Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / oprofile / op_model_cell.c
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *         Carl Love <carll@us.ibm.com>
9  *         Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/jiffies.h>
20 #include <linux/kthread.h>
21 #include <linux/oprofile.h>
22 #include <linux/percpu.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/timer.h>
26 #include <asm/cell-pmu.h>
27 #include <asm/cputable.h>
28 #include <asm/firmware.h>
29 #include <asm/io.h>
30 #include <asm/oprofile_impl.h>
31 #include <asm/processor.h>
32 #include <asm/prom.h>
33 #include <asm/ptrace.h>
34 #include <asm/reg.h>
35 #include <asm/rtas.h>
36 #include <asm/cell-regs.h>
37
38 #include "../platforms/cell/interrupt.h"
39 #include "cell/pr_util.h"
40
41 #define PPU_PROFILING            0
42 #define SPU_PROFILING_CYCLES     1
43 #define SPU_PROFILING_EVENTS     2
44
45 #define SPU_EVENT_NUM_START      4100
46 #define SPU_EVENT_NUM_STOP       4399
47 #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
48 #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
49 #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
50
51 #define NUM_SPUS_PER_NODE    8
52 #define SPU_CYCLES_EVENT_NUM 2  /*  event number for SPU_CYCLES */
53
54 #define PPU_CYCLES_EVENT_NUM 1  /*  event number for CYCLES */
55 #define PPU_CYCLES_GRP_NUM   1  /* special group number for identifying
56                                  * PPU_CYCLES event
57                                  */
58 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
59
60 #define NUM_THREADS 2         /* number of physical threads in
61                                * physical processor
62                                */
63 #define NUM_DEBUG_BUS_WORDS 4
64 #define NUM_INPUT_BUS_WORDS 2
65
66 #define MAX_SPU_COUNT 0xFFFFFF  /* maximum 24 bit LFSR value */
67
68 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
69  * To configure counter to send value every N cycles set counter to
70  * 2^32 - 1 - N.
71  */
72 #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
73
74 /*
75  * spu_cycle_reset is the number of cycles between samples.
76  * This variable is used for SPU profiling and should ONLY be set
77  * at the beginning of cell_reg_setup; otherwise, it's read-only.
78  */
79 static unsigned int spu_cycle_reset;
80 static unsigned int profiling_mode;
81 static int spu_evnt_phys_spu_indx;
82
83 struct pmc_cntrl_data {
84         unsigned long vcntr;
85         unsigned long evnts;
86         unsigned long masks;
87         unsigned long enabled;
88 };
89
90 /*
91  * ibm,cbe-perftools rtas parameters
92  */
93 struct pm_signal {
94         u16 cpu;                /* Processor to modify */
95         u16 sub_unit;           /* hw subunit this applies to (if applicable)*/
96         short int signal_group; /* Signal Group to Enable/Disable */
97         u8 bus_word;            /* Enable/Disable on this Trace/Trigger/Event
98                                  * Bus Word(s) (bitmask)
99                                  */
100         u8 bit;                 /* Trigger/Event bit (if applicable) */
101 };
102
103 /*
104  * rtas call arguments
105  */
106 enum {
107         SUBFUNC_RESET = 1,
108         SUBFUNC_ACTIVATE = 2,
109         SUBFUNC_DEACTIVATE = 3,
110
111         PASSTHRU_IGNORE = 0,
112         PASSTHRU_ENABLE = 1,
113         PASSTHRU_DISABLE = 2,
114 };
115
116 struct pm_cntrl {
117         u16 enable;
118         u16 stop_at_max;
119         u16 trace_mode;
120         u16 freeze;
121         u16 count_mode;
122         u16 spu_addr_trace;
123         u8  trace_buf_ovflw;
124 };
125
126 static struct {
127         u32 group_control;
128         u32 debug_bus_control;
129         struct pm_cntrl pm_cntrl;
130         u32 pm07_cntrl[NR_PHYS_CTRS];
131 } pm_regs;
132
133 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
134 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
135 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
136 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
137 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
138 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
139
140 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
141 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
142 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
143
144 /*
145  * The CELL profiling code makes rtas calls to setup the debug bus to
146  * route the performance signals.  Additionally, SPU profiling requires
147  * a second rtas call to setup the hardware to capture the SPU PCs.
148  * The EIO error value is returned if the token lookups or the rtas
149  * call fail.  The EIO error number is the best choice of the existing
150  * error numbers.  The probability of rtas related error is very low.  But
151  * by returning EIO and printing additional information to dmsg the user
152  * will know that OProfile did not start and dmesg will tell them why.
153  * OProfile does not support returning errors on Stop.  Not a huge issue
154  * since failure to reset the debug bus or stop the SPU PC collection is
155  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
156  * either.
157  */
158
159 /*
160  * Interpetation of hdw_thread:
161  * 0 - even virtual cpus 0, 2, 4,...
162  * 1 - odd virtual cpus 1, 3, 5, ...
163  *
164  * FIXME: this is strictly wrong, we need to clean this up in a number
165  * of places. It works for now. -arnd
166  */
167 static u32 hdw_thread;
168
169 static u32 virt_cntr_inter_mask;
170 static struct timer_list timer_virt_cntr;
171 static struct timer_list timer_spu_event_swap;
172
173 /*
174  * pm_signal needs to be global since it is initialized in
175  * cell_reg_setup at the time when the necessary information
176  * is available.
177  */
178 static struct pm_signal pm_signal[NR_PHYS_CTRS];
179 static int pm_rtas_token;    /* token for debug bus setup call */
180 static int spu_rtas_token;   /* token for SPU cycle profiling */
181
182 static u32 reset_value[NR_PHYS_CTRS];
183 static int num_counters;
184 static int oprofile_running;
185 static DEFINE_SPINLOCK(cntr_lock);
186
187 static u32 ctr_enabled;
188
189 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
190
191 /*
192  * Firmware interface functions
193  */
194 static int
195 rtas_ibm_cbe_perftools(int subfunc, int passthru,
196                        void *address, unsigned long length)
197 {
198         u64 paddr = __pa(address);
199
200         return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
201                          passthru, paddr >> 32, paddr & 0xffffffff, length);
202 }
203
204 static void pm_rtas_reset_signals(u32 node)
205 {
206         int ret;
207         struct pm_signal pm_signal_local;
208
209         /*
210          * The debug bus is being set to the passthru disable state.
211          * However, the FW still expects atleast one legal signal routing
212          * entry or it will return an error on the arguments.   If we don't
213          * supply a valid entry, we must ignore all return values.  Ignoring
214          * all return values means we might miss an error we should be
215          * concerned about.
216          */
217
218         /*  fw expects physical cpu #. */
219         pm_signal_local.cpu = node;
220         pm_signal_local.signal_group = 21;
221         pm_signal_local.bus_word = 1;
222         pm_signal_local.sub_unit = 0;
223         pm_signal_local.bit = 0;
224
225         ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
226                                      &pm_signal_local,
227                                      sizeof(struct pm_signal));
228
229         if (unlikely(ret))
230                 /*
231                  * Not a fatal error. For Oprofile stop, the oprofile
232                  * functions do not support returning an error for
233                  * failure to stop OProfile.
234                  */
235                 printk(KERN_WARNING "%s: rtas returned: %d\n",
236                        __func__, ret);
237 }
238
239 static int pm_rtas_activate_signals(u32 node, u32 count)
240 {
241         int ret;
242         int i, j;
243         struct pm_signal pm_signal_local[NR_PHYS_CTRS];
244
245         /*
246          * There is no debug setup required for the cycles event.
247          * Note that only events in the same group can be used.
248          * Otherwise, there will be conflicts in correctly routing
249          * the signals on the debug bus.  It is the responsibility
250          * of the OProfile user tool to check the events are in
251          * the same group.
252          */
253         i = 0;
254         for (j = 0; j < count; j++) {
255                 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
256
257                         /* fw expects physical cpu # */
258                         pm_signal_local[i].cpu = node;
259                         pm_signal_local[i].signal_group
260                                 = pm_signal[j].signal_group;
261                         pm_signal_local[i].bus_word = pm_signal[j].bus_word;
262                         pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
263                         pm_signal_local[i].bit = pm_signal[j].bit;
264                         i++;
265                 }
266         }
267
268         if (i != 0) {
269                 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
270                                              pm_signal_local,
271                                              i * sizeof(struct pm_signal));
272
273                 if (unlikely(ret)) {
274                         printk(KERN_WARNING "%s: rtas returned: %d\n",
275                                __func__, ret);
276                         return -EIO;
277                 }
278         }
279
280         return 0;
281 }
282
283 /*
284  * PM Signal functions
285  */
286 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
287 {
288         struct pm_signal *p;
289         u32 signal_bit;
290         u32 bus_word, bus_type, count_cycles, polarity, input_control;
291         int j, i;
292
293         if (event == PPU_CYCLES_EVENT_NUM) {
294                 /* Special Event: Count all cpu cycles */
295                 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
296                 p = &(pm_signal[ctr]);
297                 p->signal_group = PPU_CYCLES_GRP_NUM;
298                 p->bus_word = 1;
299                 p->sub_unit = 0;
300                 p->bit = 0;
301                 goto out;
302         } else {
303                 pm_regs.pm07_cntrl[ctr] = 0;
304         }
305
306         bus_word = GET_BUS_WORD(unit_mask);
307         bus_type = GET_BUS_TYPE(unit_mask);
308         count_cycles = GET_COUNT_CYCLES(unit_mask);
309         polarity = GET_POLARITY(unit_mask);
310         input_control = GET_INPUT_CONTROL(unit_mask);
311         signal_bit = (event % 100);
312
313         p = &(pm_signal[ctr]);
314
315         p->signal_group = event / 100;
316         p->bus_word = bus_word;
317         p->sub_unit = GET_SUB_UNIT(unit_mask);
318
319         pm_regs.pm07_cntrl[ctr] = 0;
320         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
321         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
322         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
323
324         /*
325          * Some of the islands signal selection is based on 64 bit words.
326          * The debug bus words are 32 bits, the input words to the performance
327          * counters are defined as 32 bits.  Need to convert the 64 bit island
328          * specification to the appropriate 32 input bit and bus word for the
329          * performance counter event selection.  See the CELL Performance
330          * monitoring signals manual and the Perf cntr hardware descriptions
331          * for the details.
332          */
333         if (input_control == 0) {
334                 if (signal_bit > 31) {
335                         signal_bit -= 32;
336                         if (bus_word == 0x3)
337                                 bus_word = 0x2;
338                         else if (bus_word == 0xc)
339                                 bus_word = 0x8;
340                 }
341
342                 if ((bus_type == 0) && p->signal_group >= 60)
343                         bus_type = 2;
344                 if ((bus_type == 1) && p->signal_group >= 50)
345                         bus_type = 0;
346
347                 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
348         } else {
349                 pm_regs.pm07_cntrl[ctr] = 0;
350                 p->bit = signal_bit;
351         }
352
353         for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
354                 if (bus_word & (1 << i)) {
355                         pm_regs.debug_bus_control |=
356                                 (bus_type << (30 - (2 * i)));
357
358                         for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
359                                 if (input_bus[j] == 0xff) {
360                                         input_bus[j] = i;
361                                         pm_regs.group_control |=
362                                                 (i << (30 - (2 * j)));
363
364                                         break;
365                                 }
366                         }
367                 }
368         }
369 out:
370         ;
371 }
372
373 static void write_pm_cntrl(int cpu)
374 {
375         /*
376          * Oprofile will use 32 bit counters, set bits 7:10 to 0
377          * pmregs.pm_cntrl is a global
378          */
379
380         u32 val = 0;
381         if (pm_regs.pm_cntrl.enable == 1)
382                 val |= CBE_PM_ENABLE_PERF_MON;
383
384         if (pm_regs.pm_cntrl.stop_at_max == 1)
385                 val |= CBE_PM_STOP_AT_MAX;
386
387         if (pm_regs.pm_cntrl.trace_mode != 0)
388                 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
389
390         if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
391                 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
392         if (pm_regs.pm_cntrl.freeze == 1)
393                 val |= CBE_PM_FREEZE_ALL_CTRS;
394
395         val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
396
397         /*
398          * Routine set_count_mode must be called previously to set
399          * the count mode based on the user selection of user and kernel.
400          */
401         val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
402         cbe_write_pm(cpu, pm_control, val);
403 }
404
405 static inline void
406 set_count_mode(u32 kernel, u32 user)
407 {
408         /*
409          * The user must specify user and kernel if they want them. If
410          *  neither is specified, OProfile will count in hypervisor mode.
411          *  pm_regs.pm_cntrl is a global
412          */
413         if (kernel) {
414                 if (user)
415                         pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
416                 else
417                         pm_regs.pm_cntrl.count_mode =
418                                 CBE_COUNT_SUPERVISOR_MODE;
419         } else {
420                 if (user)
421                         pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
422                 else
423                         pm_regs.pm_cntrl.count_mode =
424                                 CBE_COUNT_HYPERVISOR_MODE;
425         }
426 }
427
428 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
429 {
430
431         pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
432         cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
433 }
434
435 /*
436  * Oprofile is expected to collect data on all CPUs simultaneously.
437  * However, there is one set of performance counters per node.  There are
438  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
439  * multiplex in time the performance counter collection on the two virtual
440  * CPUs.  The multiplexing of the performance counters is done by this
441  * virtual counter routine.
442  *
443  * The pmc_values used below is defined as 'per-cpu' but its use is
444  * more akin to 'per-node'.  We need to store two sets of counter
445  * values per node -- one for the previous run and one for the next.
446  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
447  * pair of per-cpu arrays is used for storing the previous and next
448  * pmc values for a given node.
449  * NOTE: We use the per-cpu variable to improve cache performance.
450  *
451  * This routine will alternate loading the virtual counters for
452  * virtual CPUs
453  */
454 static void cell_virtual_cntr(unsigned long data)
455 {
456         int i, prev_hdw_thread, next_hdw_thread;
457         u32 cpu;
458         unsigned long flags;
459
460         /*
461          * Make sure that the interrupt_hander and the virt counter are
462          * not both playing with the counters on the same node.
463          */
464
465         spin_lock_irqsave(&cntr_lock, flags);
466
467         prev_hdw_thread = hdw_thread;
468
469         /* switch the cpu handling the interrupts */
470         hdw_thread = 1 ^ hdw_thread;
471         next_hdw_thread = hdw_thread;
472
473         pm_regs.group_control = 0;
474         pm_regs.debug_bus_control = 0;
475
476         for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
477                 input_bus[i] = 0xff;
478
479         /*
480          * There are some per thread events.  Must do the
481          * set event, for the thread that is being started
482          */
483         for (i = 0; i < num_counters; i++)
484                 set_pm_event(i,
485                         pmc_cntrl[next_hdw_thread][i].evnts,
486                         pmc_cntrl[next_hdw_thread][i].masks);
487
488         /*
489          * The following is done only once per each node, but
490          * we need cpu #, not node #, to pass to the cbe_xxx functions.
491          */
492         for_each_online_cpu(cpu) {
493                 if (cbe_get_hw_thread_id(cpu))
494                         continue;
495
496                 /*
497                  * stop counters, save counter values, restore counts
498                  * for previous thread
499                  */
500                 cbe_disable_pm(cpu);
501                 cbe_disable_pm_interrupts(cpu);
502                 for (i = 0; i < num_counters; i++) {
503                         per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
504                                 = cbe_read_ctr(cpu, i);
505
506                         if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
507                             == 0xFFFFFFFF)
508                                 /* If the cntr value is 0xffffffff, we must
509                                  * reset that to 0xfffffff0 when the current
510                                  * thread is restarted.  This will generate a
511                                  * new interrupt and make sure that we never
512                                  * restore the counters to the max value.  If
513                                  * the counters were restored to the max value,
514                                  * they do not increment and no interrupts are
515                                  * generated.  Hence no more samples will be
516                                  * collected on that cpu.
517                                  */
518                                 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
519                         else
520                                 cbe_write_ctr(cpu, i,
521                                               per_cpu(pmc_values,
522                                                       cpu +
523                                                       next_hdw_thread)[i]);
524                 }
525
526                 /*
527                  * Switch to the other thread. Change the interrupt
528                  * and control regs to be scheduled on the CPU
529                  * corresponding to the thread to execute.
530                  */
531                 for (i = 0; i < num_counters; i++) {
532                         if (pmc_cntrl[next_hdw_thread][i].enabled) {
533                                 /*
534                                  * There are some per thread events.
535                                  * Must do the set event, enable_cntr
536                                  * for each cpu.
537                                  */
538                                 enable_ctr(cpu, i,
539                                            pm_regs.pm07_cntrl);
540                         } else {
541                                 cbe_write_pm07_control(cpu, i, 0);
542                         }
543                 }
544
545                 /* Enable interrupts on the CPU thread that is starting */
546                 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
547                                          virt_cntr_inter_mask);
548                 cbe_enable_pm(cpu);
549         }
550
551         spin_unlock_irqrestore(&cntr_lock, flags);
552
553         mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
554 }
555
556 static void start_virt_cntrs(void)
557 {
558         init_timer(&timer_virt_cntr);
559         timer_virt_cntr.function = cell_virtual_cntr;
560         timer_virt_cntr.data = 0UL;
561         timer_virt_cntr.expires = jiffies + HZ / 10;
562         add_timer(&timer_virt_cntr);
563 }
564
565 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
566                         struct op_system_config *sys, int num_ctrs)
567 {
568         spu_cycle_reset = ctr[0].count;
569
570         /*
571          * Each node will need to make the rtas call to start
572          * and stop SPU profiling.  Get the token once and store it.
573          */
574         spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
575
576         if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
577                 printk(KERN_ERR
578                        "%s: rtas token ibm,cbe-spu-perftools unknown\n",
579                        __func__);
580                 return -EIO;
581         }
582         return 0;
583 }
584
585 /* Unfortunately, the hardware will only support event profiling
586  * on one SPU per node at a time.  Therefore, we must time slice
587  * the profiling across all SPUs in the node.  Note, we do this
588  * in parallel for each node.  The following routine is called
589  * periodically based on kernel timer to switch which SPU is
590  * being monitored in a round robbin fashion.
591  */
592 static void spu_evnt_swap(unsigned long data)
593 {
594         int node;
595         int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
596         unsigned long flags;
597         int cpu;
598         int ret;
599         u32 interrupt_mask;
600
601
602         /* enable interrupts on cntr 0 */
603         interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
604
605         hdw_thread = 0;
606
607         /* Make sure spu event interrupt handler and spu event swap
608          * don't access the counters simultaneously.
609          */
610         spin_lock_irqsave(&cntr_lock, flags);
611
612         cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
613
614         if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
615                 spu_evnt_phys_spu_indx = 0;
616
617         pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
618         pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
619         pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
620
621         /* switch the SPU being profiled on each node */
622         for_each_online_cpu(cpu) {
623                 if (cbe_get_hw_thread_id(cpu))
624                         continue;
625
626                 node = cbe_cpu_to_node(cpu);
627                 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
628                         + cur_spu_evnt_phys_spu_indx;
629                 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
630                         + spu_evnt_phys_spu_indx;
631
632                 /*
633                  * stop counters, save counter values, restore counts
634                  * for previous physical SPU
635                  */
636                 cbe_disable_pm(cpu);
637                 cbe_disable_pm_interrupts(cpu);
638
639                 spu_pm_cnt[cur_phys_spu]
640                         = cbe_read_ctr(cpu, 0);
641
642                 /* restore previous count for the next spu to sample */
643                 /* NOTE, hardware issue, counter will not start if the
644                  * counter value is at max (0xFFFFFFFF).
645                  */
646                 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
647                         cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
648                  else
649                          cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
650
651                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
652
653                 /* setup the debug bus measure the one event and
654                  * the two events to route the next SPU's PC on
655                  * the debug bus
656                  */
657                 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
658                 if (ret)
659                         printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
660                                "SPU event swap\n", __func__);
661
662                 /* clear the trace buffer, don't want to take PC for
663                  * previous SPU*/
664                 cbe_write_pm(cpu, trace_address, 0);
665
666                 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
667
668                 /* Enable interrupts on the CPU thread that is starting */
669                 cbe_enable_pm_interrupts(cpu, hdw_thread,
670                                          interrupt_mask);
671                 cbe_enable_pm(cpu);
672         }
673
674         spin_unlock_irqrestore(&cntr_lock, flags);
675
676         /* swap approximately every 0.1 seconds */
677         mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
678 }
679
680 static void start_spu_event_swap(void)
681 {
682         init_timer(&timer_spu_event_swap);
683         timer_spu_event_swap.function = spu_evnt_swap;
684         timer_spu_event_swap.data = 0UL;
685         timer_spu_event_swap.expires = jiffies + HZ / 25;
686         add_timer(&timer_spu_event_swap);
687 }
688
689 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
690                         struct op_system_config *sys, int num_ctrs)
691 {
692         int i;
693
694         /* routine is called once for all nodes */
695
696         spu_evnt_phys_spu_indx = 0;
697         /*
698          * For all events except PPU CYCLEs, each node will need to make
699          * the rtas cbe-perftools call to setup and reset the debug bus.
700          * Make the token lookup call once and store it in the global
701          * variable pm_rtas_token.
702          */
703         pm_rtas_token = rtas_token("ibm,cbe-perftools");
704
705         if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
706                 printk(KERN_ERR
707                        "%s: rtas token ibm,cbe-perftools unknown\n",
708                        __func__);
709                 return -EIO;
710         }
711
712         /* setup the pm_control register settings,
713          * settings will be written per node by the
714          * cell_cpu_setup() function.
715          */
716         pm_regs.pm_cntrl.trace_buf_ovflw = 1;
717
718         /* Use the occurrence trace mode to have SPU PC saved
719          * to the trace buffer.  Occurrence data in trace buffer
720          * is not used.  Bit 2 must be set to store SPU addresses.
721          */
722         pm_regs.pm_cntrl.trace_mode = 2;
723
724         pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
725                                                    event 2 & 3 */
726
727         /* setup the debug bus event array with the SPU PC routing events.
728         *  Note, pm_signal[0] will be filled in by set_pm_event() call below.
729         */
730         pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
731         pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
732         pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
733         pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
734
735         pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
736         pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
737         pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
738         pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
739
740         /* Set the user selected spu event to profile on,
741          * note, only one SPU profiling event is supported
742          */
743         num_counters = 1;  /* Only support one SPU event at a time */
744         set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
745
746         reset_value[0] = 0xFFFFFFFF - ctr[0].count;
747
748         /* global, used by cell_cpu_setup */
749         ctr_enabled |= 1;
750
751         /* Initialize the count for each SPU to the reset value */
752         for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
753                 spu_pm_cnt[i] = reset_value[0];
754
755         return 0;
756 }
757
758 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
759                         struct op_system_config *sys, int num_ctrs)
760 {
761         /* routine is called once for all nodes */
762         int i, j, cpu;
763
764         num_counters = num_ctrs;
765
766         if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
767                 printk(KERN_ERR
768                        "%s: Oprofile, number of specified events " \
769                        "exceeds number of physical counters\n",
770                        __func__);
771                 return -EIO;
772         }
773
774         set_count_mode(sys->enable_kernel, sys->enable_user);
775
776         /* Setup the thread 0 events */
777         for (i = 0; i < num_ctrs; ++i) {
778
779                 pmc_cntrl[0][i].evnts = ctr[i].event;
780                 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
781                 pmc_cntrl[0][i].enabled = ctr[i].enabled;
782                 pmc_cntrl[0][i].vcntr = i;
783
784                 for_each_possible_cpu(j)
785                         per_cpu(pmc_values, j)[i] = 0;
786         }
787
788         /*
789          * Setup the thread 1 events, map the thread 0 event to the
790          * equivalent thread 1 event.
791          */
792         for (i = 0; i < num_ctrs; ++i) {
793                 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
794                         pmc_cntrl[1][i].evnts = ctr[i].event + 19;
795                 else if (ctr[i].event == 2203)
796                         pmc_cntrl[1][i].evnts = ctr[i].event;
797                 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
798                         pmc_cntrl[1][i].evnts = ctr[i].event + 16;
799                 else
800                         pmc_cntrl[1][i].evnts = ctr[i].event;
801
802                 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
803                 pmc_cntrl[1][i].enabled = ctr[i].enabled;
804                 pmc_cntrl[1][i].vcntr = i;
805         }
806
807         for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
808                 input_bus[i] = 0xff;
809
810         /*
811          * Our counters count up, and "count" refers to
812          * how much before the next interrupt, and we interrupt
813          * on overflow.  So we calculate the starting value
814          * which will give us "count" until overflow.
815          * Then we set the events on the enabled counters.
816          */
817         for (i = 0; i < num_counters; ++i) {
818                 /* start with virtual counter set 0 */
819                 if (pmc_cntrl[0][i].enabled) {
820                         /* Using 32bit counters, reset max - count */
821                         reset_value[i] = 0xFFFFFFFF - ctr[i].count;
822                         set_pm_event(i,
823                                      pmc_cntrl[0][i].evnts,
824                                      pmc_cntrl[0][i].masks);
825
826                         /* global, used by cell_cpu_setup */
827                         ctr_enabled |= (1 << i);
828                 }
829         }
830
831         /* initialize the previous counts for the virtual cntrs */
832         for_each_online_cpu(cpu)
833                 for (i = 0; i < num_counters; ++i) {
834                         per_cpu(pmc_values, cpu)[i] = reset_value[i];
835                 }
836
837         return 0;
838 }
839
840
841 /* This function is called once for all cpus combined */
842 static int cell_reg_setup(struct op_counter_config *ctr,
843                         struct op_system_config *sys, int num_ctrs)
844 {
845         int ret=0;
846         spu_cycle_reset = 0;
847
848         /* initialize the spu_arr_trace value, will be reset if
849          * doing spu event profiling.
850          */
851         pm_regs.group_control = 0;
852         pm_regs.debug_bus_control = 0;
853         pm_regs.pm_cntrl.stop_at_max = 1;
854         pm_regs.pm_cntrl.trace_mode = 0;
855         pm_regs.pm_cntrl.freeze = 1;
856         pm_regs.pm_cntrl.trace_buf_ovflw = 0;
857         pm_regs.pm_cntrl.spu_addr_trace = 0;
858
859         /*
860          * For all events except PPU CYCLEs, each node will need to make
861          * the rtas cbe-perftools call to setup and reset the debug bus.
862          * Make the token lookup call once and store it in the global
863          * variable pm_rtas_token.
864          */
865         pm_rtas_token = rtas_token("ibm,cbe-perftools");
866
867         if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
868                 printk(KERN_ERR
869                        "%s: rtas token ibm,cbe-perftools unknown\n",
870                        __func__);
871                 return -EIO;
872         }
873
874         if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
875                 profiling_mode = SPU_PROFILING_CYCLES;
876                 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
877         } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
878                    (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
879                 profiling_mode = SPU_PROFILING_EVENTS;
880                 spu_cycle_reset = ctr[0].count;
881
882                 /* for SPU event profiling, need to setup the
883                  * pm_signal array with the events to route the
884                  * SPU PC before making the FW call.  Note, only
885                  * one SPU event for profiling can be specified
886                  * at a time.
887                  */
888                 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
889         } else {
890                 profiling_mode = PPU_PROFILING;
891                 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
892         }
893
894         return ret;
895 }
896
897
898
899 /* This function is called once for each cpu */
900 static int cell_cpu_setup(struct op_counter_config *cntr)
901 {
902         u32 cpu = smp_processor_id();
903         u32 num_enabled = 0;
904         int i;
905         int ret;
906
907         /* Cycle based SPU profiling does not use the performance
908          * counters.  The trace array is configured to collect
909          * the data.
910          */
911         if (profiling_mode == SPU_PROFILING_CYCLES)
912                 return 0;
913
914         /* There is one performance monitor per processor chip (i.e. node),
915          * so we only need to perform this function once per node.
916          */
917         if (cbe_get_hw_thread_id(cpu))
918                 return 0;
919
920         /* Stop all counters */
921         cbe_disable_pm(cpu);
922         cbe_disable_pm_interrupts(cpu);
923
924         cbe_write_pm(cpu, pm_start_stop, 0);
925         cbe_write_pm(cpu, group_control, pm_regs.group_control);
926         cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
927         write_pm_cntrl(cpu);
928
929         for (i = 0; i < num_counters; ++i) {
930                 if (ctr_enabled & (1 << i)) {
931                         pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
932                         num_enabled++;
933                 }
934         }
935
936         /*
937          * The pm_rtas_activate_signals will return -EIO if the FW
938          * call failed.
939          */
940         if (profiling_mode == SPU_PROFILING_EVENTS) {
941                 /* For SPU event profiling also need to setup the
942                  * pm interval timer
943                  */
944                 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
945                                                num_enabled+2);
946                 /* store PC from debug bus to Trace buffer as often
947                  * as possible (every 10 cycles)
948                  */
949                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
950                 return ret;
951         } else
952                 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
953                                                 num_enabled);
954 }
955
956 #define ENTRIES  303
957 #define MAXLFSR  0xFFFFFF
958
959 /* precomputed table of 24 bit LFSR values */
960 static int initial_lfsr[] = {
961  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
962  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
963  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
964  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
965  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
966  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
967  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
968  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
969  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
970  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
971  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
972  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
973  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
974  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
975  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
976  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
977  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
978  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
979  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
980  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
981  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
982  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
983  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
984  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
985  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
986  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
987  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
988  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
989  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
990  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
991  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
992  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
993  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
994  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
995  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
996  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
997  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
998  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
999 };
1000
1001 /*
1002  * The hardware uses an LFSR counting sequence to determine when to capture
1003  * the SPU PCs.  An LFSR sequence is like a puesdo random number sequence
1004  * where each number occurs once in the sequence but the sequence is not in
1005  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1006  * the last value in the sequence.  Hence the user specified value N
1007  * corresponds to the LFSR number that is N from the end of the sequence.
1008  *
1009  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1010  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1011  * values is adjusted in each range so the error between the user specifed
1012  * number (N) of events between samples and the actual number of events based
1013  * on the precomputed value will be les then about 6.2%.  Note, if the user
1014  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1015  * This is to prevent the loss of samples because the trace buffer is full.
1016  *
1017  *         User specified N                  Step between          Index in
1018  *                                       precomputed values      precomputed
1019  *                                                                  table
1020  * 0                to  2^16-1                  ----                  0
1021  * 2^16     to  2^16+2^19-1             2^12                1 to 128
1022  * 2^16+2^19        to  2^16+2^19+2^22-1        2^15              129 to 256
1023  * 2^16+2^19+2^22  to   2^24-1                  2^18              257 to 302
1024  *
1025  *
1026  * For example, the LFSR values in the second range are computed for 2^16,
1027  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1028  * 1, 2,..., 127, 128.
1029  *
1030  * The 24 bit LFSR value for the nth number in the sequence can be
1031  * calculated using the following code:
1032  *
1033  * #define size 24
1034  * int calculate_lfsr(int n)
1035  * {
1036  *      int i;
1037  *      unsigned int newlfsr0;
1038  *      unsigned int lfsr = 0xFFFFFF;
1039  *      unsigned int howmany = n;
1040  *
1041  *      for (i = 2; i < howmany + 2; i++) {
1042  *              newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1043  *              ((lfsr >> (size - 1 - 1)) & 1) ^
1044  *              (((lfsr >> (size - 1 - 6)) & 1) ^
1045  *              ((lfsr >> (size - 1 - 23)) & 1)));
1046  *
1047  *              lfsr >>= 1;
1048  *              lfsr = lfsr | (newlfsr0 << (size - 1));
1049  *      }
1050  *      return lfsr;
1051  * }
1052  */
1053
1054 #define V2_16  (0x1 << 16)
1055 #define V2_19  (0x1 << 19)
1056 #define V2_22  (0x1 << 22)
1057
1058 static int calculate_lfsr(int n)
1059 {
1060         /*
1061          * The ranges and steps are in powers of 2 so the calculations
1062          * can be done using shifts rather then divide.
1063          */
1064         int index;
1065
1066         if ((n >> 16) == 0)
1067                 index = 0;
1068         else if (((n - V2_16) >> 19) == 0)
1069                 index = ((n - V2_16) >> 12) + 1;
1070         else if (((n - V2_16 - V2_19) >> 22) == 0)
1071                 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1072         else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1073                 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1074         else
1075                 index = ENTRIES-1;
1076
1077         /* make sure index is valid */
1078         if ((index >= ENTRIES) || (index < 0))
1079                 index = ENTRIES-1;
1080
1081         return initial_lfsr[index];
1082 }
1083
1084 static int pm_rtas_activate_spu_profiling(u32 node)
1085 {
1086         int ret, i;
1087         struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1088
1089         /*
1090          * Set up the rtas call to configure the debug bus to
1091          * route the SPU PCs.  Setup the pm_signal for each SPU
1092          */
1093         for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1094                 pm_signal_local[i].cpu = node;
1095                 pm_signal_local[i].signal_group = 41;
1096                 /* spu i on word (i/2) */
1097                 pm_signal_local[i].bus_word = 1 << i / 2;
1098                 /* spu i */
1099                 pm_signal_local[i].sub_unit = i;
1100                 pm_signal_local[i].bit = 63;
1101         }
1102
1103         ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1104                                      PASSTHRU_ENABLE, pm_signal_local,
1105                                      (ARRAY_SIZE(pm_signal_local)
1106                                       * sizeof(struct pm_signal)));
1107
1108         if (unlikely(ret)) {
1109                 printk(KERN_WARNING "%s: rtas returned: %d\n",
1110                        __func__, ret);
1111                 return -EIO;
1112         }
1113
1114         return 0;
1115 }
1116
1117 #ifdef CONFIG_CPU_FREQ
1118 static int
1119 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1120 {
1121         int ret = 0;
1122         struct cpufreq_freqs *frq = data;
1123         if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1124             (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
1125                 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1126         return ret;
1127 }
1128
1129 static struct notifier_block cpu_freq_notifier_block = {
1130         .notifier_call  = oprof_cpufreq_notify
1131 };
1132 #endif
1133
1134 /*
1135  * Note the generic OProfile stop calls do not support returning
1136  * an error on stop.  Hence, will not return an error if the FW
1137  * calls fail on stop.  Failure to reset the debug bus is not an issue.
1138  * Failure to disable the SPU profiling is not an issue.  The FW calls
1139  * to enable the performance counters and debug bus will work even if
1140  * the hardware was not cleanly reset.
1141  */
1142 static void cell_global_stop_spu_cycles(void)
1143 {
1144         int subfunc, rtn_value;
1145         unsigned int lfsr_value;
1146         int cpu;
1147
1148         oprofile_running = 0;
1149         smp_wmb();
1150
1151 #ifdef CONFIG_CPU_FREQ
1152         cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1153                                     CPUFREQ_TRANSITION_NOTIFIER);
1154 #endif
1155
1156         for_each_online_cpu(cpu) {
1157                 if (cbe_get_hw_thread_id(cpu))
1158                         continue;
1159
1160                 subfunc = 3;    /*
1161                                  * 2 - activate SPU tracing,
1162                                  * 3 - deactivate
1163                                  */
1164                 lfsr_value = 0x8f100000;
1165
1166                 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1167                                       subfunc, cbe_cpu_to_node(cpu),
1168                                       lfsr_value);
1169
1170                 if (unlikely(rtn_value != 0)) {
1171                         printk(KERN_ERR
1172                                "%s: rtas call ibm,cbe-spu-perftools " \
1173                                "failed, return = %d\n",
1174                                __func__, rtn_value);
1175                 }
1176
1177                 /* Deactivate the signals */
1178                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1179         }
1180
1181         stop_spu_profiling_cycles();
1182 }
1183
1184 static void cell_global_stop_spu_events(void)
1185 {
1186         int cpu;
1187         oprofile_running = 0;
1188
1189         stop_spu_profiling_events();
1190         smp_wmb();
1191
1192         for_each_online_cpu(cpu) {
1193                 if (cbe_get_hw_thread_id(cpu))
1194                         continue;
1195
1196                 cbe_sync_irq(cbe_cpu_to_node(cpu));
1197                 /* Stop the counters */
1198                 cbe_disable_pm(cpu);
1199                 cbe_write_pm07_control(cpu, 0, 0);
1200
1201                 /* Deactivate the signals */
1202                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1203
1204                 /* Deactivate interrupts */
1205                 cbe_disable_pm_interrupts(cpu);
1206         }
1207         del_timer_sync(&timer_spu_event_swap);
1208 }
1209
1210 static void cell_global_stop_ppu(void)
1211 {
1212         int cpu;
1213
1214         /*
1215          * This routine will be called once for the system.
1216          * There is one performance monitor per node, so we
1217          * only need to perform this function once per node.
1218          */
1219         del_timer_sync(&timer_virt_cntr);
1220         oprofile_running = 0;
1221         smp_wmb();
1222
1223         for_each_online_cpu(cpu) {
1224                 if (cbe_get_hw_thread_id(cpu))
1225                         continue;
1226
1227                 cbe_sync_irq(cbe_cpu_to_node(cpu));
1228                 /* Stop the counters */
1229                 cbe_disable_pm(cpu);
1230
1231                 /* Deactivate the signals */
1232                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1233
1234                 /* Deactivate interrupts */
1235                 cbe_disable_pm_interrupts(cpu);
1236         }
1237 }
1238
1239 static void cell_global_stop(void)
1240 {
1241         if (profiling_mode == PPU_PROFILING)
1242                 cell_global_stop_ppu();
1243         else if (profiling_mode == SPU_PROFILING_EVENTS)
1244                 cell_global_stop_spu_events();
1245         else
1246                 cell_global_stop_spu_cycles();
1247 }
1248
1249 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1250 {
1251         int subfunc;
1252         unsigned int lfsr_value;
1253         int cpu;
1254         int ret;
1255         int rtas_error;
1256         unsigned int cpu_khzfreq = 0;
1257
1258         /* The SPU profiling uses time-based profiling based on
1259          * cpu frequency, so if configured with the CPU_FREQ
1260          * option, we should detect frequency changes and react
1261          * accordingly.
1262          */
1263 #ifdef CONFIG_CPU_FREQ
1264         ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1265                                         CPUFREQ_TRANSITION_NOTIFIER);
1266         if (ret < 0)
1267                 /* this is not a fatal error */
1268                 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1269                        ret);
1270
1271         else
1272                 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1273 #endif
1274
1275         set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1276
1277         for_each_online_cpu(cpu) {
1278                 if (cbe_get_hw_thread_id(cpu))
1279                         continue;
1280
1281                 /*
1282                  * Setup SPU cycle-based profiling.
1283                  * Set perf_mon_control bit 0 to a zero before
1284                  * enabling spu collection hardware.
1285                  */
1286                 cbe_write_pm(cpu, pm_control, 0);
1287
1288                 if (spu_cycle_reset > MAX_SPU_COUNT)
1289                         /* use largest possible value */
1290                         lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1291                 else
1292                         lfsr_value = calculate_lfsr(spu_cycle_reset);
1293
1294                 /* must use a non zero value. Zero disables data collection. */
1295                 if (lfsr_value == 0)
1296                         lfsr_value = calculate_lfsr(1);
1297
1298                 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1299                                                 * register location
1300                                                 */
1301
1302                 /* debug bus setup */
1303                 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1304
1305                 if (unlikely(ret)) {
1306                         rtas_error = ret;
1307                         goto out;
1308                 }
1309
1310
1311                 subfunc = 2;    /* 2 - activate SPU tracing, 3 - deactivate */
1312
1313                 /* start profiling */
1314                 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1315                                 cbe_cpu_to_node(cpu), lfsr_value);
1316
1317                 if (unlikely(ret != 0)) {
1318                         printk(KERN_ERR
1319                                "%s: rtas call ibm,cbe-spu-perftools failed, " \
1320                                "return = %d\n", __func__, ret);
1321                         rtas_error = -EIO;
1322                         goto out;
1323                 }
1324         }
1325
1326         rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1327         if (rtas_error)
1328                 goto out_stop;
1329
1330         oprofile_running = 1;
1331         return 0;
1332
1333 out_stop:
1334         cell_global_stop_spu_cycles();  /* clean up the PMU/debug bus */
1335 out:
1336         return rtas_error;
1337 }
1338
1339 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1340 {
1341         int cpu;
1342         u32 interrupt_mask = 0;
1343         int rtn = 0;
1344
1345         hdw_thread = 0;
1346
1347         /* spu event profiling, uses the performance counters to generate
1348          * an interrupt.  The hardware is setup to store the SPU program
1349          * counter into the trace array.  The occurrence mode is used to
1350          * enable storing data to the trace buffer.  The bits are set
1351          * to send/store the SPU address in the trace buffer.  The debug
1352          * bus must be setup to route the SPU program counter onto the
1353          * debug bus.  The occurrence data in the trace buffer is not used.
1354          */
1355
1356         /* This routine gets called once for the system.
1357          * There is one performance monitor per node, so we
1358          * only need to perform this function once per node.
1359          */
1360
1361         for_each_online_cpu(cpu) {
1362                 if (cbe_get_hw_thread_id(cpu))
1363                         continue;
1364
1365                 /*
1366                  * Setup SPU event-based profiling.
1367                  * Set perf_mon_control bit 0 to a zero before
1368                  * enabling spu collection hardware.
1369                  *
1370                  * Only support one SPU event on one SPU per node.
1371                  */
1372                 if (ctr_enabled & 1) {
1373                         cbe_write_ctr(cpu, 0, reset_value[0]);
1374                         enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1375                         interrupt_mask |=
1376                                 CBE_PM_CTR_OVERFLOW_INTR(0);
1377                 } else {
1378                         /* Disable counter */
1379                         cbe_write_pm07_control(cpu, 0, 0);
1380                 }
1381
1382                 cbe_get_and_clear_pm_interrupts(cpu);
1383                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1384                 cbe_enable_pm(cpu);
1385
1386                 /* clear the trace buffer */
1387                 cbe_write_pm(cpu, trace_address, 0);
1388         }
1389
1390         /* Start the timer to time slice collecting the event profile
1391          * on each of the SPUs.  Note, can collect profile on one SPU
1392          * per node at a time.
1393          */
1394         start_spu_event_swap();
1395         start_spu_profiling_events();
1396         oprofile_running = 1;
1397         smp_wmb();
1398
1399         return rtn;
1400 }
1401
1402 static int cell_global_start_ppu(struct op_counter_config *ctr)
1403 {
1404         u32 cpu, i;
1405         u32 interrupt_mask = 0;
1406
1407         /* This routine gets called once for the system.
1408          * There is one performance monitor per node, so we
1409          * only need to perform this function once per node.
1410          */
1411         for_each_online_cpu(cpu) {
1412                 if (cbe_get_hw_thread_id(cpu))
1413                         continue;
1414
1415                 interrupt_mask = 0;
1416
1417                 for (i = 0; i < num_counters; ++i) {
1418                         if (ctr_enabled & (1 << i)) {
1419                                 cbe_write_ctr(cpu, i, reset_value[i]);
1420                                 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1421                                 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1422                         } else {
1423                                 /* Disable counter */
1424                                 cbe_write_pm07_control(cpu, i, 0);
1425                         }
1426                 }
1427
1428                 cbe_get_and_clear_pm_interrupts(cpu);
1429                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1430                 cbe_enable_pm(cpu);
1431         }
1432
1433         virt_cntr_inter_mask = interrupt_mask;
1434         oprofile_running = 1;
1435         smp_wmb();
1436
1437         /*
1438          * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1439          * executed which manipulates the PMU.  We start the "virtual counter"
1440          * here so that we do not need to synchronize access to the PMU in
1441          * the above for-loop.
1442          */
1443         start_virt_cntrs();
1444
1445         return 0;
1446 }
1447
1448 static int cell_global_start(struct op_counter_config *ctr)
1449 {
1450         if (profiling_mode == SPU_PROFILING_CYCLES)
1451                 return cell_global_start_spu_cycles(ctr);
1452         else if (profiling_mode == SPU_PROFILING_EVENTS)
1453                 return cell_global_start_spu_events(ctr);
1454         else
1455                 return cell_global_start_ppu(ctr);
1456 }
1457
1458
1459 /* The SPU interrupt handler
1460  *
1461  * SPU event profiling works as follows:
1462  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1463  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1464  * pm_signal[2] contain the necessary events to route the SPU program
1465  * counter for the selected SPU onto the debug bus using words 2 and 3.
1466  * The pm_interval register is setup to write the SPU PC value into the
1467  * trace buffer at the maximum rate possible.  The trace buffer is configured
1468  * to store the PCs, wrapping when it is full.  The performance counter is
1469  * initialized to the max hardware count minus the number of events, N, between
1470  * samples.  Once the N events have occurred, a HW counter overflow occurs
1471  * causing the generation of a HW counter interrupt which also stops the
1472  * writing of the SPU PC values to the trace buffer.  Hence the last PC
1473  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1474  * we have to read from the beginning of the trace buffer to get to the
1475  * last value written.  We just hope the PPU has nothing better to do then
1476  * service this interrupt. The PC for the specific SPU being profiled is
1477  * extracted from the trace buffer processed and stored.  The trace buffer
1478  * is cleared, interrupts are cleared, the counter is reset to max - N.
1479  * A kernel timer is used to periodically call the routine spu_evnt_swap()
1480  * to switch to the next physical SPU in the node to profile in round robbin
1481  * order.  This way data is collected for all SPUs on the node. It does mean
1482  * that we need to use a relatively small value of N to ensure enough samples
1483  * on each SPU are collected each SPU is being profiled 1/8 of the time.
1484  * It may also be necessary to use a longer sample collection period.
1485  */
1486 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1487                                       struct op_counter_config *ctr)
1488 {
1489         u32 cpu, cpu_tmp;
1490         u64 trace_entry;
1491         u32 interrupt_mask;
1492         u64 trace_buffer[2];
1493         u64 last_trace_buffer;
1494         u32 sample;
1495         u32 trace_addr;
1496         unsigned long sample_array_lock_flags;
1497         int spu_num;
1498         unsigned long flags;
1499
1500         /* Make sure spu event interrupt handler and spu event swap
1501          * don't access the counters simultaneously.
1502          */
1503         cpu = smp_processor_id();
1504         spin_lock_irqsave(&cntr_lock, flags);
1505
1506         cpu_tmp = cpu;
1507         cbe_disable_pm(cpu);
1508
1509         interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1510
1511         sample = 0xABCDEF;
1512         trace_entry = 0xfedcba;
1513         last_trace_buffer = 0xdeadbeaf;
1514
1515         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1516                 /* disable writes to trace buff */
1517                 cbe_write_pm(cpu, pm_interval, 0);
1518
1519                 /* only have one perf cntr being used, cntr 0 */
1520                 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1521                     && ctr[0].enabled)
1522                         /* The SPU PC values will be read
1523                          * from the trace buffer, reset counter
1524                          */
1525
1526                         cbe_write_ctr(cpu, 0, reset_value[0]);
1527
1528                 trace_addr = cbe_read_pm(cpu, trace_address);
1529
1530                 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1531                         /* There is data in the trace buffer to process
1532                          * Read the buffer until you get to the last
1533                          * entry.  This is the value we want.
1534                          */
1535
1536                         cbe_read_trace_buffer(cpu, trace_buffer);
1537                         trace_addr = cbe_read_pm(cpu, trace_address);
1538                 }
1539
1540                 /* SPU Address 16 bit count format for 128 bit
1541                  * HW trace buffer is used for the SPU PC storage
1542                  *    HDR bits          0:15
1543                  *    SPU Addr 0 bits   16:31
1544                  *    SPU Addr 1 bits   32:47
1545                  *    unused bits       48:127
1546                  *
1547                  * HDR: bit4 = 1 SPU Address 0 valid
1548                  * HDR: bit5 = 1 SPU Address 1 valid
1549                  *  - unfortunately, the valid bits don't seem to work
1550                  *
1551                  * Note trace_buffer[0] holds bits 0:63 of the HW
1552                  * trace buffer, trace_buffer[1] holds bits 64:127
1553                  */
1554
1555                 trace_entry = trace_buffer[0]
1556                         & 0x00000000FFFF0000;
1557
1558                 /* only top 16 of the 18 bit SPU PC address
1559                  * is stored in trace buffer, hence shift right
1560                  * by 16 -2 bits */
1561                 sample = trace_entry >> 14;
1562                 last_trace_buffer = trace_buffer[0];
1563
1564                 spu_num = spu_evnt_phys_spu_indx
1565                         + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1566
1567                 /* make sure only one process at a time is calling
1568                  * spu_sync_buffer()
1569                  */
1570                 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1571                                   sample_array_lock_flags);
1572                 spu_sync_buffer(spu_num, &sample, 1);
1573                 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1574                                        sample_array_lock_flags);
1575
1576                 smp_wmb();    /* insure spu event buffer updates are written
1577                                * don't want events intermingled... */
1578
1579                 /* The counters were frozen by the interrupt.
1580                  * Reenable the interrupt and restart the counters.
1581                  */
1582                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1583                 cbe_enable_pm_interrupts(cpu, hdw_thread,
1584                                          virt_cntr_inter_mask);
1585
1586                 /* clear the trace buffer, re-enable writes to trace buff */
1587                 cbe_write_pm(cpu, trace_address, 0);
1588                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1589
1590                 /* The writes to the various performance counters only writes
1591                  * to a latch.  The new values (interrupt setting bits, reset
1592                  * counter value etc.) are not copied to the actual registers
1593                  * until the performance monitor is enabled.  In order to get
1594                  * this to work as desired, the performance monitor needs to
1595                  * be disabled while writing to the latches.  This is a
1596                  * HW design issue.
1597                  */
1598                 write_pm_cntrl(cpu);
1599                 cbe_enable_pm(cpu);
1600         }
1601         spin_unlock_irqrestore(&cntr_lock, flags);
1602 }
1603
1604 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1605                                       struct op_counter_config *ctr)
1606 {
1607         u32 cpu;
1608         u64 pc;
1609         int is_kernel;
1610         unsigned long flags = 0;
1611         u32 interrupt_mask;
1612         int i;
1613
1614         cpu = smp_processor_id();
1615
1616         /*
1617          * Need to make sure the interrupt handler and the virt counter
1618          * routine are not running at the same time. See the
1619          * cell_virtual_cntr() routine for additional comments.
1620          */
1621         spin_lock_irqsave(&cntr_lock, flags);
1622
1623         /*
1624          * Need to disable and reenable the performance counters
1625          * to get the desired behavior from the hardware.  This
1626          * is hardware specific.
1627          */
1628
1629         cbe_disable_pm(cpu);
1630
1631         interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1632
1633         /*
1634          * If the interrupt mask has been cleared, then the virt cntr
1635          * has cleared the interrupt.  When the thread that generated
1636          * the interrupt is restored, the data count will be restored to
1637          * 0xffffff0 to cause the interrupt to be regenerated.
1638          */
1639
1640         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1641                 pc = regs->nip;
1642                 is_kernel = is_kernel_addr(pc);
1643
1644                 for (i = 0; i < num_counters; ++i) {
1645                         if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1646                             && ctr[i].enabled) {
1647                                 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1648                                 cbe_write_ctr(cpu, i, reset_value[i]);
1649                         }
1650                 }
1651
1652                 /*
1653                  * The counters were frozen by the interrupt.
1654                  * Reenable the interrupt and restart the counters.
1655                  * If there was a race between the interrupt handler and
1656                  * the virtual counter routine.  The virtual counter
1657                  * routine may have cleared the interrupts.  Hence must
1658                  * use the virt_cntr_inter_mask to re-enable the interrupts.
1659                  */
1660                 cbe_enable_pm_interrupts(cpu, hdw_thread,
1661                                          virt_cntr_inter_mask);
1662
1663                 /*
1664                  * The writes to the various performance counters only writes
1665                  * to a latch.  The new values (interrupt setting bits, reset
1666                  * counter value etc.) are not copied to the actual registers
1667                  * until the performance monitor is enabled.  In order to get
1668                  * this to work as desired, the performance monitor needs to
1669                  * be disabled while writing to the latches.  This is a
1670                  * HW design issue.
1671                  */
1672                 cbe_enable_pm(cpu);
1673         }
1674         spin_unlock_irqrestore(&cntr_lock, flags);
1675 }
1676
1677 static void cell_handle_interrupt(struct pt_regs *regs,
1678                                   struct op_counter_config *ctr)
1679 {
1680         if (profiling_mode == PPU_PROFILING)
1681                 cell_handle_interrupt_ppu(regs, ctr);
1682         else
1683                 cell_handle_interrupt_spu(regs, ctr);
1684 }
1685
1686 /*
1687  * This function is called from the generic OProfile
1688  * driver.  When profiling PPUs, we need to do the
1689  * generic sync start; otherwise, do spu_sync_start.
1690  */
1691 static int cell_sync_start(void)
1692 {
1693         if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1694             (profiling_mode == SPU_PROFILING_EVENTS))
1695                 return spu_sync_start();
1696         else
1697                 return DO_GENERIC_SYNC;
1698 }
1699
1700 static int cell_sync_stop(void)
1701 {
1702         if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1703             (profiling_mode == SPU_PROFILING_EVENTS))
1704                 return spu_sync_stop();
1705         else
1706                 return 1;
1707 }
1708
1709 struct op_powerpc_model op_model_cell = {
1710         .reg_setup = cell_reg_setup,
1711         .cpu_setup = cell_cpu_setup,
1712         .global_start = cell_global_start,
1713         .global_stop = cell_global_stop,
1714         .sync_start = cell_sync_start,
1715         .sync_stop = cell_sync_stop,
1716         .handle_interrupt = cell_handle_interrupt,
1717 };