * is not tightly coupled with the execution of the spu context.  We
2349          * calculate and apply the time delta from the last recorded state
2350          * of the spu context.
2351          */
2352         if (ctx->spu && ctx->stats.util_state == state) {
2353                 time += ktime_get_ns() - ctx->stats.tstamp;
2354         }
2355
2356         return time / NSEC_PER_MSEC;
2357 }
2358
2359 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2360 {
2361         unsigned long long slb_flts = ctx->stats.slb_flt;
2362
2363         if (ctx->state == SPU_STATE_RUNNABLE) {
2364                 slb_flts += (ctx->spu->stats.slb_flt -
2365                              ctx->stats.slb_flt_base);
2366         }
2367
2368         return slb_flts;
2369 }
2370
2371 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2372 {
2373         unsigned long long class2_intrs = ctx->stats.class2_intr;
2374
2375         if (ctx->state == SPU_STATE_RUNNABLE) {
2376                 class2_intrs += (ctx->spu->stats.class2_intr -
2377                                  ctx->stats.class2_intr_base);
2378         }
2379
2380         return class2_intrs;
2381 }
2382
2383
2384 static int spufs_show_stat(struct seq_file *s, void *private)
2385 {
2386         struct spu_context *ctx = s->private;
2387         int ret;
2388
2389         ret = spu_acquire(ctx);
2390         if (ret)
2391                 return ret;
2392
2393         seq_printf(s, "%s %llu %llu %llu %llu "
2394                       "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2395                 ctx_state_names[ctx->stats.util_state],
2396                 spufs_acct_time(ctx, SPU_UTIL_USER),
2397                 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2398                 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2399                 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2400                 ctx->stats.vol_ctx_switch,
2401                 ctx->stats.invol_ctx_switch,
2402                 spufs_slb_flts(ctx),
2403                 ctx->stats.hash_flt,
2404                 ctx->stats.min_flt,
2405                 ctx->stats.maj_flt,
2406                 spufs_class2_intrs(ctx),
2407                 ctx->stats.libassist);
2408         spu_release(ctx);
2409         return 0;
2410 }
2411
2412 static int spufs_stat_open(struct inode *inode, struct file *file)
2413 {
2414         return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2415 }
2416
2417 static const struct file_operations spufs_stat_fops = {
2418         .open           = spufs_stat_open,
2419         .read           = seq_read,
2420         .llseek         = seq_lseek,
2421         .release        = single_release,
2422 };
2423
2424 static inline int spufs_switch_log_used(struct spu_context *ctx)
2425 {
2426         return (ctx->switch_log->head - ctx->switch_log->tail) %
2427                 SWITCH_LOG_BUFSIZE;
2428 }
2429
2430 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2431 {
2432         return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2433 }
2434
2435 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2436 {
2437         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2438         int rc;
2439
2440         rc = spu_acquire(ctx);
2441         if (rc)
2442                 return rc;
2443
2444         if (ctx->switch_log) {
2445                 rc = -EBUSY;
2446                 goto out;
2447         }
2448
2449         ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2450                 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2451                 GFP_KERNEL);
2452
2453         if (!ctx->switch_log) {
2454                 rc = -ENOMEM;
2455                 goto out;
2456         }
2457
2458         ctx->switch_log->head = ctx->switch_log->tail = 0;
2459         init_waitqueue_head(&ctx->switch_log->wait);
2460         rc = 0;
2461
2462 out:
2463         spu_release(ctx);
2464         return rc;
2465 }
2466
2467 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2468 {
2469         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2470         int rc;
2471
2472         rc = spu_acquire(ctx);
2473         if (rc)
2474                 return rc;
2475
2476         kfree(ctx->switch_log);
2477         ctx->switch_log = NULL;
2478         spu_release(ctx);
2479
2480         return 0;
2481 }
2482
2483 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2484 {
2485         struct switch_log_entry *p;
2486
2487         p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2488
2489         return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2490                         (unsigned int) p->tstamp.tv_sec,
2491                         (unsigned int) p->tstamp.tv_nsec,
2492                         p->spu_id,
2493                         (unsigned int) p->type,
2494                         (unsigned int) p->val,
2495                         (unsigned long long) p->timebase);
2496 }
2497
2498 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2499                              size_t len, loff_t *ppos)
2500 {
2501         struct inode *inode = file_inode(file);
2502         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2503         int error = 0, cnt = 0;
2504
2505         if (!buf)
2506                 return -EINVAL;
2507
2508         error = spu_acquire(ctx);
2509         if (error)
2510                 return error;
2511
2512         while (cnt < len) {
2513                 char tbuf[128];
2514                 int width;
2515
2516                 if (spufs_switch_log_used(ctx) == 0) {
2517                         if (cnt > 0) {
2518                                 /* If there's data ready to go, we can
2519                                  * just return straight away */
2520                                 break;
2521
2522                         } else if (file->f_flags & O_NONBLOCK) {
2523                                 error = -EAGAIN;
2524                                 break;
2525
2526                         } else {
2527                                 /* spufs_wait will drop the mutex and
2528                                  * re-acquire, but since we're in read(), the
2529                                  * file cannot be _released (and so
2530                                  * ctx->switch_log is stable).
2531                                  */
2532                                 error = spufs_wait(ctx->switch_log->wait,
2533                                                 spufs_switch_log_used(ctx) > 0);
2534
2535                                 /* On error, spufs_wait returns without the
2536                                  * state mutex held */
2537                                 if (error)
2538                                         return error;
2539
2540                                 /* We may have had entries read from underneath
2541                                  * us while we dropped the mutex in spufs_wait,
2542                                  * so re-check */
2543                                 if (spufs_switch_log_used(ctx) == 0)
2544                                         continue;
2545                         }
2546                 }
2547
2548                 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2549                 if (width < len)
2550                         ctx->switch_log->tail =
2551                                 (ctx->switch_log->tail + 1) %
2552                                  SWITCH_LOG_BUFSIZE;
2553                 else
2554                         /* If the record is greater than space available return
2555                          * partial buffer (so far) */
2556                         break;
2557
2558                 error = copy_to_user(buf + cnt, tbuf, width);
2559                 if (error)
2560                         break;
2561                 cnt += width;
2562         }
2563
2564         spu_release(ctx);
2565
2566         return cnt == 0 ? error : cnt;
2567 }
2568
2569 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2570 {
2571         struct inode *inode = file_inode(file);
2572         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2573         unsigned int mask = 0;
2574         int rc;
2575
2576         poll_wait(file, &ctx->switch_log->wait, wait);
2577
2578         rc = spu_acquire(ctx);
2579         if (rc)
2580                 return rc;
2581
2582         if (spufs_switch_log_used(ctx) > 0)
2583                 mask |= POLLIN;
2584
2585         spu_release(ctx);
2586
2587         return mask;
2588 }
2589
2590 static const struct file_operations spufs_switch_log_fops = {
2591         .open           = spufs_switch_log_open,
2592         .read           = spufs_switch_log_read,
2593         .poll           = spufs_switch_log_poll,
2594         .release        = spufs_switch_log_release,
2595         .llseek         = no_llseek,
2596 };
2597
2598 /**
2599  * Log a context switch event to a switch log reader.
2600  *
2601  * Must be called with ctx->state_mutex held.
2602  */
2603 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2604                 u32 type, u32 val)
2605 {
2606         if (!ctx->switch_log)
2607                 return;
2608
2609         if (spufs_switch_log_avail(ctx) > 1) {
2610                 struct switch_log_entry *p;
2611
2612                 p = ctx->switch_log->log + ctx->switch_log->head;
2613                 ktime_get_ts(&p->tstamp);
2614                 p->timebase = get_tb();
2615                 p->spu_id = spu ? spu->number : -1;
2616                 p->type = type;
2617                 p->val = val;
2618
2619                 ctx->switch_log->head =
2620                         (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2621         }
2622
2623         wake_up(&ctx->switch_log->wait);
2624 }
2625
2626 static int spufs_show_ctx(struct seq_file *s, void *private)
2627 {
2628         struct spu_context *ctx = s->private;
2629         u64 mfc_control_RW;
2630
2631         mutex_lock(&ctx->state_mutex);
2632         if (ctx->spu) {
2633                 struct spu *spu = ctx->spu;
2634                 struct spu_priv2 __iomem *priv2 = spu->priv2;
2635
2636                 spin_lock_irq(&spu->register_lock);
2637                 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2638                 spin_unlock_irq(&spu->register_lock);
2639         } else {
2640                 struct spu_state *csa = &ctx->csa;
2641
2642                 mfc_control_RW = csa->priv2.mfc_control_RW;
2643         }
2644
2645         seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2646                 " %c %llx %llx %llx %llx %x %x\n",
2647                 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2648                 ctx->flags,
2649                 ctx->sched_flags,
2650                 ctx->prio,
2651                 ctx->time_slice,
2652                 ctx->spu ? ctx->spu->number : -1,
2653                 !list_empty(&ctx->rq) ? 'q' : ' ',
2654                 ctx->csa.class_0_pending,
2655                 ctx->csa.class_0_dar,
2656                 ctx->csa.class_1_dsisr,
2657                 mfc_control_RW,
2658                 ctx->ops->runcntl_read(ctx),
2659                 ctx->ops->status_read(ctx));
2660
2661         mutex_unlock(&ctx->state_mutex);
2662
2663         return 0;
2664 }
2665
2666 static int spufs_ctx_open(struct inode *inode, struct file *file)
2667 {
2668         return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2669 }
2670
2671 static const struct file_operations spufs_ctx_fops = {
2672         .open           = spufs_ctx_open,
2673         .read           = seq_read,
2674         .llseek         = seq_lseek,
2675         .release        = single_release,
2676 };
2677
2678 const struct spufs_tree_descr spufs_dir_contents[] = {
2679         { "capabilities", &spufs_caps_fops, 0444, },
2680         { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2681         { "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2682         { "mbox", &spufs_mbox_fops, 0444, },
2683         { "ibox", &spufs_ibox_fops, 0444, },
2684         { "wbox", &spufs_wbox_fops, 0222, },
2685         { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2686         { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2687         { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2688         { "signal1", &spufs_signal1_fops, 0666, },
2689         { "signal2", &spufs_signal2_fops, 0666, },
2690         { "signal1_type", &spufs_signal1_type, 0666, },
2691         { "signal2_type", &spufs_signal2_type, 0666, },
2692         { "cntl", &spufs_cntl_fops,  0666, },
2693         { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2694         { "lslr", &spufs_lslr_ops, 0444, },
2695         { "mfc", &spufs_mfc_fops, 0666, },
2696         { "mss", &spufs_mss_fops, 0666, },
2697         { "npc", &spufs_npc_ops, 0666, },
2698         { "srr0", &spufs_srr0_ops, 0666, },
2699         { "decr", &spufs_decr_ops, 0666, },
2700         { "decr_status", &spufs_decr_status_ops, 0666, },
2701         { "event_mask", &spufs_event_mask_ops, 0666, },
2702         { "event_status", &spufs_event_status_ops, 0444, },
2703         { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2704         { "phys-id", &spufs_id_ops, 0666, },
2705         { "object-id", &spufs_object_id_ops, 0666, },
2706         { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2707         { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2708         { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2709         { "dma_info", &spufs_dma_info_fops, 0444,
2710                 sizeof(struct spu_dma_info), },
2711         { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2712                 sizeof(struct spu_proxydma_info)},
2713         { "tid", &spufs_tid_fops, 0444, },
2714         { "stat", &spufs_stat_fops, 0444, },
2715         { "switch_log", &spufs_switch_log_fops, 0444 },
2716         {},
2717 };
2718
2719 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2720         { "capabilities", &spufs_caps_fops, 0444, },
2721         { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2722         { "mbox", &spufs_mbox_fops, 0444, },
2723         { "ibox", &spufs_ibox_fops, 0444, },
2724         { "wbox", &spufs_wbox_fops, 0222, },
2725         { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2726         { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2727         { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2728         { "signal1", &spufs_signal1_nosched_fops, 0222, },
2729         { "signal2", &spufs_signal2_nosched_fops, 0222, },
2730         { "signal1_type", &spufs_signal1_type, 0666, },
2731         { "signal2_type", &spufs_signal2_type, 0666, },
2732         { "mss", &spufs_mss_fops, 0666, },
2733         { "mfc", &spufs_mfc_fops, 0666, },
2734         { "cntl", &spufs_cntl_fops,  0666, },
2735         { "npc", &spufs_npc_ops, 0666, },
2736         { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2737         { "phys-id", &spufs_id_ops, 0666, },
2738         { "object-id", &spufs_object_id_ops, 0666, },
2739         { "tid", &spufs_tid_fops, 0444, },
2740         { "stat", &spufs_stat_fops, 0444, },
2741         {},
2742 };
2743
2744 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2745         { ".ctx", &spufs_ctx_fops, 0444, },
2746         {},
2747 };
2748
2749 const struct spufs_coredump_reader spufs_coredump_read[] = {
2750         { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2751         { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2752         { "lslr", NULL, spufs_lslr_get, 19 },
2753         { "decr", NULL, spufs_decr_get, 19 },
2754         { "decr_status", NULL, spufs_decr_status_get, 19 },
2755         { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2756         { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2757         { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2758         { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2759         { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2760         { "event_mask", NULL, spufs_event_mask_get, 19 },
2761         { "event_status", NULL, spufs_event_status_get, 19 },
2762         { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2763         { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2764         { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2765         { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2766         { "proxydma_info", __spufs_proxydma_info_read,
2767                            NULL, sizeof(struct spu_proxydma_info)},
2768         { "object-id", NULL, spufs_object_id_get, 19 },
2769         { "npc", NULL, spufs_npc_get, 19 },
2770         { NULL },
2771 };