Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu-hash64.h>
36 #include <asm/hvcall.h>
37 #include <asm/synch.h>
38 #include <asm/ppc-opcode.h>
39 #include <asm/cputable.h>
40
41 #include "trace_hv.h"
42
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER       18
45
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47                                 long pte_index, unsigned long pteh,
48                                 unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
50
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52 {
53         unsigned long hpt = 0;
54         struct revmap_entry *rev;
55         struct page *page = NULL;
56         long order = KVM_DEFAULT_HPT_ORDER;
57
58         if (htab_orderp) {
59                 order = *htab_orderp;
60                 if (order < PPC_MIN_HPT_ORDER)
61                         order = PPC_MIN_HPT_ORDER;
62         }
63
64         kvm->arch.hpt_cma_alloc = 0;
65         page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66         if (page) {
67                 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68                 memset((void *)hpt, 0, (1ul << order));
69                 kvm->arch.hpt_cma_alloc = 1;
70         }
71
72         /* Lastly try successively smaller sizes from the page allocator */
73         while (!hpt && order > PPC_MIN_HPT_ORDER) {
74                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
75                                        __GFP_NOWARN, order - PAGE_SHIFT);
76                 if (!hpt)
77                         --order;
78         }
79
80         if (!hpt)
81                 return -ENOMEM;
82
83         kvm->arch.hpt_virt = hpt;
84         kvm->arch.hpt_order = order;
85         /* HPTEs are 2**4 bytes long */
86         kvm->arch.hpt_npte = 1ul << (order - 4);
87         /* 128 (2**7) bytes in each HPTEG */
88         kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
89
90         /* Allocate reverse map array */
91         rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
92         if (!rev) {
93                 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
94                 goto out_freehpt;
95         }
96         kvm->arch.revmap = rev;
97         kvm->arch.sdr1 = __pa(hpt) | (order - 18);
98
99         pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
100                 hpt, order, kvm->arch.lpid);
101
102         if (htab_orderp)
103                 *htab_orderp = order;
104         return 0;
105
106  out_freehpt:
107         if (kvm->arch.hpt_cma_alloc)
108                 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
109         else
110                 free_pages(hpt, order - PAGE_SHIFT);
111         return -ENOMEM;
112 }
113
114 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
115 {
116         long err = -EBUSY;
117         long order;
118
119         mutex_lock(&kvm->lock);
120         if (kvm->arch.hpte_setup_done) {
121                 kvm->arch.hpte_setup_done = 0;
122                 /* order hpte_setup_done vs. vcpus_running */
123                 smp_mb();
124                 if (atomic_read(&kvm->arch.vcpus_running)) {
125                         kvm->arch.hpte_setup_done = 1;
126                         goto out;
127                 }
128         }
129         if (kvm->arch.hpt_virt) {
130                 order = kvm->arch.hpt_order;
131                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
132                 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
133                 /*
134                  * Reset all the reverse-mapping chains for all memslots
135                  */
136                 kvmppc_rmap_reset(kvm);
137                 /* Ensure that each vcpu will flush its TLB on next entry. */
138                 cpumask_setall(&kvm->arch.need_tlb_flush);
139                 *htab_orderp = order;
140                 err = 0;
141         } else {
142                 err = kvmppc_alloc_hpt(kvm, htab_orderp);
143                 order = *htab_orderp;
144         }
145  out:
146         mutex_unlock(&kvm->lock);
147         return err;
148 }
149
150 void kvmppc_free_hpt(struct kvm *kvm)
151 {
152         kvmppc_free_lpid(kvm->arch.lpid);
153         vfree(kvm->arch.revmap);
154         if (kvm->arch.hpt_cma_alloc)
155                 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
156                                 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
157         else
158                 free_pages(kvm->arch.hpt_virt,
159                            kvm->arch.hpt_order - PAGE_SHIFT);
160 }
161
162 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
163 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
164 {
165         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
166 }
167
168 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
169 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
170 {
171         return (pgsize == 0x10000) ? 0x1000 : 0;
172 }
173
174 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
175                      unsigned long porder)
176 {
177         unsigned long i;
178         unsigned long npages;
179         unsigned long hp_v, hp_r;
180         unsigned long addr, hash;
181         unsigned long psize;
182         unsigned long hp0, hp1;
183         unsigned long idx_ret;
184         long ret;
185         struct kvm *kvm = vcpu->kvm;
186
187         psize = 1ul << porder;
188         npages = memslot->npages >> (porder - PAGE_SHIFT);
189
190         /* VRMA can't be > 1TB */
191         if (npages > 1ul << (40 - porder))
192                 npages = 1ul << (40 - porder);
193         /* Can't use more than 1 HPTE per HPTEG */
194         if (npages > kvm->arch.hpt_mask + 1)
195                 npages = kvm->arch.hpt_mask + 1;
196
197         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
198                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
199         hp1 = hpte1_pgsize_encoding(psize) |
200                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
201
202         for (i = 0; i < npages; ++i) {
203                 addr = i << porder;
204                 /* can't use hpt_hash since va > 64 bits */
205                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
206                 /*
207                  * We assume that the hash table is empty and no
208                  * vcpus are using it at this stage.  Since we create
209                  * at most one HPTE per HPTEG, we just assume entry 7
210                  * is available and use it.
211                  */
212                 hash = (hash << 3) + 7;
213                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
214                 hp_r = hp1 | addr;
215                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
216                                                  &idx_ret);
217                 if (ret != H_SUCCESS) {
218                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
219                                addr, ret);
220                         break;
221                 }
222         }
223 }
224
225 int kvmppc_mmu_hv_init(void)
226 {
227         unsigned long host_lpid, rsvd_lpid;
228
229         if (!cpu_has_feature(CPU_FTR_HVMODE))
230                 return -EINVAL;
231
232         /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
233         host_lpid = mfspr(SPRN_LPID);
234         rsvd_lpid = LPID_RSVD;
235
236         kvmppc_init_lpid(rsvd_lpid + 1);
237
238         kvmppc_claim_lpid(host_lpid);
239         /* rsvd_lpid is reserved for use in partition switching */
240         kvmppc_claim_lpid(rsvd_lpid);
241
242         return 0;
243 }
244
245 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
246 {
247         unsigned long msr = vcpu->arch.intr_msr;
248
249         /* If transactional, change to suspend mode on IRQ delivery */
250         if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
251                 msr |= MSR_TS_S;
252         else
253                 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
254         kvmppc_set_msr(vcpu, msr);
255 }
256
257 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
258                                 long pte_index, unsigned long pteh,
259                                 unsigned long ptel, unsigned long *pte_idx_ret)
260 {
261         long ret;
262
263         /* Protect linux PTE lookup from page table destruction */
264         rcu_read_lock_sched();  /* this disables preemption too */
265         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
266                                 current->mm->pgd, false, pte_idx_ret);
267         rcu_read_unlock_sched();
268         if (ret == H_TOO_HARD) {
269                 /* this can't happen */
270                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
271                 ret = H_RESOURCE;       /* or something */
272         }
273         return ret;
274
275 }
276
277 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
278                                                          gva_t eaddr)
279 {
280         u64 mask;
281         int i;
282
283         for (i = 0; i < vcpu->arch.slb_nr; i++) {
284                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
285                         continue;
286
287                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
288                         mask = ESID_MASK_1T;
289                 else
290                         mask = ESID_MASK;
291
292                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
293                         return &vcpu->arch.slb[i];
294         }
295         return NULL;
296 }
297
298 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
299                         unsigned long ea)
300 {
301         unsigned long ra_mask;
302
303         ra_mask = hpte_page_size(v, r) - 1;
304         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
305 }
306
307 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
308                         struct kvmppc_pte *gpte, bool data, bool iswrite)
309 {
310         struct kvm *kvm = vcpu->kvm;
311         struct kvmppc_slb *slbe;
312         unsigned long slb_v;
313         unsigned long pp, key;
314         unsigned long v, gr;
315         __be64 *hptep;
316         int index;
317         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
318
319         /* Get SLB entry */
320         if (virtmode) {
321                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
322                 if (!slbe)
323                         return -EINVAL;
324                 slb_v = slbe->origv;
325         } else {
326                 /* real mode access */
327                 slb_v = vcpu->kvm->arch.vrma_slb_v;
328         }
329
330         preempt_disable();
331         /* Find the HPTE in the hash table */
332         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
333                                          HPTE_V_VALID | HPTE_V_ABSENT);
334         if (index < 0) {
335                 preempt_enable();
336                 return -ENOENT;
337         }
338         hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
339         v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
340         gr = kvm->arch.revmap[index].guest_rpte;
341
342         unlock_hpte(hptep, v);
343         preempt_enable();
344
345         gpte->eaddr = eaddr;
346         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
347
348         /* Get PP bits and key for permission check */
349         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
350         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
351         key &= slb_v;
352
353         /* Calculate permissions */
354         gpte->may_read = hpte_read_permission(pp, key);
355         gpte->may_write = hpte_write_permission(pp, key);
356         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
357
358         /* Storage key permission check for POWER7 */
359         if (data && virtmode) {
360                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
361                 if (amrfield & 1)
362                         gpte->may_read = 0;
363                 if (amrfield & 2)
364                         gpte->may_write = 0;
365         }
366
367         /* Get the guest physical address */
368         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
369         return 0;
370 }
371
372 /*
373  * Quick test for whether an instruction is a load or a store.
374  * If the instruction is a load or a store, then this will indicate
375  * which it is, at least on server processors.  (Embedded processors
376  * have some external PID instructions that don't follow the rule
377  * embodied here.)  If the instruction isn't a load or store, then
378  * this doesn't return anything useful.
379  */
380 static int instruction_is_store(unsigned int instr)
381 {
382         unsigned int mask;
383
384         mask = 0x10000000;
385         if ((instr & 0xfc000000) == 0x7c000000)
386                 mask = 0x100;           /* major opcode 31 */
387         return (instr & mask) != 0;
388 }
389
390 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
391                                   unsigned long gpa, gva_t ea, int is_store)
392 {
393         u32 last_inst;
394
395         /*
396          * If we fail, we just return to the guest and try executing it again.
397          */
398         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
399                 EMULATE_DONE)
400                 return RESUME_GUEST;
401
402         /*
403          * WARNING: We do not know for sure whether the instruction we just
404          * read from memory is the same that caused the fault in the first
405          * place.  If the instruction we read is neither an load or a store,
406          * then it can't access memory, so we don't need to worry about
407          * enforcing access permissions.  So, assuming it is a load or
408          * store, we just check that its direction (load or store) is
409          * consistent with the original fault, since that's what we
410          * checked the access permissions against.  If there is a mismatch
411          * we just return and retry the instruction.
412          */
413
414         if (instruction_is_store(last_inst) != !!is_store)
415                 return RESUME_GUEST;
416
417         /*
418          * Emulated accesses are emulated by looking at the hash for
419          * translation once, then performing the access later. The
420          * translation could be invalidated in the meantime in which
421          * point performing the subsequent memory access on the old
422          * physical address could possibly be a security hole for the
423          * guest (but not the host).
424          *
425          * This is less of an issue for MMIO stores since they aren't
426          * globally visible. It could be an issue for MMIO loads to
427          * a certain extent but we'll ignore it for now.
428          */
429
430         vcpu->arch.paddr_accessed = gpa;
431         vcpu->arch.vaddr_accessed = ea;
432         return kvmppc_emulate_mmio(run, vcpu);
433 }
434
435 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
436                                 unsigned long ea, unsigned long dsisr)
437 {
438         struct kvm *kvm = vcpu->kvm;
439         unsigned long hpte[3], r;
440         __be64 *hptep;
441         unsigned long mmu_seq, psize, pte_size;
442         unsigned long gpa_base, gfn_base;
443         unsigned long gpa, gfn, hva, pfn;
444         struct kvm_memory_slot *memslot;
445         unsigned long *rmap;
446         struct revmap_entry *rev;
447         struct page *page, *pages[1];
448         long index, ret, npages;
449         unsigned long is_io;
450         unsigned int writing, write_ok;
451         struct vm_area_struct *vma;
452         unsigned long rcbits;
453
454         /*
455          * Real-mode code has already searched the HPT and found the
456          * entry we're interested in.  Lock the entry and check that
457          * it hasn't changed.  If it has, just return and re-execute the
458          * instruction.
459          */
460         if (ea != vcpu->arch.pgfault_addr)
461                 return RESUME_GUEST;
462         index = vcpu->arch.pgfault_index;
463         hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
464         rev = &kvm->arch.revmap[index];
465         preempt_disable();
466         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
467                 cpu_relax();
468         hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
469         hpte[1] = be64_to_cpu(hptep[1]);
470         hpte[2] = r = rev->guest_rpte;
471         unlock_hpte(hptep, hpte[0]);
472         preempt_enable();
473
474         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
475             hpte[1] != vcpu->arch.pgfault_hpte[1])
476                 return RESUME_GUEST;
477
478         /* Translate the logical address and get the page */
479         psize = hpte_page_size(hpte[0], r);
480         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
481         gfn_base = gpa_base >> PAGE_SHIFT;
482         gpa = gpa_base | (ea & (psize - 1));
483         gfn = gpa >> PAGE_SHIFT;
484         memslot = gfn_to_memslot(kvm, gfn);
485
486         trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
487
488         /* No memslot means it's an emulated MMIO region */
489         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
490                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
491                                               dsisr & DSISR_ISSTORE);
492
493         /*
494          * This should never happen, because of the slot_is_aligned()
495          * check in kvmppc_do_h_enter().
496          */
497         if (gfn_base < memslot->base_gfn)
498                 return -EFAULT;
499
500         /* used to check for invalidations in progress */
501         mmu_seq = kvm->mmu_notifier_seq;
502         smp_rmb();
503
504         ret = -EFAULT;
505         is_io = 0;
506         pfn = 0;
507         page = NULL;
508         pte_size = PAGE_SIZE;
509         writing = (dsisr & DSISR_ISSTORE) != 0;
510         /* If writing != 0, then the HPTE must allow writing, if we get here */
511         write_ok = writing;
512         hva = gfn_to_hva_memslot(memslot, gfn);
513         npages = get_user_pages_fast(hva, 1, writing, pages);
514         if (npages < 1) {
515                 /* Check if it's an I/O mapping */
516                 down_read(&current->mm->mmap_sem);
517                 vma = find_vma(current->mm, hva);
518                 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
519                     (vma->vm_flags & VM_PFNMAP)) {
520                         pfn = vma->vm_pgoff +
521                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
522                         pte_size = psize;
523                         is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
524                         write_ok = vma->vm_flags & VM_WRITE;
525                 }
526                 up_read(&current->mm->mmap_sem);
527                 if (!pfn)
528                         goto out_put;
529         } else {
530                 page = pages[0];
531                 pfn = page_to_pfn(page);
532                 if (PageHuge(page)) {
533                         page = compound_head(page);
534                         pte_size <<= compound_order(page);
535                 }
536                 /* if the guest wants write access, see if that is OK */
537                 if (!writing && hpte_is_writable(r)) {
538                         pte_t *ptep, pte;
539                         unsigned long flags;
540                         /*
541                          * We need to protect against page table destruction
542                          * hugepage split and collapse.
543                          */
544                         local_irq_save(flags);
545                         ptep = find_linux_pte_or_hugepte(current->mm->pgd,
546                                                          hva, NULL);
547                         if (ptep) {
548                                 pte = kvmppc_read_update_linux_pte(ptep, 1);
549                                 if (pte_write(pte))
550                                         write_ok = 1;
551                         }
552                         local_irq_restore(flags);
553                 }
554         }
555
556         if (psize > pte_size)
557                 goto out_put;
558
559         /* Check WIMG vs. the actual page we're accessing */
560         if (!hpte_cache_flags_ok(r, is_io)) {
561                 if (is_io)
562                         goto out_put;
563
564                 /*
565                  * Allow guest to map emulated device memory as
566                  * uncacheable, but actually make it cacheable.
567                  */
568                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
569         }
570
571         /*
572          * Set the HPTE to point to pfn.
573          * Since the pfn is at PAGE_SIZE granularity, make sure we
574          * don't mask out lower-order bits if psize < PAGE_SIZE.
575          */
576         if (psize < PAGE_SIZE)
577                 psize = PAGE_SIZE;
578         r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
579         if (hpte_is_writable(r) && !write_ok)
580                 r = hpte_make_readonly(r);
581         ret = RESUME_GUEST;
582         preempt_disable();
583         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
584                 cpu_relax();
585         if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
586                 be64_to_cpu(hptep[1]) != hpte[1] ||
587                 rev->guest_rpte != hpte[2])
588                 /* HPTE has been changed under us; let the guest retry */
589                 goto out_unlock;
590         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
591
592         /* Always put the HPTE in the rmap chain for the page base address */
593         rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
594         lock_rmap(rmap);
595
596         /* Check if we might have been invalidated; let the guest retry if so */
597         ret = RESUME_GUEST;
598         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
599                 unlock_rmap(rmap);
600                 goto out_unlock;
601         }
602
603         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
604         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
605         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
606
607         if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
608                 /* HPTE was previously valid, so we need to invalidate it */
609                 unlock_rmap(rmap);
610                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
611                 kvmppc_invalidate_hpte(kvm, hptep, index);
612                 /* don't lose previous R and C bits */
613                 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
614         } else {
615                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
616         }
617
618         hptep[1] = cpu_to_be64(r);
619         eieio();
620         __unlock_hpte(hptep, hpte[0]);
621         asm volatile("ptesync" : : : "memory");
622         preempt_enable();
623         if (page && hpte_is_writable(r))
624                 SetPageDirty(page);
625
626  out_put:
627         trace_kvm_page_fault_exit(vcpu, hpte, ret);
628
629         if (page) {
630                 /*
631                  * We drop pages[0] here, not page because page might
632                  * have been set to the head page of a compound, but
633                  * we have to drop the reference on the correct tail
634                  * page to match the get inside gup()
635                  */
636                 put_page(pages[0]);
637         }
638         return ret;
639
640  out_unlock:
641         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
642         preempt_enable();
643         goto out_put;
644 }
645
646 static void kvmppc_rmap_reset(struct kvm *kvm)
647 {
648         struct kvm_memslots *slots;
649         struct kvm_memory_slot *memslot;
650         int srcu_idx;
651
652         srcu_idx = srcu_read_lock(&kvm->srcu);
653         slots = kvm->memslots;
654         kvm_for_each_memslot(memslot, slots) {
655                 /*
656                  * This assumes it is acceptable to lose reference and
657                  * change bits across a reset.
658                  */
659                 memset(memslot->arch.rmap, 0,
660                        memslot->npages * sizeof(*memslot->arch.rmap));
661         }
662         srcu_read_unlock(&kvm->srcu, srcu_idx);
663 }
664
665 static int kvm_handle_hva_range(struct kvm *kvm,
666                                 unsigned long start,
667                                 unsigned long end,
668                                 int (*handler)(struct kvm *kvm,
669                                                unsigned long *rmapp,
670                                                unsigned long gfn))
671 {
672         int ret;
673         int retval = 0;
674         struct kvm_memslots *slots;
675         struct kvm_memory_slot *memslot;
676
677         slots = kvm_memslots(kvm);
678         kvm_for_each_memslot(memslot, slots) {
679                 unsigned long hva_start, hva_end;
680                 gfn_t gfn, gfn_end;
681
682                 hva_start = max(start, memslot->userspace_addr);
683                 hva_end = min(end, memslot->userspace_addr +
684                                         (memslot->npages << PAGE_SHIFT));
685                 if (hva_start >= hva_end)
686                         continue;
687                 /*
688                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
689                  * {gfn, gfn+1, ..., gfn_end-1}.
690                  */
691                 gfn = hva_to_gfn_memslot(hva_start, memslot);
692                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
693
694                 for (; gfn < gfn_end; ++gfn) {
695                         gfn_t gfn_offset = gfn - memslot->base_gfn;
696
697                         ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
698                         retval |= ret;
699                 }
700         }
701
702         return retval;
703 }
704
705 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
706                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
707                                          unsigned long gfn))
708 {
709         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
710 }
711
712 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
713                            unsigned long gfn)
714 {
715         struct revmap_entry *rev = kvm->arch.revmap;
716         unsigned long h, i, j;
717         __be64 *hptep;
718         unsigned long ptel, psize, rcbits;
719
720         for (;;) {
721                 lock_rmap(rmapp);
722                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
723                         unlock_rmap(rmapp);
724                         break;
725                 }
726
727                 /*
728                  * To avoid an ABBA deadlock with the HPTE lock bit,
729                  * we can't spin on the HPTE lock while holding the
730                  * rmap chain lock.
731                  */
732                 i = *rmapp & KVMPPC_RMAP_INDEX;
733                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
734                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
735                         /* unlock rmap before spinning on the HPTE lock */
736                         unlock_rmap(rmapp);
737                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
738                                 cpu_relax();
739                         continue;
740                 }
741                 j = rev[i].forw;
742                 if (j == i) {
743                         /* chain is now empty */
744                         *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
745                 } else {
746                         /* remove i from chain */
747                         h = rev[i].back;
748                         rev[h].forw = j;
749                         rev[j].back = h;
750                         rev[i].forw = rev[i].back = i;
751                         *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
752                 }
753
754                 /* Now check and modify the HPTE */
755                 ptel = rev[i].guest_rpte;
756                 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
757                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
758                     hpte_rpn(ptel, psize) == gfn) {
759                         hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
760                         kvmppc_invalidate_hpte(kvm, hptep, i);
761                         /* Harvest R and C */
762                         rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
763                         *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
764                         if (rcbits & ~rev[i].guest_rpte) {
765                                 rev[i].guest_rpte = ptel | rcbits;
766                                 note_hpte_modification(kvm, &rev[i]);
767                         }
768                 }
769                 unlock_rmap(rmapp);
770                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
771         }
772         return 0;
773 }
774
775 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
776 {
777         kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
778         return 0;
779 }
780
781 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
782 {
783         kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
784         return 0;
785 }
786
787 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
788                                   struct kvm_memory_slot *memslot)
789 {
790         unsigned long *rmapp;
791         unsigned long gfn;
792         unsigned long n;
793
794         rmapp = memslot->arch.rmap;
795         gfn = memslot->base_gfn;
796         for (n = memslot->npages; n; --n) {
797                 /*
798                  * Testing the present bit without locking is OK because
799                  * the memslot has been marked invalid already, and hence
800                  * no new HPTEs referencing this page can be created,
801                  * thus the present bit can't go from 0 to 1.
802                  */
803                 if (*rmapp & KVMPPC_RMAP_PRESENT)
804                         kvm_unmap_rmapp(kvm, rmapp, gfn);
805                 ++rmapp;
806                 ++gfn;
807         }
808 }
809
810 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
811                          unsigned long gfn)
812 {
813         struct revmap_entry *rev = kvm->arch.revmap;
814         unsigned long head, i, j;
815         __be64 *hptep;
816         int ret = 0;
817
818  retry:
819         lock_rmap(rmapp);
820         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
821                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
822                 ret = 1;
823         }
824         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
825                 unlock_rmap(rmapp);
826                 return ret;
827         }
828
829         i = head = *rmapp & KVMPPC_RMAP_INDEX;
830         do {
831                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
832                 j = rev[i].forw;
833
834                 /* If this HPTE isn't referenced, ignore it */
835                 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
836                         continue;
837
838                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
839                         /* unlock rmap before spinning on the HPTE lock */
840                         unlock_rmap(rmapp);
841                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
842                                 cpu_relax();
843                         goto retry;
844                 }
845
846                 /* Now check and modify the HPTE */
847                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
848                     (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
849                         kvmppc_clear_ref_hpte(kvm, hptep, i);
850                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
851                                 rev[i].guest_rpte |= HPTE_R_R;
852                                 note_hpte_modification(kvm, &rev[i]);
853                         }
854                         ret = 1;
855                 }
856                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
857         } while ((i = j) != head);
858
859         unlock_rmap(rmapp);
860         return ret;
861 }
862
863 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
864 {
865         return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
866 }
867
868 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
869                               unsigned long gfn)
870 {
871         struct revmap_entry *rev = kvm->arch.revmap;
872         unsigned long head, i, j;
873         unsigned long *hp;
874         int ret = 1;
875
876         if (*rmapp & KVMPPC_RMAP_REFERENCED)
877                 return 1;
878
879         lock_rmap(rmapp);
880         if (*rmapp & KVMPPC_RMAP_REFERENCED)
881                 goto out;
882
883         if (*rmapp & KVMPPC_RMAP_PRESENT) {
884                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
885                 do {
886                         hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
887                         j = rev[i].forw;
888                         if (be64_to_cpu(hp[1]) & HPTE_R_R)
889                                 goto out;
890                 } while ((i = j) != head);
891         }
892         ret = 0;
893
894  out:
895         unlock_rmap(rmapp);
896         return ret;
897 }
898
899 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
900 {
901         return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
902 }
903
904 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
905 {
906         kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
907 }
908
909 static int vcpus_running(struct kvm *kvm)
910 {
911         return atomic_read(&kvm->arch.vcpus_running) != 0;
912 }
913
914 /*
915  * Returns the number of system pages that are dirty.
916  * This can be more than 1 if we find a huge-page HPTE.
917  */
918 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
919 {
920         struct revmap_entry *rev = kvm->arch.revmap;
921         unsigned long head, i, j;
922         unsigned long n;
923         unsigned long v, r;
924         __be64 *hptep;
925         int npages_dirty = 0;
926
927  retry:
928         lock_rmap(rmapp);
929         if (*rmapp & KVMPPC_RMAP_CHANGED) {
930                 *rmapp &= ~KVMPPC_RMAP_CHANGED;
931                 npages_dirty = 1;
932         }
933         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
934                 unlock_rmap(rmapp);
935                 return npages_dirty;
936         }
937
938         i = head = *rmapp & KVMPPC_RMAP_INDEX;
939         do {
940                 unsigned long hptep1;
941                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
942                 j = rev[i].forw;
943
944                 /*
945                  * Checking the C (changed) bit here is racy since there
946                  * is no guarantee about when the hardware writes it back.
947                  * If the HPTE is not writable then it is stable since the
948                  * page can't be written to, and we would have done a tlbie
949                  * (which forces the hardware to complete any writeback)
950                  * when making the HPTE read-only.
951                  * If vcpus are running then this call is racy anyway
952                  * since the page could get dirtied subsequently, so we
953                  * expect there to be a further call which would pick up
954                  * any delayed C bit writeback.
955                  * Otherwise we need to do the tlbie even if C==0 in
956                  * order to pick up any delayed writeback of C.
957                  */
958                 hptep1 = be64_to_cpu(hptep[1]);
959                 if (!(hptep1 & HPTE_R_C) &&
960                     (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
961                         continue;
962
963                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
964                         /* unlock rmap before spinning on the HPTE lock */
965                         unlock_rmap(rmapp);
966                         while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
967                                 cpu_relax();
968                         goto retry;
969                 }
970
971                 /* Now check and modify the HPTE */
972                 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
973                         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
974                         continue;
975                 }
976
977                 /* need to make it temporarily absent so C is stable */
978                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
979                 kvmppc_invalidate_hpte(kvm, hptep, i);
980                 v = be64_to_cpu(hptep[0]);
981                 r = be64_to_cpu(hptep[1]);
982                 if (r & HPTE_R_C) {
983                         hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
984                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
985                                 rev[i].guest_rpte |= HPTE_R_C;
986                                 note_hpte_modification(kvm, &rev[i]);
987                         }
988                         n = hpte_page_size(v, r);
989                         n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
990                         if (n > npages_dirty)
991                                 npages_dirty = n;
992                         eieio();
993                 }
994                 v &= ~HPTE_V_ABSENT;
995                 v |= HPTE_V_VALID;
996                 __unlock_hpte(hptep, v);
997         } while ((i = j) != head);
998
999         unlock_rmap(rmapp);
1000         return npages_dirty;
1001 }
1002
1003 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1004                               struct kvm_memory_slot *memslot,
1005                               unsigned long *map)
1006 {
1007         unsigned long gfn;
1008
1009         if (!vpa->dirty || !vpa->pinned_addr)
1010                 return;
1011         gfn = vpa->gpa >> PAGE_SHIFT;
1012         if (gfn < memslot->base_gfn ||
1013             gfn >= memslot->base_gfn + memslot->npages)
1014                 return;
1015
1016         vpa->dirty = false;
1017         if (map)
1018                 __set_bit_le(gfn - memslot->base_gfn, map);
1019 }
1020
1021 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1022                              unsigned long *map)
1023 {
1024         unsigned long i, j;
1025         unsigned long *rmapp;
1026         struct kvm_vcpu *vcpu;
1027
1028         preempt_disable();
1029         rmapp = memslot->arch.rmap;
1030         for (i = 0; i < memslot->npages; ++i) {
1031                 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1032                 /*
1033                  * Note that if npages > 0 then i must be a multiple of npages,
1034                  * since we always put huge-page HPTEs in the rmap chain
1035                  * corresponding to their page base address.
1036                  */
1037                 if (npages && map)
1038                         for (j = i; npages; ++j, --npages)
1039                                 __set_bit_le(j, map);
1040                 ++rmapp;
1041         }
1042
1043         /* Harvest dirty bits from VPA and DTL updates */
1044         /* Note: we never modify the SLB shadow buffer areas */
1045         kvm_for_each_vcpu(i, vcpu, kvm) {
1046                 spin_lock(&vcpu->arch.vpa_update_lock);
1047                 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1048                 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1049                 spin_unlock(&vcpu->arch.vpa_update_lock);
1050         }
1051         preempt_enable();
1052         return 0;
1053 }
1054
1055 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1056                             unsigned long *nb_ret)
1057 {
1058         struct kvm_memory_slot *memslot;
1059         unsigned long gfn = gpa >> PAGE_SHIFT;
1060         struct page *page, *pages[1];
1061         int npages;
1062         unsigned long hva, offset;
1063         int srcu_idx;
1064
1065         srcu_idx = srcu_read_lock(&kvm->srcu);
1066         memslot = gfn_to_memslot(kvm, gfn);
1067         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1068                 goto err;
1069         hva = gfn_to_hva_memslot(memslot, gfn);
1070         npages = get_user_pages_fast(hva, 1, 1, pages);
1071         if (npages < 1)
1072                 goto err;
1073         page = pages[0];
1074         srcu_read_unlock(&kvm->srcu, srcu_idx);
1075
1076         offset = gpa & (PAGE_SIZE - 1);
1077         if (nb_ret)
1078                 *nb_ret = PAGE_SIZE - offset;
1079         return page_address(page) + offset;
1080
1081  err:
1082         srcu_read_unlock(&kvm->srcu, srcu_idx);
1083         return NULL;
1084 }
1085
1086 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1087                              bool dirty)
1088 {
1089         struct page *page = virt_to_page(va);
1090         struct kvm_memory_slot *memslot;
1091         unsigned long gfn;
1092         unsigned long *rmap;
1093         int srcu_idx;
1094
1095         put_page(page);
1096
1097         if (!dirty)
1098                 return;
1099
1100         /* We need to mark this page dirty in the rmap chain */
1101         gfn = gpa >> PAGE_SHIFT;
1102         srcu_idx = srcu_read_lock(&kvm->srcu);
1103         memslot = gfn_to_memslot(kvm, gfn);
1104         if (memslot) {
1105                 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1106                 lock_rmap(rmap);
1107                 *rmap |= KVMPPC_RMAP_CHANGED;
1108                 unlock_rmap(rmap);
1109         }
1110         srcu_read_unlock(&kvm->srcu, srcu_idx);
1111 }
1112
1113 /*
1114  * Functions for reading and writing the hash table via reads and
1115  * writes on a file descriptor.
1116  *
1117  * Reads return the guest view of the hash table, which has to be
1118  * pieced together from the real hash table and the guest_rpte
1119  * values in the revmap array.
1120  *
1121  * On writes, each HPTE written is considered in turn, and if it
1122  * is valid, it is written to the HPT as if an H_ENTER with the
1123  * exact flag set was done.  When the invalid count is non-zero
1124  * in the header written to the stream, the kernel will make
1125  * sure that that many HPTEs are invalid, and invalidate them
1126  * if not.
1127  */
1128
1129 struct kvm_htab_ctx {
1130         unsigned long   index;
1131         unsigned long   flags;
1132         struct kvm      *kvm;
1133         int             first_pass;
1134 };
1135
1136 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1137
1138 /*
1139  * Returns 1 if this HPT entry has been modified or has pending
1140  * R/C bit changes.
1141  */
1142 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1143 {
1144         unsigned long rcbits_unset;
1145
1146         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1147                 return 1;
1148
1149         /* Also need to consider changes in reference and changed bits */
1150         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1151         if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1152             (be64_to_cpu(hptp[1]) & rcbits_unset))
1153                 return 1;
1154
1155         return 0;
1156 }
1157
1158 static long record_hpte(unsigned long flags, __be64 *hptp,
1159                         unsigned long *hpte, struct revmap_entry *revp,
1160                         int want_valid, int first_pass)
1161 {
1162         unsigned long v, r;
1163         unsigned long rcbits_unset;
1164         int ok = 1;
1165         int valid, dirty;
1166
1167         /* Unmodified entries are uninteresting except on the first pass */
1168         dirty = hpte_dirty(revp, hptp);
1169         if (!first_pass && !dirty)
1170                 return 0;
1171
1172         valid = 0;
1173         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1174                 valid = 1;
1175                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1176                     !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1177                         valid = 0;
1178         }
1179         if (valid != want_valid)
1180                 return 0;
1181
1182         v = r = 0;
1183         if (valid || dirty) {
1184                 /* lock the HPTE so it's stable and read it */
1185                 preempt_disable();
1186                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1187                         cpu_relax();
1188                 v = be64_to_cpu(hptp[0]);
1189
1190                 /* re-evaluate valid and dirty from synchronized HPTE value */
1191                 valid = !!(v & HPTE_V_VALID);
1192                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1193
1194                 /* Harvest R and C into guest view if necessary */
1195                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1196                 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1197                         revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1198                                 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1199                         dirty = 1;
1200                 }
1201
1202                 if (v & HPTE_V_ABSENT) {
1203                         v &= ~HPTE_V_ABSENT;
1204                         v |= HPTE_V_VALID;
1205                         valid = 1;
1206                 }
1207                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1208                         valid = 0;
1209
1210                 r = revp->guest_rpte;
1211                 /* only clear modified if this is the right sort of entry */
1212                 if (valid == want_valid && dirty) {
1213                         r &= ~HPTE_GR_MODIFIED;
1214                         revp->guest_rpte = r;
1215                 }
1216                 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1217                 preempt_enable();
1218                 if (!(valid == want_valid && (first_pass || dirty)))
1219                         ok = 0;
1220         }
1221         hpte[0] = cpu_to_be64(v);
1222         hpte[1] = cpu_to_be64(r);
1223         return ok;
1224 }
1225
1226 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1227                              size_t count, loff_t *ppos)
1228 {
1229         struct kvm_htab_ctx *ctx = file->private_data;
1230         struct kvm *kvm = ctx->kvm;
1231         struct kvm_get_htab_header hdr;
1232         __be64 *hptp;
1233         struct revmap_entry *revp;
1234         unsigned long i, nb, nw;
1235         unsigned long __user *lbuf;
1236         struct kvm_get_htab_header __user *hptr;
1237         unsigned long flags;
1238         int first_pass;
1239         unsigned long hpte[2];
1240
1241         if (!access_ok(VERIFY_WRITE, buf, count))
1242                 return -EFAULT;
1243
1244         first_pass = ctx->first_pass;
1245         flags = ctx->flags;
1246
1247         i = ctx->index;
1248         hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1249         revp = kvm->arch.revmap + i;
1250         lbuf = (unsigned long __user *)buf;
1251
1252         nb = 0;
1253         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1254                 /* Initialize header */
1255                 hptr = (struct kvm_get_htab_header __user *)buf;
1256                 hdr.n_valid = 0;
1257                 hdr.n_invalid = 0;
1258                 nw = nb;
1259                 nb += sizeof(hdr);
1260                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1261
1262                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1263                 if (!first_pass) {
1264                         while (i < kvm->arch.hpt_npte &&
1265                                !hpte_dirty(revp, hptp)) {
1266                                 ++i;
1267                                 hptp += 2;
1268                                 ++revp;
1269                         }
1270                 }
1271                 hdr.index = i;
1272
1273                 /* Grab a series of valid entries */
1274                 while (i < kvm->arch.hpt_npte &&
1275                        hdr.n_valid < 0xffff &&
1276                        nb + HPTE_SIZE < count &&
1277                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1278                         /* valid entry, write it out */
1279                         ++hdr.n_valid;
1280                         if (__put_user(hpte[0], lbuf) ||
1281                             __put_user(hpte[1], lbuf + 1))
1282                                 return -EFAULT;
1283                         nb += HPTE_SIZE;
1284                         lbuf += 2;
1285                         ++i;
1286                         hptp += 2;
1287                         ++revp;
1288                 }
1289                 /* Now skip invalid entries while we can */
1290                 while (i < kvm->arch.hpt_npte &&
1291                        hdr.n_invalid < 0xffff &&
1292                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1293                         /* found an invalid entry */
1294                         ++hdr.n_invalid;
1295                         ++i;
1296                         hptp += 2;
1297                         ++revp;
1298                 }
1299
1300                 if (hdr.n_valid || hdr.n_invalid) {
1301                         /* write back the header */
1302                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1303                                 return -EFAULT;
1304                         nw = nb;
1305                         buf = (char __user *)lbuf;
1306                 } else {
1307                         nb = nw;
1308                 }
1309
1310                 /* Check if we've wrapped around the hash table */
1311                 if (i >= kvm->arch.hpt_npte) {
1312                         i = 0;
1313                         ctx->first_pass = 0;
1314                         break;
1315                 }
1316         }
1317
1318         ctx->index = i;
1319
1320         return nb;
1321 }
1322
1323 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1324                               size_t count, loff_t *ppos)
1325 {
1326         struct kvm_htab_ctx *ctx = file->private_data;
1327         struct kvm *kvm = ctx->kvm;
1328         struct kvm_get_htab_header hdr;
1329         unsigned long i, j;
1330         unsigned long v, r;
1331         unsigned long __user *lbuf;
1332         __be64 *hptp;
1333         unsigned long tmp[2];
1334         ssize_t nb;
1335         long int err, ret;
1336         int hpte_setup;
1337
1338         if (!access_ok(VERIFY_READ, buf, count))
1339                 return -EFAULT;
1340
1341         /* lock out vcpus from running while we're doing this */
1342         mutex_lock(&kvm->lock);
1343         hpte_setup = kvm->arch.hpte_setup_done;
1344         if (hpte_setup) {
1345                 kvm->arch.hpte_setup_done = 0;  /* temporarily */
1346                 /* order hpte_setup_done vs. vcpus_running */
1347                 smp_mb();
1348                 if (atomic_read(&kvm->arch.vcpus_running)) {
1349                         kvm->arch.hpte_setup_done = 1;
1350                         mutex_unlock(&kvm->lock);
1351                         return -EBUSY;
1352                 }
1353         }
1354
1355         err = 0;
1356         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1357                 err = -EFAULT;
1358                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1359                         break;
1360
1361                 err = 0;
1362                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1363                         break;
1364
1365                 nb += sizeof(hdr);
1366                 buf += sizeof(hdr);
1367
1368                 err = -EINVAL;
1369                 i = hdr.index;
1370                 if (i >= kvm->arch.hpt_npte ||
1371                     i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1372                         break;
1373
1374                 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1375                 lbuf = (unsigned long __user *)buf;
1376                 for (j = 0; j < hdr.n_valid; ++j) {
1377                         __be64 hpte_v;
1378                         __be64 hpte_r;
1379
1380                         err = -EFAULT;
1381                         if (__get_user(hpte_v, lbuf) ||
1382                             __get_user(hpte_r, lbuf + 1))
1383                                 goto out;
1384                         v = be64_to_cpu(hpte_v);
1385                         r = be64_to_cpu(hpte_r);
1386                         err = -EINVAL;
1387                         if (!(v & HPTE_V_VALID))
1388                                 goto out;
1389                         lbuf += 2;
1390                         nb += HPTE_SIZE;
1391
1392                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1393                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1394                         err = -EIO;
1395                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1396                                                          tmp);
1397                         if (ret != H_SUCCESS) {
1398                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1399                                        "r=%lx\n", ret, i, v, r);
1400                                 goto out;
1401                         }
1402                         if (!hpte_setup && is_vrma_hpte(v)) {
1403                                 unsigned long psize = hpte_base_page_size(v, r);
1404                                 unsigned long senc = slb_pgsize_encoding(psize);
1405                                 unsigned long lpcr;
1406
1407                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1408                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1409                                 lpcr = senc << (LPCR_VRMASD_SH - 4);
1410                                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1411                                 hpte_setup = 1;
1412                         }
1413                         ++i;
1414                         hptp += 2;
1415                 }
1416
1417                 for (j = 0; j < hdr.n_invalid; ++j) {
1418                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1419                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1420                         ++i;
1421                         hptp += 2;
1422                 }
1423                 err = 0;
1424         }
1425
1426  out:
1427         /* Order HPTE updates vs. hpte_setup_done */
1428         smp_wmb();
1429         kvm->arch.hpte_setup_done = hpte_setup;
1430         mutex_unlock(&kvm->lock);
1431
1432         if (err)
1433                 return err;
1434         return nb;
1435 }
1436
1437 static int kvm_htab_release(struct inode *inode, struct file *filp)
1438 {
1439         struct kvm_htab_ctx *ctx = filp->private_data;
1440
1441         filp->private_data = NULL;
1442         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1443                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1444         kvm_put_kvm(ctx->kvm);
1445         kfree(ctx);
1446         return 0;
1447 }
1448
1449 static const struct file_operations kvm_htab_fops = {
1450         .read           = kvm_htab_read,
1451         .write          = kvm_htab_write,
1452         .llseek         = default_llseek,
1453         .release        = kvm_htab_release,
1454 };
1455
1456 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1457 {
1458         int ret;
1459         struct kvm_htab_ctx *ctx;
1460         int rwflag;
1461
1462         /* reject flags we don't recognize */
1463         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1464                 return -EINVAL;
1465         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1466         if (!ctx)
1467                 return -ENOMEM;
1468         kvm_get_kvm(kvm);
1469         ctx->kvm = kvm;
1470         ctx->index = ghf->start_index;
1471         ctx->flags = ghf->flags;
1472         ctx->first_pass = 1;
1473
1474         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1475         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1476         if (ret < 0) {
1477                 kvm_put_kvm(kvm);
1478                 return ret;
1479         }
1480
1481         if (rwflag == O_RDONLY) {
1482                 mutex_lock(&kvm->slots_lock);
1483                 atomic_inc(&kvm->arch.hpte_mod_interest);
1484                 /* make sure kvmppc_do_h_enter etc. see the increment */
1485                 synchronize_srcu_expedited(&kvm->srcu);
1486                 mutex_unlock(&kvm->slots_lock);
1487         }
1488
1489         return ret;
1490 }
1491
1492 struct debugfs_htab_state {
1493         struct kvm      *kvm;
1494         struct mutex    mutex;
1495         unsigned long   hpt_index;
1496         int             chars_left;
1497         int             buf_index;
1498         char            buf[64];
1499 };
1500
1501 static int debugfs_htab_open(struct inode *inode, struct file *file)
1502 {
1503         struct kvm *kvm = inode->i_private;
1504         struct debugfs_htab_state *p;
1505
1506         p = kzalloc(sizeof(*p), GFP_KERNEL);
1507         if (!p)
1508                 return -ENOMEM;
1509
1510         kvm_get_kvm(kvm);
1511         p->kvm = kvm;
1512         mutex_init(&p->mutex);
1513         file->private_data = p;
1514
1515         return nonseekable_open(inode, file);
1516 }
1517
1518 static int debugfs_htab_release(struct inode *inode, struct file *file)
1519 {
1520         struct debugfs_htab_state *p = file->private_data;
1521
1522         kvm_put_kvm(p->kvm);
1523         kfree(p);
1524         return 0;
1525 }
1526
1527 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1528                                  size_t len, loff_t *ppos)
1529 {
1530         struct debugfs_htab_state *p = file->private_data;
1531         ssize_t ret, r;
1532         unsigned long i, n;
1533         unsigned long v, hr, gr;
1534         struct kvm *kvm;
1535         __be64 *hptp;
1536
1537         ret = mutex_lock_interruptible(&p->mutex);
1538         if (ret)
1539                 return ret;
1540
1541         if (p->chars_left) {
1542                 n = p->chars_left;
1543                 if (n > len)
1544                         n = len;
1545                 r = copy_to_user(buf, p->buf + p->buf_index, n);
1546                 n -= r;
1547                 p->chars_left -= n;
1548                 p->buf_index += n;
1549                 buf += n;
1550                 len -= n;
1551                 ret = n;
1552                 if (r) {
1553                         if (!n)
1554                                 ret = -EFAULT;
1555                         goto out;
1556                 }
1557         }
1558
1559         kvm = p->kvm;
1560         i = p->hpt_index;
1561         hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1562         for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
1563                 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
1564                         continue;
1565
1566                 /* lock the HPTE so it's stable and read it */
1567                 preempt_disable();
1568                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1569                         cpu_relax();
1570                 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
1571                 hr = be64_to_cpu(hptp[1]);
1572                 gr = kvm->arch.revmap[i].guest_rpte;
1573                 unlock_hpte(hptp, v);
1574                 preempt_enable();
1575
1576                 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
1577                         continue;
1578
1579                 n = scnprintf(p->buf, sizeof(p->buf),
1580                               "%6lx %.16lx %.16lx %.16lx\n",
1581                               i, v, hr, gr);
1582                 p->chars_left = n;
1583                 if (n > len)
1584                         n = len;
1585                 r = copy_to_user(buf, p->buf, n);
1586                 n -= r;
1587                 p->chars_left -= n;
1588                 p->buf_index = n;
1589                 buf += n;
1590                 len -= n;
1591                 ret += n;
1592                 if (r) {
1593                         if (!ret)
1594                                 ret = -EFAULT;
1595                         goto out;
1596                 }
1597         }
1598         p->hpt_index = i;
1599
1600  out:
1601         mutex_unlock(&p->mutex);
1602         return ret;
1603 }
1604
1605 ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1606                            size_t len, loff_t *ppos)
1607 {
1608         return -EACCES;
1609 }
1610
1611 static const struct file_operations debugfs_htab_fops = {
1612         .owner   = THIS_MODULE,
1613         .open    = debugfs_htab_open,
1614         .release = debugfs_htab_release,
1615         .read    = debugfs_htab_read,
1616         .write   = debugfs_htab_write,
1617         .llseek  = generic_file_llseek,
1618 };
1619
1620 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
1621 {
1622         kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
1623                                                     kvm->arch.debugfs_dir, kvm,
1624                                                     &debugfs_htab_fops);
1625 }
1626
1627 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1628 {
1629         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1630
1631         vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
1632
1633         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1634         mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1635
1636         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1637 }