These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80         /*
81          * If we are saving the current thread's registers, and the
82          * thread is in a transactional state, set the TIF_RESTORE_TM
83          * bit so that we know to restore the registers before
84          * returning to userspace.
85          */
86         if (tsk == current && tsk->thread.regs &&
87             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88             !test_thread_flag(TIF_RESTORE_TM)) {
89                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90                 set_thread_flag(TIF_RESTORE_TM);
91         }
92
93         giveup_fpu(tsk);
94 }
95
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98         /*
99          * If we are saving the current thread's registers, and the
100          * thread is in a transactional state, set the TIF_RESTORE_TM
101          * bit so that we know to restore the registers before
102          * returning to userspace.
103          */
104         if (tsk == current && tsk->thread.regs &&
105             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106             !test_thread_flag(TIF_RESTORE_TM)) {
107                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
108                 set_thread_flag(TIF_RESTORE_TM);
109         }
110
111         giveup_altivec(tsk);
112 }
113
114 #else
115 #define giveup_fpu_maybe_transactional(tsk)     giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119 #ifdef CONFIG_PPC_FPU
120 /*
121  * Make sure the floating-point register state in the
122  * the thread_struct is up to date for task tsk.
123  */
124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126         if (tsk->thread.regs) {
127                 /*
128                  * We need to disable preemption here because if we didn't,
129                  * another process could get scheduled after the regs->msr
130                  * test but before we have finished saving the FP registers
131                  * to the thread_struct.  That process could take over the
132                  * FPU, and then when we get scheduled again we would store
133                  * bogus values for the remaining FP registers.
134                  */
135                 preempt_disable();
136                 if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138                         /*
139                          * This should only ever be called for current or
140                          * for a stopped child process.  Since we save away
141                          * the FP register state on context switch on SMP,
142                          * there is something wrong if a stopped child appears
143                          * to still have its FP state in the CPU registers.
144                          */
145                         BUG_ON(tsk != current);
146 #endif
147                         giveup_fpu_maybe_transactional(tsk);
148                 }
149                 preempt_enable();
150         }
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154
155 void enable_kernel_fp(void)
156 {
157         WARN_ON(preemptible());
158
159 #ifdef CONFIG_SMP
160         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161                 giveup_fpu_maybe_transactional(current);
162         else
163                 giveup_fpu(NULL);       /* just enables FP for kernel */
164 #else
165         giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
172 {
173         WARN_ON(preemptible());
174
175 #ifdef CONFIG_SMP
176         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177                 giveup_altivec_maybe_transactional(current);
178         else
179                 giveup_altivec_notask();
180 #else
181         giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185
186 /*
187  * Make sure the VMX/Altivec register state in the
188  * the thread_struct is up to date for task tsk.
189  */
190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192         if (tsk->thread.regs) {
193                 preempt_disable();
194                 if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196                         BUG_ON(tsk != current);
197 #endif
198                         giveup_altivec_maybe_transactional(tsk);
199                 }
200                 preempt_enable();
201         }
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205
206 #ifdef CONFIG_VSX
207 void enable_kernel_vsx(void)
208 {
209         WARN_ON(preemptible());
210
211 #ifdef CONFIG_SMP
212         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
213                 giveup_vsx(current);
214         else
215                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
216 #else
217         giveup_vsx(last_task_used_vsx);
218 #endif /* CONFIG_SMP */
219 }
220 EXPORT_SYMBOL(enable_kernel_vsx);
221
222 void giveup_vsx(struct task_struct *tsk)
223 {
224         giveup_fpu_maybe_transactional(tsk);
225         giveup_altivec_maybe_transactional(tsk);
226         __giveup_vsx(tsk);
227 }
228 EXPORT_SYMBOL(giveup_vsx);
229
230 void flush_vsx_to_thread(struct task_struct *tsk)
231 {
232         if (tsk->thread.regs) {
233                 preempt_disable();
234                 if (tsk->thread.regs->msr & MSR_VSX) {
235 #ifdef CONFIG_SMP
236                         BUG_ON(tsk != current);
237 #endif
238                         giveup_vsx(tsk);
239                 }
240                 preempt_enable();
241         }
242 }
243 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
244 #endif /* CONFIG_VSX */
245
246 #ifdef CONFIG_SPE
247
248 void enable_kernel_spe(void)
249 {
250         WARN_ON(preemptible());
251
252 #ifdef CONFIG_SMP
253         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
254                 giveup_spe(current);
255         else
256                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
257 #else
258         giveup_spe(last_task_used_spe);
259 #endif /* __SMP __ */
260 }
261 EXPORT_SYMBOL(enable_kernel_spe);
262
263 void flush_spe_to_thread(struct task_struct *tsk)
264 {
265         if (tsk->thread.regs) {
266                 preempt_disable();
267                 if (tsk->thread.regs->msr & MSR_SPE) {
268 #ifdef CONFIG_SMP
269                         BUG_ON(tsk != current);
270 #endif
271                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
272                         giveup_spe(tsk);
273                 }
274                 preempt_enable();
275         }
276 }
277 #endif /* CONFIG_SPE */
278
279 #ifndef CONFIG_SMP
280 /*
281  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
282  * and the current task has some state, discard it.
283  */
284 void discard_lazy_cpu_state(void)
285 {
286         preempt_disable();
287         if (last_task_used_math == current)
288                 last_task_used_math = NULL;
289 #ifdef CONFIG_ALTIVEC
290         if (last_task_used_altivec == current)
291                 last_task_used_altivec = NULL;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_VSX
294         if (last_task_used_vsx == current)
295                 last_task_used_vsx = NULL;
296 #endif /* CONFIG_VSX */
297 #ifdef CONFIG_SPE
298         if (last_task_used_spe == current)
299                 last_task_used_spe = NULL;
300 #endif
301         preempt_enable();
302 }
303 #endif /* CONFIG_SMP */
304
305 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
306 void do_send_trap(struct pt_regs *regs, unsigned long address,
307                   unsigned long error_code, int signal_code, int breakpt)
308 {
309         siginfo_t info;
310
311         current->thread.trap_nr = signal_code;
312         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
313                         11, SIGSEGV) == NOTIFY_STOP)
314                 return;
315
316         /* Deliver the signal to userspace */
317         info.si_signo = SIGTRAP;
318         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
319         info.si_code = signal_code;
320         info.si_addr = (void __user *)address;
321         force_sig_info(SIGTRAP, &info, current);
322 }
323 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
324 void do_break (struct pt_regs *regs, unsigned long address,
325                     unsigned long error_code)
326 {
327         siginfo_t info;
328
329         current->thread.trap_nr = TRAP_HWBKPT;
330         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
331                         11, SIGSEGV) == NOTIFY_STOP)
332                 return;
333
334         if (debugger_break_match(regs))
335                 return;
336
337         /* Clear the breakpoint */
338         hw_breakpoint_disable();
339
340         /* Deliver the signal to userspace */
341         info.si_signo = SIGTRAP;
342         info.si_errno = 0;
343         info.si_code = TRAP_HWBKPT;
344         info.si_addr = (void __user *)address;
345         force_sig_info(SIGTRAP, &info, current);
346 }
347 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
348
349 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
350
351 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
352 /*
353  * Set the debug registers back to their default "safe" values.
354  */
355 static void set_debug_reg_defaults(struct thread_struct *thread)
356 {
357         thread->debug.iac1 = thread->debug.iac2 = 0;
358 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
359         thread->debug.iac3 = thread->debug.iac4 = 0;
360 #endif
361         thread->debug.dac1 = thread->debug.dac2 = 0;
362 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
363         thread->debug.dvc1 = thread->debug.dvc2 = 0;
364 #endif
365         thread->debug.dbcr0 = 0;
366 #ifdef CONFIG_BOOKE
367         /*
368          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
369          */
370         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
371                         DBCR1_IAC3US | DBCR1_IAC4US;
372         /*
373          * Force Data Address Compare User/Supervisor bits to be User-only
374          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
375          */
376         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
377 #else
378         thread->debug.dbcr1 = 0;
379 #endif
380 }
381
382 static void prime_debug_regs(struct debug_reg *debug)
383 {
384         /*
385          * We could have inherited MSR_DE from userspace, since
386          * it doesn't get cleared on exception entry.  Make sure
387          * MSR_DE is clear before we enable any debug events.
388          */
389         mtmsr(mfmsr() & ~MSR_DE);
390
391         mtspr(SPRN_IAC1, debug->iac1);
392         mtspr(SPRN_IAC2, debug->iac2);
393 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
394         mtspr(SPRN_IAC3, debug->iac3);
395         mtspr(SPRN_IAC4, debug->iac4);
396 #endif
397         mtspr(SPRN_DAC1, debug->dac1);
398         mtspr(SPRN_DAC2, debug->dac2);
399 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
400         mtspr(SPRN_DVC1, debug->dvc1);
401         mtspr(SPRN_DVC2, debug->dvc2);
402 #endif
403         mtspr(SPRN_DBCR0, debug->dbcr0);
404         mtspr(SPRN_DBCR1, debug->dbcr1);
405 #ifdef CONFIG_BOOKE
406         mtspr(SPRN_DBCR2, debug->dbcr2);
407 #endif
408 }
409 /*
410  * Unless neither the old or new thread are making use of the
411  * debug registers, set the debug registers from the values
412  * stored in the new thread.
413  */
414 void switch_booke_debug_regs(struct debug_reg *new_debug)
415 {
416         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
417                 || (new_debug->dbcr0 & DBCR0_IDM))
418                         prime_debug_regs(new_debug);
419 }
420 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
421 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
422 #ifndef CONFIG_HAVE_HW_BREAKPOINT
423 static void set_debug_reg_defaults(struct thread_struct *thread)
424 {
425         thread->hw_brk.address = 0;
426         thread->hw_brk.type = 0;
427         set_breakpoint(&thread->hw_brk);
428 }
429 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
430 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
431
432 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
433 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
434 {
435         mtspr(SPRN_DAC1, dabr);
436 #ifdef CONFIG_PPC_47x
437         isync();
438 #endif
439         return 0;
440 }
441 #elif defined(CONFIG_PPC_BOOK3S)
442 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
443 {
444         mtspr(SPRN_DABR, dabr);
445         if (cpu_has_feature(CPU_FTR_DABRX))
446                 mtspr(SPRN_DABRX, dabrx);
447         return 0;
448 }
449 #else
450 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
451 {
452         return -EINVAL;
453 }
454 #endif
455
456 static inline int set_dabr(struct arch_hw_breakpoint *brk)
457 {
458         unsigned long dabr, dabrx;
459
460         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
461         dabrx = ((brk->type >> 3) & 0x7);
462
463         if (ppc_md.set_dabr)
464                 return ppc_md.set_dabr(dabr, dabrx);
465
466         return __set_dabr(dabr, dabrx);
467 }
468
469 static inline int set_dawr(struct arch_hw_breakpoint *brk)
470 {
471         unsigned long dawr, dawrx, mrd;
472
473         dawr = brk->address;
474
475         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
476                                    << (63 - 58); //* read/write bits */
477         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
478                                    << (63 - 59); //* translate */
479         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
480                                    >> 3; //* PRIM bits */
481         /* dawr length is stored in field MDR bits 48:53.  Matches range in
482            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
483            0b111111=64DW.
484            brk->len is in bytes.
485            This aligns up to double word size, shifts and does the bias.
486         */
487         mrd = ((brk->len + 7) >> 3) - 1;
488         dawrx |= (mrd & 0x3f) << (63 - 53);
489
490         if (ppc_md.set_dawr)
491                 return ppc_md.set_dawr(dawr, dawrx);
492         mtspr(SPRN_DAWR, dawr);
493         mtspr(SPRN_DAWRX, dawrx);
494         return 0;
495 }
496
497 void __set_breakpoint(struct arch_hw_breakpoint *brk)
498 {
499         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
500
501         if (cpu_has_feature(CPU_FTR_DAWR))
502                 set_dawr(brk);
503         else
504                 set_dabr(brk);
505 }
506
507 void set_breakpoint(struct arch_hw_breakpoint *brk)
508 {
509         preempt_disable();
510         __set_breakpoint(brk);
511         preempt_enable();
512 }
513
514 #ifdef CONFIG_PPC64
515 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
516 #endif
517
518 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
519                               struct arch_hw_breakpoint *b)
520 {
521         if (a->address != b->address)
522                 return false;
523         if (a->type != b->type)
524                 return false;
525         if (a->len != b->len)
526                 return false;
527         return true;
528 }
529
530 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531 static void tm_reclaim_thread(struct thread_struct *thr,
532                               struct thread_info *ti, uint8_t cause)
533 {
534         unsigned long msr_diff = 0;
535
536         /*
537          * If FP/VSX registers have been already saved to the
538          * thread_struct, move them to the transact_fp array.
539          * We clear the TIF_RESTORE_TM bit since after the reclaim
540          * the thread will no longer be transactional.
541          */
542         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
543                 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
544                 if (msr_diff & MSR_FP)
545                         memcpy(&thr->transact_fp, &thr->fp_state,
546                                sizeof(struct thread_fp_state));
547                 if (msr_diff & MSR_VEC)
548                         memcpy(&thr->transact_vr, &thr->vr_state,
549                                sizeof(struct thread_vr_state));
550                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
551                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
552         }
553
554         /*
555          * Use the current MSR TM suspended bit to track if we have
556          * checkpointed state outstanding.
557          * On signal delivery, we'd normally reclaim the checkpointed
558          * state to obtain stack pointer (see:get_tm_stackpointer()).
559          * This will then directly return to userspace without going
560          * through __switch_to(). However, if the stack frame is bad,
561          * we need to exit this thread which calls __switch_to() which
562          * will again attempt to reclaim the already saved tm state.
563          * Hence we need to check that we've not already reclaimed
564          * this state.
565          * We do this using the current MSR, rather tracking it in
566          * some specific thread_struct bit, as it has the additional
567          * benifit of checking for a potential TM bad thing exception.
568          */
569         if (!MSR_TM_SUSPENDED(mfmsr()))
570                 return;
571
572         /*
573          * Use the current MSR TM suspended bit to track if we have
574          * checkpointed state outstanding.
575          * On signal delivery, we'd normally reclaim the checkpointed
576          * state to obtain stack pointer (see:get_tm_stackpointer()).
577          * This will then directly return to userspace without going
578          * through __switch_to(). However, if the stack frame is bad,
579          * we need to exit this thread which calls __switch_to() which
580          * will again attempt to reclaim the already saved tm state.
581          * Hence we need to check that we've not already reclaimed
582          * this state.
583          * We do this using the current MSR, rather tracking it in
584          * some specific thread_struct bit, as it has the additional
585          * benifit of checking for a potential TM bad thing exception.
586          */
587         if (!MSR_TM_SUSPENDED(mfmsr()))
588                 return;
589
590         tm_reclaim(thr, thr->regs->msr, cause);
591
592         /* Having done the reclaim, we now have the checkpointed
593          * FP/VSX values in the registers.  These might be valid
594          * even if we have previously called enable_kernel_fp() or
595          * flush_fp_to_thread(), so update thr->regs->msr to
596          * indicate their current validity.
597          */
598         thr->regs->msr |= msr_diff;
599 }
600
601 void tm_reclaim_current(uint8_t cause)
602 {
603         tm_enable();
604         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
605 }
606
607 static inline void tm_reclaim_task(struct task_struct *tsk)
608 {
609         /* We have to work out if we're switching from/to a task that's in the
610          * middle of a transaction.
611          *
612          * In switching we need to maintain a 2nd register state as
613          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
614          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
615          * (current) FPRs into oldtask->thread.transact_fpr[].
616          *
617          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
618          */
619         struct thread_struct *thr = &tsk->thread;
620
621         if (!thr->regs)
622                 return;
623
624         if (!MSR_TM_ACTIVE(thr->regs->msr))
625                 goto out_and_saveregs;
626
627         /* Stash the original thread MSR, as giveup_fpu et al will
628          * modify it.  We hold onto it to see whether the task used
629          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
630          * ckpt_regs.msr is already set.
631          */
632         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
633                 thr->ckpt_regs.msr = thr->regs->msr;
634
635         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
636                  "ccr=%lx, msr=%lx, trap=%lx)\n",
637                  tsk->pid, thr->regs->nip,
638                  thr->regs->ccr, thr->regs->msr,
639                  thr->regs->trap);
640
641         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
642
643         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
644                  tsk->pid);
645
646 out_and_saveregs:
647         /* Always save the regs here, even if a transaction's not active.
648          * This context-switches a thread's TM info SPRs.  We do it here to
649          * be consistent with the restore path (in recheckpoint) which
650          * cannot happen later in _switch().
651          */
652         tm_save_sprs(thr);
653 }
654
655 extern void __tm_recheckpoint(struct thread_struct *thread,
656                               unsigned long orig_msr);
657
658 void tm_recheckpoint(struct thread_struct *thread,
659                      unsigned long orig_msr)
660 {
661         unsigned long flags;
662
663         /* We really can't be interrupted here as the TEXASR registers can't
664          * change and later in the trecheckpoint code, we have a userspace R1.
665          * So let's hard disable over this region.
666          */
667         local_irq_save(flags);
668         hard_irq_disable();
669
670         /* The TM SPRs are restored here, so that TEXASR.FS can be set
671          * before the trecheckpoint and no explosion occurs.
672          */
673         tm_restore_sprs(thread);
674
675         __tm_recheckpoint(thread, orig_msr);
676
677         local_irq_restore(flags);
678 }
679
680 static inline void tm_recheckpoint_new_task(struct task_struct *new)
681 {
682         unsigned long msr;
683
684         if (!cpu_has_feature(CPU_FTR_TM))
685                 return;
686
687         /* Recheckpoint the registers of the thread we're about to switch to.
688          *
689          * If the task was using FP, we non-lazily reload both the original and
690          * the speculative FP register states.  This is because the kernel
691          * doesn't see if/when a TM rollback occurs, so if we take an FP
692          * unavoidable later, we are unable to determine which set of FP regs
693          * need to be restored.
694          */
695         if (!new->thread.regs)
696                 return;
697
698         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
699                 tm_restore_sprs(&new->thread);
700                 return;
701         }
702         msr = new->thread.ckpt_regs.msr;
703         /* Recheckpoint to restore original checkpointed register state. */
704         TM_DEBUG("*** tm_recheckpoint of pid %d "
705                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
706                  new->pid, new->thread.regs->msr, msr);
707
708         /* This loads the checkpointed FP/VEC state, if used */
709         tm_recheckpoint(&new->thread, msr);
710
711         /* This loads the speculative FP/VEC state, if used */
712         if (msr & MSR_FP) {
713                 do_load_up_transact_fpu(&new->thread);
714                 new->thread.regs->msr |=
715                         (MSR_FP | new->thread.fpexc_mode);
716         }
717 #ifdef CONFIG_ALTIVEC
718         if (msr & MSR_VEC) {
719                 do_load_up_transact_altivec(&new->thread);
720                 new->thread.regs->msr |= MSR_VEC;
721         }
722 #endif
723         /* We may as well turn on VSX too since all the state is restored now */
724         if (msr & MSR_VSX)
725                 new->thread.regs->msr |= MSR_VSX;
726
727         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
728                  "(kernel msr 0x%lx)\n",
729                  new->pid, mfmsr());
730 }
731
732 static inline void __switch_to_tm(struct task_struct *prev)
733 {
734         if (cpu_has_feature(CPU_FTR_TM)) {
735                 tm_enable();
736                 tm_reclaim_task(prev);
737         }
738 }
739
740 /*
741  * This is called if we are on the way out to userspace and the
742  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
743  * FP and/or vector state and does so if necessary.
744  * If userspace is inside a transaction (whether active or
745  * suspended) and FP/VMX/VSX instructions have ever been enabled
746  * inside that transaction, then we have to keep them enabled
747  * and keep the FP/VMX/VSX state loaded while ever the transaction
748  * continues.  The reason is that if we didn't, and subsequently
749  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
750  * we don't know whether it's the same transaction, and thus we
751  * don't know which of the checkpointed state and the transactional
752  * state to use.
753  */
754 void restore_tm_state(struct pt_regs *regs)
755 {
756         unsigned long msr_diff;
757
758         clear_thread_flag(TIF_RESTORE_TM);
759         if (!MSR_TM_ACTIVE(regs->msr))
760                 return;
761
762         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
763         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
764         if (msr_diff & MSR_FP) {
765                 fp_enable();
766                 load_fp_state(&current->thread.fp_state);
767                 regs->msr |= current->thread.fpexc_mode;
768         }
769         if (msr_diff & MSR_VEC) {
770                 vec_enable();
771                 load_vr_state(&current->thread.vr_state);
772         }
773         regs->msr |= msr_diff;
774 }
775
776 #else
777 #define tm_recheckpoint_new_task(new)
778 #define __switch_to_tm(prev)
779 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
780
781 struct task_struct *__switch_to(struct task_struct *prev,
782         struct task_struct *new)
783 {
784         struct thread_struct *new_thread, *old_thread;
785         struct task_struct *last;
786 #ifdef CONFIG_PPC_BOOK3S_64
787         struct ppc64_tlb_batch *batch;
788 #endif
789
790         WARN_ON(!irqs_disabled());
791
792         /* Back up the TAR and DSCR across context switches.
793          * Note that the TAR is not available for use in the kernel.  (To
794          * provide this, the TAR should be backed up/restored on exception
795          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
796          * pt_regs anyway (for debug).)
797          * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
798          * these will change them.
799          */
800         save_early_sprs(&prev->thread);
801
802         __switch_to_tm(prev);
803
804 #ifdef CONFIG_SMP
805         /* avoid complexity of lazy save/restore of fpu
806          * by just saving it every time we switch out if
807          * this task used the fpu during the last quantum.
808          *
809          * If it tries to use the fpu again, it'll trap and
810          * reload its fp regs.  So we don't have to do a restore
811          * every switch, just a save.
812          *  -- Cort
813          */
814         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
815                 giveup_fpu(prev);
816 #ifdef CONFIG_ALTIVEC
817         /*
818          * If the previous thread used altivec in the last quantum
819          * (thus changing altivec regs) then save them.
820          * We used to check the VRSAVE register but not all apps
821          * set it, so we don't rely on it now (and in fact we need
822          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
823          *
824          * On SMP we always save/restore altivec regs just to avoid the
825          * complexity of changing processors.
826          *  -- Cort
827          */
828         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
829                 giveup_altivec(prev);
830 #endif /* CONFIG_ALTIVEC */
831 #ifdef CONFIG_VSX
832         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
833                 /* VMX and FPU registers are already save here */
834                 __giveup_vsx(prev);
835 #endif /* CONFIG_VSX */
836 #ifdef CONFIG_SPE
837         /*
838          * If the previous thread used spe in the last quantum
839          * (thus changing spe regs) then save them.
840          *
841          * On SMP we always save/restore spe regs just to avoid the
842          * complexity of changing processors.
843          */
844         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
845                 giveup_spe(prev);
846 #endif /* CONFIG_SPE */
847
848 #else  /* CONFIG_SMP */
849 #ifdef CONFIG_ALTIVEC
850         /* Avoid the trap.  On smp this this never happens since
851          * we don't set last_task_used_altivec -- Cort
852          */
853         if (new->thread.regs && last_task_used_altivec == new)
854                 new->thread.regs->msr |= MSR_VEC;
855 #endif /* CONFIG_ALTIVEC */
856 #ifdef CONFIG_VSX
857         if (new->thread.regs && last_task_used_vsx == new)
858                 new->thread.regs->msr |= MSR_VSX;
859 #endif /* CONFIG_VSX */
860 #ifdef CONFIG_SPE
861         /* Avoid the trap.  On smp this this never happens since
862          * we don't set last_task_used_spe
863          */
864         if (new->thread.regs && last_task_used_spe == new)
865                 new->thread.regs->msr |= MSR_SPE;
866 #endif /* CONFIG_SPE */
867
868 #endif /* CONFIG_SMP */
869
870 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
871         switch_booke_debug_regs(&new->thread.debug);
872 #else
873 /*
874  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
875  * schedule DABR
876  */
877 #ifndef CONFIG_HAVE_HW_BREAKPOINT
878         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
879                 __set_breakpoint(&new->thread.hw_brk);
880 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
881 #endif
882
883
884         new_thread = &new->thread;
885         old_thread = &current->thread;
886
887 #ifdef CONFIG_PPC64
888         /*
889          * Collect processor utilization data per process
890          */
891         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
892                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
893                 long unsigned start_tb, current_tb;
894                 start_tb = old_thread->start_tb;
895                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
896                 old_thread->accum_tb += (current_tb - start_tb);
897                 new_thread->start_tb = current_tb;
898         }
899 #endif /* CONFIG_PPC64 */
900
901 #ifdef CONFIG_PPC_BOOK3S_64
902         batch = this_cpu_ptr(&ppc64_tlb_batch);
903         if (batch->active) {
904                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
905                 if (batch->index)
906                         __flush_tlb_pending(batch);
907                 batch->active = 0;
908         }
909 #endif /* CONFIG_PPC_BOOK3S_64 */
910
911         /*
912          * We can't take a PMU exception inside _switch() since there is a
913          * window where the kernel stack SLB and the kernel stack are out
914          * of sync. Hard disable here.
915          */
916         hard_irq_disable();
917
918         tm_recheckpoint_new_task(new);
919
920         last = _switch(old_thread, new_thread);
921
922 #ifdef CONFIG_PPC_BOOK3S_64
923         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
924                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
925                 batch = this_cpu_ptr(&ppc64_tlb_batch);
926                 batch->active = 1;
927         }
928 #endif /* CONFIG_PPC_BOOK3S_64 */
929
930         return last;
931 }
932
933 static int instructions_to_print = 16;
934
935 static void show_instructions(struct pt_regs *regs)
936 {
937         int i;
938         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
939                         sizeof(int));
940
941         printk("Instruction dump:");
942
943         for (i = 0; i < instructions_to_print; i++) {
944                 int instr;
945
946                 if (!(i % 8))
947                         printk("\n");
948
949 #if !defined(CONFIG_BOOKE)
950                 /* If executing with the IMMU off, adjust pc rather
951                  * than print XXXXXXXX.
952                  */
953                 if (!(regs->msr & MSR_IR))
954                         pc = (unsigned long)phys_to_virt(pc);
955 #endif
956
957                 if (!__kernel_text_address(pc) ||
958                      probe_kernel_address((unsigned int __user *)pc, instr)) {
959                         printk(KERN_CONT "XXXXXXXX ");
960                 } else {
961                         if (regs->nip == pc)
962                                 printk(KERN_CONT "<%08x> ", instr);
963                         else
964                                 printk(KERN_CONT "%08x ", instr);
965                 }
966
967                 pc += sizeof(int);
968         }
969
970         printk("\n");
971 }
972
973 static struct regbit {
974         unsigned long bit;
975         const char *name;
976 } msr_bits[] = {
977 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
978         {MSR_SF,        "SF"},
979         {MSR_HV,        "HV"},
980 #endif
981         {MSR_VEC,       "VEC"},
982         {MSR_VSX,       "VSX"},
983 #ifdef CONFIG_BOOKE
984         {MSR_CE,        "CE"},
985 #endif
986         {MSR_EE,        "EE"},
987         {MSR_PR,        "PR"},
988         {MSR_FP,        "FP"},
989         {MSR_ME,        "ME"},
990 #ifdef CONFIG_BOOKE
991         {MSR_DE,        "DE"},
992 #else
993         {MSR_SE,        "SE"},
994         {MSR_BE,        "BE"},
995 #endif
996         {MSR_IR,        "IR"},
997         {MSR_DR,        "DR"},
998         {MSR_PMM,       "PMM"},
999 #ifndef CONFIG_BOOKE
1000         {MSR_RI,        "RI"},
1001         {MSR_LE,        "LE"},
1002 #endif
1003         {0,             NULL}
1004 };
1005
1006 static void printbits(unsigned long val, struct regbit *bits)
1007 {
1008         const char *sep = "";
1009
1010         printk("<");
1011         for (; bits->bit; ++bits)
1012                 if (val & bits->bit) {
1013                         printk("%s%s", sep, bits->name);
1014                         sep = ",";
1015                 }
1016         printk(">");
1017 }
1018
1019 #ifdef CONFIG_PPC64
1020 #define REG             "%016lx"
1021 #define REGS_PER_LINE   4
1022 #define LAST_VOLATILE   13
1023 #else
1024 #define REG             "%08lx"
1025 #define REGS_PER_LINE   8
1026 #define LAST_VOLATILE   12
1027 #endif
1028
1029 void show_regs(struct pt_regs * regs)
1030 {
1031         int i, trap;
1032
1033         show_regs_print_info(KERN_DEFAULT);
1034
1035         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1036                regs->nip, regs->link, regs->ctr);
1037         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1038                regs, regs->trap, print_tainted(), init_utsname()->release);
1039         printk("MSR: "REG" ", regs->msr);
1040         printbits(regs->msr, msr_bits);
1041         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1042         trap = TRAP(regs);
1043         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1044                 printk("CFAR: "REG" ", regs->orig_gpr3);
1045         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1046 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1047                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1048 #else
1049                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1050 #endif
1051 #ifdef CONFIG_PPC64
1052         printk("SOFTE: %ld ", regs->softe);
1053 #endif
1054 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1055         if (MSR_TM_ACTIVE(regs->msr))
1056                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1057 #endif
1058
1059         for (i = 0;  i < 32;  i++) {
1060                 if ((i % REGS_PER_LINE) == 0)
1061                         printk("\nGPR%02d: ", i);
1062                 printk(REG " ", regs->gpr[i]);
1063                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1064                         break;
1065         }
1066         printk("\n");
1067 #ifdef CONFIG_KALLSYMS
1068         /*
1069          * Lookup NIP late so we have the best change of getting the
1070          * above info out without failing
1071          */
1072         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1073         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1074 #endif
1075         show_stack(current, (unsigned long *) regs->gpr[1]);
1076         if (!user_mode(regs))
1077                 show_instructions(regs);
1078 }
1079
1080 void exit_thread(void)
1081 {
1082         discard_lazy_cpu_state();
1083 }
1084
1085 void flush_thread(void)
1086 {
1087         discard_lazy_cpu_state();
1088
1089 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1090         flush_ptrace_hw_breakpoint(current);
1091 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1092         set_debug_reg_defaults(&current->thread);
1093 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1094 }
1095
1096 void
1097 release_thread(struct task_struct *t)
1098 {
1099 }
1100
1101 /*
1102  * this gets called so that we can store coprocessor state into memory and
1103  * copy the current task into the new thread.
1104  */
1105 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1106 {
1107         flush_fp_to_thread(src);
1108         flush_altivec_to_thread(src);
1109         flush_vsx_to_thread(src);
1110         flush_spe_to_thread(src);
1111         /*
1112          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1113          * flush but it removes the checkpointed state from the current CPU and
1114          * transitions the CPU out of TM mode.  Hence we need to call
1115          * tm_recheckpoint_new_task() (on the same task) to restore the
1116          * checkpointed state back and the TM mode.
1117          */
1118         __switch_to_tm(src);
1119         tm_recheckpoint_new_task(src);
1120
1121         *dst = *src;
1122
1123         clear_task_ebb(dst);
1124
1125         return 0;
1126 }
1127
1128 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1129 {
1130 #ifdef CONFIG_PPC_STD_MMU_64
1131         unsigned long sp_vsid;
1132         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1133
1134         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1135                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1136                         << SLB_VSID_SHIFT_1T;
1137         else
1138                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1139                         << SLB_VSID_SHIFT;
1140         sp_vsid |= SLB_VSID_KERNEL | llp;
1141         p->thread.ksp_vsid = sp_vsid;
1142 #endif
1143 }
1144
1145 /*
1146  * Copy a thread..
1147  */
1148
1149 /*
1150  * Copy architecture-specific thread state
1151  */
1152 int copy_thread(unsigned long clone_flags, unsigned long usp,
1153                 unsigned long kthread_arg, struct task_struct *p)
1154 {
1155         struct pt_regs *childregs, *kregs;
1156         extern void ret_from_fork(void);
1157         extern void ret_from_kernel_thread(void);
1158         void (*f)(void);
1159         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1160
1161         /* Copy registers */
1162         sp -= sizeof(struct pt_regs);
1163         childregs = (struct pt_regs *) sp;
1164         if (unlikely(p->flags & PF_KTHREAD)) {
1165                 /* kernel thread */
1166                 struct thread_info *ti = (void *)task_stack_page(p);
1167                 memset(childregs, 0, sizeof(struct pt_regs));
1168                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1169                 /* function */
1170                 if (usp)
1171                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1172 #ifdef CONFIG_PPC64
1173                 clear_tsk_thread_flag(p, TIF_32BIT);
1174                 childregs->softe = 1;
1175 #endif
1176                 childregs->gpr[15] = kthread_arg;
1177                 p->thread.regs = NULL;  /* no user register state */
1178                 ti->flags |= _TIF_RESTOREALL;
1179                 f = ret_from_kernel_thread;
1180         } else {
1181                 /* user thread */
1182                 struct pt_regs *regs = current_pt_regs();
1183                 CHECK_FULL_REGS(regs);
1184                 *childregs = *regs;
1185                 if (usp)
1186                         childregs->gpr[1] = usp;
1187                 p->thread.regs = childregs;
1188                 childregs->gpr[3] = 0;  /* Result from fork() */
1189                 if (clone_flags & CLONE_SETTLS) {
1190 #ifdef CONFIG_PPC64
1191                         if (!is_32bit_task())
1192                                 childregs->gpr[13] = childregs->gpr[6];
1193                         else
1194 #endif
1195                                 childregs->gpr[2] = childregs->gpr[6];
1196                 }
1197
1198                 f = ret_from_fork;
1199         }
1200         sp -= STACK_FRAME_OVERHEAD;
1201
1202         /*
1203          * The way this works is that at some point in the future
1204          * some task will call _switch to switch to the new task.
1205          * That will pop off the stack frame created below and start
1206          * the new task running at ret_from_fork.  The new task will
1207          * do some house keeping and then return from the fork or clone
1208          * system call, using the stack frame created above.
1209          */
1210         ((unsigned long *)sp)[0] = 0;
1211         sp -= sizeof(struct pt_regs);
1212         kregs = (struct pt_regs *) sp;
1213         sp -= STACK_FRAME_OVERHEAD;
1214         p->thread.ksp = sp;
1215 #ifdef CONFIG_PPC32
1216         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1217                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1218 #endif
1219 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1220         p->thread.ptrace_bps[0] = NULL;
1221 #endif
1222
1223         p->thread.fp_save_area = NULL;
1224 #ifdef CONFIG_ALTIVEC
1225         p->thread.vr_save_area = NULL;
1226 #endif
1227
1228         setup_ksp_vsid(p, sp);
1229
1230 #ifdef CONFIG_PPC64 
1231         if (cpu_has_feature(CPU_FTR_DSCR)) {
1232                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1233                 p->thread.dscr = current->thread.dscr;
1234         }
1235         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1236                 p->thread.ppr = INIT_PPR;
1237 #endif
1238         kregs->nip = ppc_function_entry(f);
1239         return 0;
1240 }
1241
1242 /*
1243  * Set up a thread for executing a new program
1244  */
1245 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1246 {
1247 #ifdef CONFIG_PPC64
1248         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1249 #endif
1250
1251         /*
1252          * If we exec out of a kernel thread then thread.regs will not be
1253          * set.  Do it now.
1254          */
1255         if (!current->thread.regs) {
1256                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1257                 current->thread.regs = regs - 1;
1258         }
1259
1260         memset(regs->gpr, 0, sizeof(regs->gpr));
1261         regs->ctr = 0;
1262         regs->link = 0;
1263         regs->xer = 0;
1264         regs->ccr = 0;
1265         regs->gpr[1] = sp;
1266
1267         /*
1268          * We have just cleared all the nonvolatile GPRs, so make
1269          * FULL_REGS(regs) return true.  This is necessary to allow
1270          * ptrace to examine the thread immediately after exec.
1271          */
1272         regs->trap &= ~1UL;
1273
1274 #ifdef CONFIG_PPC32
1275         regs->mq = 0;
1276         regs->nip = start;
1277         regs->msr = MSR_USER;
1278 #else
1279         if (!is_32bit_task()) {
1280                 unsigned long entry;
1281
1282                 if (is_elf2_task()) {
1283                         /* Look ma, no function descriptors! */
1284                         entry = start;
1285
1286                         /*
1287                          * Ulrich says:
1288                          *   The latest iteration of the ABI requires that when
1289                          *   calling a function (at its global entry point),
1290                          *   the caller must ensure r12 holds the entry point
1291                          *   address (so that the function can quickly
1292                          *   establish addressability).
1293                          */
1294                         regs->gpr[12] = start;
1295                         /* Make sure that's restored on entry to userspace. */
1296                         set_thread_flag(TIF_RESTOREALL);
1297                 } else {
1298                         unsigned long toc;
1299
1300                         /* start is a relocated pointer to the function
1301                          * descriptor for the elf _start routine.  The first
1302                          * entry in the function descriptor is the entry
1303                          * address of _start and the second entry is the TOC
1304                          * value we need to use.
1305                          */
1306                         __get_user(entry, (unsigned long __user *)start);
1307                         __get_user(toc, (unsigned long __user *)start+1);
1308
1309                         /* Check whether the e_entry function descriptor entries
1310                          * need to be relocated before we can use them.
1311                          */
1312                         if (load_addr != 0) {
1313                                 entry += load_addr;
1314                                 toc   += load_addr;
1315                         }
1316                         regs->gpr[2] = toc;
1317                 }
1318                 regs->nip = entry;
1319                 regs->msr = MSR_USER64;
1320         } else {
1321                 regs->nip = start;
1322                 regs->gpr[2] = 0;
1323                 regs->msr = MSR_USER32;
1324         }
1325 #endif
1326         discard_lazy_cpu_state();
1327 #ifdef CONFIG_VSX
1328         current->thread.used_vsr = 0;
1329 #endif
1330         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1331         current->thread.fp_save_area = NULL;
1332 #ifdef CONFIG_ALTIVEC
1333         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1334         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1335         current->thread.vr_save_area = NULL;
1336         current->thread.vrsave = 0;
1337         current->thread.used_vr = 0;
1338 #endif /* CONFIG_ALTIVEC */
1339 #ifdef CONFIG_SPE
1340         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1341         current->thread.acc = 0;
1342         current->thread.spefscr = 0;
1343         current->thread.used_spe = 0;
1344 #endif /* CONFIG_SPE */
1345 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1346         if (cpu_has_feature(CPU_FTR_TM))
1347                 regs->msr |= MSR_TM;
1348         current->thread.tm_tfhar = 0;
1349         current->thread.tm_texasr = 0;
1350         current->thread.tm_tfiar = 0;
1351 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1352 }
1353 EXPORT_SYMBOL(start_thread);
1354
1355 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1356                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1357
1358 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1359 {
1360         struct pt_regs *regs = tsk->thread.regs;
1361
1362         /* This is a bit hairy.  If we are an SPE enabled  processor
1363          * (have embedded fp) we store the IEEE exception enable flags in
1364          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1365          * mode (asyn, precise, disabled) for 'Classic' FP. */
1366         if (val & PR_FP_EXC_SW_ENABLE) {
1367 #ifdef CONFIG_SPE
1368                 if (cpu_has_feature(CPU_FTR_SPE)) {
1369                         /*
1370                          * When the sticky exception bits are set
1371                          * directly by userspace, it must call prctl
1372                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1373                          * in the existing prctl settings) or
1374                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1375                          * the bits being set).  <fenv.h> functions
1376                          * saving and restoring the whole
1377                          * floating-point environment need to do so
1378                          * anyway to restore the prctl settings from
1379                          * the saved environment.
1380                          */
1381                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1382                         tsk->thread.fpexc_mode = val &
1383                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1384                         return 0;
1385                 } else {
1386                         return -EINVAL;
1387                 }
1388 #else
1389                 return -EINVAL;
1390 #endif
1391         }
1392
1393         /* on a CONFIG_SPE this does not hurt us.  The bits that
1394          * __pack_fe01 use do not overlap with bits used for
1395          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1396          * on CONFIG_SPE implementations are reserved so writing to
1397          * them does not change anything */
1398         if (val > PR_FP_EXC_PRECISE)
1399                 return -EINVAL;
1400         tsk->thread.fpexc_mode = __pack_fe01(val);
1401         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1402                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1403                         | tsk->thread.fpexc_mode;
1404         return 0;
1405 }
1406
1407 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1408 {
1409         unsigned int val;
1410
1411         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1412 #ifdef CONFIG_SPE
1413                 if (cpu_has_feature(CPU_FTR_SPE)) {
1414                         /*
1415                          * When the sticky exception bits are set
1416                          * directly by userspace, it must call prctl
1417                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1418                          * in the existing prctl settings) or
1419                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1420                          * the bits being set).  <fenv.h> functions
1421                          * saving and restoring the whole
1422                          * floating-point environment need to do so
1423                          * anyway to restore the prctl settings from
1424                          * the saved environment.
1425                          */
1426                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1427                         val = tsk->thread.fpexc_mode;
1428                 } else
1429                         return -EINVAL;
1430 #else
1431                 return -EINVAL;
1432 #endif
1433         else
1434                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1435         return put_user(val, (unsigned int __user *) adr);
1436 }
1437
1438 int set_endian(struct task_struct *tsk, unsigned int val)
1439 {
1440         struct pt_regs *regs = tsk->thread.regs;
1441
1442         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1443             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1444                 return -EINVAL;
1445
1446         if (regs == NULL)
1447                 return -EINVAL;
1448
1449         if (val == PR_ENDIAN_BIG)
1450                 regs->msr &= ~MSR_LE;
1451         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1452                 regs->msr |= MSR_LE;
1453         else
1454                 return -EINVAL;
1455
1456         return 0;
1457 }
1458
1459 int get_endian(struct task_struct *tsk, unsigned long adr)
1460 {
1461         struct pt_regs *regs = tsk->thread.regs;
1462         unsigned int val;
1463
1464         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1465             !cpu_has_feature(CPU_FTR_REAL_LE))
1466                 return -EINVAL;
1467
1468         if (regs == NULL)
1469                 return -EINVAL;
1470
1471         if (regs->msr & MSR_LE) {
1472                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1473                         val = PR_ENDIAN_LITTLE;
1474                 else
1475                         val = PR_ENDIAN_PPC_LITTLE;
1476         } else
1477                 val = PR_ENDIAN_BIG;
1478
1479         return put_user(val, (unsigned int __user *)adr);
1480 }
1481
1482 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1483 {
1484         tsk->thread.align_ctl = val;
1485         return 0;
1486 }
1487
1488 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1489 {
1490         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1491 }
1492
1493 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1494                                   unsigned long nbytes)
1495 {
1496         unsigned long stack_page;
1497         unsigned long cpu = task_cpu(p);
1498
1499         /*
1500          * Avoid crashing if the stack has overflowed and corrupted
1501          * task_cpu(p), which is in the thread_info struct.
1502          */
1503         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1504                 stack_page = (unsigned long) hardirq_ctx[cpu];
1505                 if (sp >= stack_page + sizeof(struct thread_struct)
1506                     && sp <= stack_page + THREAD_SIZE - nbytes)
1507                         return 1;
1508
1509                 stack_page = (unsigned long) softirq_ctx[cpu];
1510                 if (sp >= stack_page + sizeof(struct thread_struct)
1511                     && sp <= stack_page + THREAD_SIZE - nbytes)
1512                         return 1;
1513         }
1514         return 0;
1515 }
1516
1517 int validate_sp(unsigned long sp, struct task_struct *p,
1518                        unsigned long nbytes)
1519 {
1520         unsigned long stack_page = (unsigned long)task_stack_page(p);
1521
1522         if (sp >= stack_page + sizeof(struct thread_struct)
1523             && sp <= stack_page + THREAD_SIZE - nbytes)
1524                 return 1;
1525
1526         return valid_irq_stack(sp, p, nbytes);
1527 }
1528
1529 EXPORT_SYMBOL(validate_sp);
1530
1531 unsigned long get_wchan(struct task_struct *p)
1532 {
1533         unsigned long ip, sp;
1534         int count = 0;
1535
1536         if (!p || p == current || p->state == TASK_RUNNING)
1537                 return 0;
1538
1539         sp = p->thread.ksp;
1540         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1541                 return 0;
1542
1543         do {
1544                 sp = *(unsigned long *)sp;
1545                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1546                         return 0;
1547                 if (count > 0) {
1548                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1549                         if (!in_sched_functions(ip))
1550                                 return ip;
1551                 }
1552         } while (count++ < 16);
1553         return 0;
1554 }
1555
1556 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1557
1558 void show_stack(struct task_struct *tsk, unsigned long *stack)
1559 {
1560         unsigned long sp, ip, lr, newsp;
1561         int count = 0;
1562         int firstframe = 1;
1563 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1564         int curr_frame = current->curr_ret_stack;
1565         extern void return_to_handler(void);
1566         unsigned long rth = (unsigned long)return_to_handler;
1567 #endif
1568
1569         sp = (unsigned long) stack;
1570         if (tsk == NULL)
1571                 tsk = current;
1572         if (sp == 0) {
1573                 if (tsk == current)
1574                         sp = current_stack_pointer();
1575                 else
1576                         sp = tsk->thread.ksp;
1577         }
1578
1579         lr = 0;
1580         printk("Call Trace:\n");
1581         do {
1582                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1583                         return;
1584
1585                 stack = (unsigned long *) sp;
1586                 newsp = stack[0];
1587                 ip = stack[STACK_FRAME_LR_SAVE];
1588                 if (!firstframe || ip != lr) {
1589                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1590 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1591                         if ((ip == rth) && curr_frame >= 0) {
1592                                 printk(" (%pS)",
1593                                        (void *)current->ret_stack[curr_frame].ret);
1594                                 curr_frame--;
1595                         }
1596 #endif
1597                         if (firstframe)
1598                                 printk(" (unreliable)");
1599                         printk("\n");
1600                 }
1601                 firstframe = 0;
1602
1603                 /*
1604                  * See if this is an exception frame.
1605                  * We look for the "regshere" marker in the current frame.
1606                  */
1607                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1608                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1609                         struct pt_regs *regs = (struct pt_regs *)
1610                                 (sp + STACK_FRAME_OVERHEAD);
1611                         lr = regs->link;
1612                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1613                                regs->trap, (void *)regs->nip, (void *)lr);
1614                         firstframe = 1;
1615                 }
1616
1617                 sp = newsp;
1618         } while (count++ < kstack_depth_to_print);
1619 }
1620
1621 #ifdef CONFIG_PPC64
1622 /* Called with hard IRQs off */
1623 void notrace __ppc64_runlatch_on(void)
1624 {
1625         struct thread_info *ti = current_thread_info();
1626         unsigned long ctrl;
1627
1628         ctrl = mfspr(SPRN_CTRLF);
1629         ctrl |= CTRL_RUNLATCH;
1630         mtspr(SPRN_CTRLT, ctrl);
1631
1632         ti->local_flags |= _TLF_RUNLATCH;
1633 }
1634
1635 /* Called with hard IRQs off */
1636 void notrace __ppc64_runlatch_off(void)
1637 {
1638         struct thread_info *ti = current_thread_info();
1639         unsigned long ctrl;
1640
1641         ti->local_flags &= ~_TLF_RUNLATCH;
1642
1643         ctrl = mfspr(SPRN_CTRLF);
1644         ctrl &= ~CTRL_RUNLATCH;
1645         mtspr(SPRN_CTRLT, ctrl);
1646 }
1647 #endif /* CONFIG_PPC64 */
1648
1649 unsigned long arch_align_stack(unsigned long sp)
1650 {
1651         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1652                 sp -= get_random_int() & ~PAGE_MASK;
1653         return sp & ~0xf;
1654 }
1655
1656 static inline unsigned long brk_rnd(void)
1657 {
1658         unsigned long rnd = 0;
1659
1660         /* 8MB for 32bit, 1GB for 64bit */
1661         if (is_32bit_task())
1662                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1663         else
1664                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1665
1666         return rnd << PAGE_SHIFT;
1667 }
1668
1669 unsigned long arch_randomize_brk(struct mm_struct *mm)
1670 {
1671         unsigned long base = mm->brk;
1672         unsigned long ret;
1673
1674 #ifdef CONFIG_PPC_STD_MMU_64
1675         /*
1676          * If we are using 1TB segments and we are allowed to randomise
1677          * the heap, we can put it above 1TB so it is backed by a 1TB
1678          * segment. Otherwise the heap will be in the bottom 1TB
1679          * which always uses 256MB segments and this may result in a
1680          * performance penalty.
1681          */
1682         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1683                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1684 #endif
1685
1686         ret = PAGE_ALIGN(base + brk_rnd());
1687
1688         if (ret < mm->brk)
1689                 return mm->brk;
1690
1691         return ret;
1692 }
1693