Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / perf / e500-pmu.c
1 /*
2  * Performance counter support for e500 family processors.
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  * Copyright 2010 Freescale Semiconductor, Inc.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 #include <linux/string.h>
13 #include <linux/perf_event.h>
14 #include <asm/reg.h>
15 #include <asm/cputable.h>
16
17 /*
18  * Map of generic hardware event types to hardware events
19  * Zero if unsupported
20  */
21 static int e500_generic_events[] = {
22         [PERF_COUNT_HW_CPU_CYCLES] = 1,
23         [PERF_COUNT_HW_INSTRUCTIONS] = 2,
24         [PERF_COUNT_HW_CACHE_MISSES] = 41, /* Data L1 cache reloads */
25         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 12,
26         [PERF_COUNT_HW_BRANCH_MISSES] = 15,
27         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 18,
28         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 19,
29 };
30
31 #define C(x)    PERF_COUNT_HW_CACHE_##x
32
33 /*
34  * Table of generalized cache-related events.
35  * 0 means not supported, -1 means nonsensical, other values
36  * are event codes.
37  */
38 static int e500_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
39         /*
40          * D-cache misses are not split into read/write/prefetch;
41          * use raw event 41.
42          */
43         [C(L1D)] = {            /*      RESULT_ACCESS   RESULT_MISS */
44                 [C(OP_READ)] = {        27,             0       },
45                 [C(OP_WRITE)] = {       28,             0       },
46                 [C(OP_PREFETCH)] = {    29,             0       },
47         },
48         [C(L1I)] = {            /*      RESULT_ACCESS   RESULT_MISS */
49                 [C(OP_READ)] = {        2,              60      },
50                 [C(OP_WRITE)] = {       -1,             -1      },
51                 [C(OP_PREFETCH)] = {    0,              0       },
52         },
53         /*
54          * Assuming LL means L2, it's not a good match for this model.
55          * It allocates only on L1 castout or explicit prefetch, and
56          * does not have separate read/write events (but it does have
57          * separate instruction/data events).
58          */
59         [C(LL)] = {             /*      RESULT_ACCESS   RESULT_MISS */
60                 [C(OP_READ)] = {        0,              0       },
61                 [C(OP_WRITE)] = {       0,              0       },
62                 [C(OP_PREFETCH)] = {    0,              0       },
63         },
64         /*
65          * There are data/instruction MMU misses, but that's a miss on
66          * the chip's internal level-one TLB which is probably not
67          * what the user wants.  Instead, unified level-two TLB misses
68          * are reported here.
69          */
70         [C(DTLB)] = {           /*      RESULT_ACCESS   RESULT_MISS */
71                 [C(OP_READ)] = {        26,             66      },
72                 [C(OP_WRITE)] = {       -1,             -1      },
73                 [C(OP_PREFETCH)] = {    -1,             -1      },
74         },
75         [C(BPU)] = {            /*      RESULT_ACCESS   RESULT_MISS */
76                 [C(OP_READ)] = {        12,             15      },
77                 [C(OP_WRITE)] = {       -1,             -1      },
78                 [C(OP_PREFETCH)] = {    -1,             -1      },
79         },
80         [C(NODE)] = {           /*      RESULT_ACCESS   RESULT_MISS */
81                 [C(OP_READ)] = {        -1,             -1      },
82                 [C(OP_WRITE)] = {       -1,             -1      },
83                 [C(OP_PREFETCH)] = {    -1,             -1      },
84         },
85 };
86
87 static int num_events = 128;
88
89 /* Upper half of event id is PMLCb, for threshold events */
90 static u64 e500_xlate_event(u64 event_id)
91 {
92         u32 event_low = (u32)event_id;
93         u64 ret;
94
95         if (event_low >= num_events)
96                 return 0;
97
98         ret = FSL_EMB_EVENT_VALID;
99
100         if (event_low >= 76 && event_low <= 81) {
101                 ret |= FSL_EMB_EVENT_RESTRICTED;
102                 ret |= event_id &
103                        (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH);
104         } else if (event_id &
105                    (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH)) {
106                 /* Threshold requested on non-threshold event */
107                 return 0;
108         }
109
110         return ret;
111 }
112
113 static struct fsl_emb_pmu e500_pmu = {
114         .name                   = "e500 family",
115         .n_counter              = 4,
116         .n_restricted           = 2,
117         .xlate_event            = e500_xlate_event,
118         .n_generic              = ARRAY_SIZE(e500_generic_events),
119         .generic_events         = e500_generic_events,
120         .cache_events           = &e500_cache_events,
121 };
122
123 static int init_e500_pmu(void)
124 {
125         if (!cur_cpu_spec->oprofile_cpu_type)
126                 return -ENODEV;
127
128         if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500mc"))
129                 num_events = 256;
130         else if (strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500"))
131                 return -ENODEV;
132
133         return register_fsl_emb_pmu(&e500_pmu);
134 }
135
136 early_initcall(init_e500_pmu);