Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / kernel / nvram_64.c
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  *
13  * TODO: Split the /dev/nvram part (that one can use
14  *       drivers/char/generic_nvram.c) from the arch & partition
15  *       parsing code.
16  */
17
18 #include <linux/module.h>
19
20 #include <linux/types.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/miscdevice.h>
24 #include <linux/fcntl.h>
25 #include <linux/nvram.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/kmsg_dump.h>
30 #include <linux/pstore.h>
31 #include <linux/zlib.h>
32 #include <asm/uaccess.h>
33 #include <asm/nvram.h>
34 #include <asm/rtas.h>
35 #include <asm/prom.h>
36 #include <asm/machdep.h>
37
38 #undef DEBUG_NVRAM
39
40 #define NVRAM_HEADER_LEN        sizeof(struct nvram_header)
41 #define NVRAM_BLOCK_LEN         NVRAM_HEADER_LEN
42
43 /* If change this size, then change the size of NVNAME_LEN */
44 struct nvram_header {
45         unsigned char signature;
46         unsigned char checksum;
47         unsigned short length;
48         /* Terminating null required only for names < 12 chars. */
49         char name[12];
50 };
51
52 struct nvram_partition {
53         struct list_head partition;
54         struct nvram_header header;
55         unsigned int index;
56 };
57
58 static LIST_HEAD(nvram_partitions);
59
60 #ifdef CONFIG_PPC_PSERIES
61 struct nvram_os_partition rtas_log_partition = {
62         .name = "ibm,rtas-log",
63         .req_size = 2079,
64         .min_size = 1055,
65         .index = -1,
66         .os_partition = true
67 };
68 #endif
69
70 struct nvram_os_partition oops_log_partition = {
71         .name = "lnx,oops-log",
72         .req_size = 4000,
73         .min_size = 2000,
74         .index = -1,
75         .os_partition = true
76 };
77
78 static const char *nvram_os_partitions[] = {
79 #ifdef CONFIG_PPC_PSERIES
80         "ibm,rtas-log",
81 #endif
82         "lnx,oops-log",
83         NULL
84 };
85
86 static void oops_to_nvram(struct kmsg_dumper *dumper,
87                           enum kmsg_dump_reason reason);
88
89 static struct kmsg_dumper nvram_kmsg_dumper = {
90         .dump = oops_to_nvram
91 };
92
93 /*
94  * For capturing and compressing an oops or panic report...
95
96  * big_oops_buf[] holds the uncompressed text we're capturing.
97  *
98  * oops_buf[] holds the compressed text, preceded by a oops header.
99  * oops header has u16 holding the version of oops header (to differentiate
100  * between old and new format header) followed by u16 holding the length of
101  * the compressed* text (*Or uncompressed, if compression fails.) and u64
102  * holding the timestamp. oops_buf[] gets written to NVRAM.
103  *
104  * oops_log_info points to the header. oops_data points to the compressed text.
105  *
106  * +- oops_buf
107  * |                                   +- oops_data
108  * v                                   v
109  * +-----------+-----------+-----------+------------------------+
110  * | version   | length    | timestamp | text                   |
111  * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
112  * +-----------+-----------+-----------+------------------------+
113  * ^
114  * +- oops_log_info
115  *
116  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
117  */
118 static size_t big_oops_buf_sz;
119 static char *big_oops_buf, *oops_buf;
120 static char *oops_data;
121 static size_t oops_data_sz;
122
123 /* Compression parameters */
124 #define COMPR_LEVEL 6
125 #define WINDOW_BITS 12
126 #define MEM_LEVEL 4
127 static struct z_stream_s stream;
128
129 #ifdef CONFIG_PSTORE
130 #ifdef CONFIG_PPC_POWERNV
131 static struct nvram_os_partition skiboot_partition = {
132         .name = "ibm,skiboot",
133         .index = -1,
134         .os_partition = false
135 };
136 #endif
137
138 #ifdef CONFIG_PPC_PSERIES
139 static struct nvram_os_partition of_config_partition = {
140         .name = "of-config",
141         .index = -1,
142         .os_partition = false
143 };
144 #endif
145
146 static struct nvram_os_partition common_partition = {
147         .name = "common",
148         .index = -1,
149         .os_partition = false
150 };
151
152 static enum pstore_type_id nvram_type_ids[] = {
153         PSTORE_TYPE_DMESG,
154         PSTORE_TYPE_PPC_COMMON,
155         -1,
156         -1,
157         -1
158 };
159 static int read_type;
160 #endif
161
162 /* nvram_write_os_partition
163  *
164  * We need to buffer the error logs into nvram to ensure that we have
165  * the failure information to decode.  If we have a severe error there
166  * is no way to guarantee that the OS or the machine is in a state to
167  * get back to user land and write the error to disk.  For example if
168  * the SCSI device driver causes a Machine Check by writing to a bad
169  * IO address, there is no way of guaranteeing that the device driver
170  * is in any state that is would also be able to write the error data
171  * captured to disk, thus we buffer it in NVRAM for analysis on the
172  * next boot.
173  *
174  * In NVRAM the partition containing the error log buffer will looks like:
175  * Header (in bytes):
176  * +-----------+----------+--------+------------+------------------+
177  * | signature | checksum | length | name       | data             |
178  * |0          |1         |2      3|4         15|16        length-1|
179  * +-----------+----------+--------+------------+------------------+
180  *
181  * The 'data' section would look like (in bytes):
182  * +--------------+------------+-----------------------------------+
183  * | event_logged | sequence # | error log                         |
184  * |0            3|4          7|8                  error_log_size-1|
185  * +--------------+------------+-----------------------------------+
186  *
187  * event_logged: 0 if event has not been logged to syslog, 1 if it has
188  * sequence #: The unique sequence # for each event. (until it wraps)
189  * error log: The error log from event_scan
190  */
191 int nvram_write_os_partition(struct nvram_os_partition *part,
192                              char *buff, int length,
193                              unsigned int err_type,
194                              unsigned int error_log_cnt)
195 {
196         int rc;
197         loff_t tmp_index;
198         struct err_log_info info;
199
200         if (part->index == -1)
201                 return -ESPIPE;
202
203         if (length > part->size)
204                 length = part->size;
205
206         info.error_type = cpu_to_be32(err_type);
207         info.seq_num = cpu_to_be32(error_log_cnt);
208
209         tmp_index = part->index;
210
211         rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
212                                 &tmp_index);
213         if (rc <= 0) {
214                 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
215                 return rc;
216         }
217
218         rc = ppc_md.nvram_write(buff, length, &tmp_index);
219         if (rc <= 0) {
220                 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
221                 return rc;
222         }
223
224         return 0;
225 }
226
227 /* nvram_read_partition
228  *
229  * Reads nvram partition for at most 'length'
230  */
231 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
232                          int length, unsigned int *err_type,
233                          unsigned int *error_log_cnt)
234 {
235         int rc;
236         loff_t tmp_index;
237         struct err_log_info info;
238
239         if (part->index == -1)
240                 return -1;
241
242         if (length > part->size)
243                 length = part->size;
244
245         tmp_index = part->index;
246
247         if (part->os_partition) {
248                 rc = ppc_md.nvram_read((char *)&info,
249                                         sizeof(struct err_log_info),
250                                         &tmp_index);
251                 if (rc <= 0) {
252                         pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
253                         return rc;
254                 }
255         }
256
257         rc = ppc_md.nvram_read(buff, length, &tmp_index);
258         if (rc <= 0) {
259                 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
260                 return rc;
261         }
262
263         if (part->os_partition) {
264                 *error_log_cnt = be32_to_cpu(info.seq_num);
265                 *err_type = be32_to_cpu(info.error_type);
266         }
267
268         return 0;
269 }
270
271 /* nvram_init_os_partition
272  *
273  * This sets up a partition with an "OS" signature.
274  *
275  * The general strategy is the following:
276  * 1.) If a partition with the indicated name already exists...
277  *      - If it's large enough, use it.
278  *      - Otherwise, recycle it and keep going.
279  * 2.) Search for a free partition that is large enough.
280  * 3.) If there's not a free partition large enough, recycle any obsolete
281  * OS partitions and try again.
282  * 4.) Will first try getting a chunk that will satisfy the requested size.
283  * 5.) If a chunk of the requested size cannot be allocated, then try finding
284  * a chunk that will satisfy the minum needed.
285  *
286  * Returns 0 on success, else -1.
287  */
288 int __init nvram_init_os_partition(struct nvram_os_partition *part)
289 {
290         loff_t p;
291         int size;
292
293         /* Look for ours */
294         p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
295
296         /* Found one but too small, remove it */
297         if (p && size < part->min_size) {
298                 pr_info("nvram: Found too small %s partition,"
299                                         " removing it...\n", part->name);
300                 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
301                 p = 0;
302         }
303
304         /* Create one if we didn't find */
305         if (!p) {
306                 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
307                                         part->req_size, part->min_size);
308                 if (p == -ENOSPC) {
309                         pr_info("nvram: No room to create %s partition, "
310                                 "deleting any obsolete OS partitions...\n",
311                                 part->name);
312                         nvram_remove_partition(NULL, NVRAM_SIG_OS,
313                                         nvram_os_partitions);
314                         p = nvram_create_partition(part->name, NVRAM_SIG_OS,
315                                         part->req_size, part->min_size);
316                 }
317         }
318
319         if (p <= 0) {
320                 pr_err("nvram: Failed to find or create %s"
321                        " partition, err %d\n", part->name, (int)p);
322                 return -1;
323         }
324
325         part->index = p;
326         part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
327
328         return 0;
329 }
330
331 /* Derived from logfs_compress() */
332 static int nvram_compress(const void *in, void *out, size_t inlen,
333                                                         size_t outlen)
334 {
335         int err, ret;
336
337         ret = -EIO;
338         err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
339                                                 MEM_LEVEL, Z_DEFAULT_STRATEGY);
340         if (err != Z_OK)
341                 goto error;
342
343         stream.next_in = in;
344         stream.avail_in = inlen;
345         stream.total_in = 0;
346         stream.next_out = out;
347         stream.avail_out = outlen;
348         stream.total_out = 0;
349
350         err = zlib_deflate(&stream, Z_FINISH);
351         if (err != Z_STREAM_END)
352                 goto error;
353
354         err = zlib_deflateEnd(&stream);
355         if (err != Z_OK)
356                 goto error;
357
358         if (stream.total_out >= stream.total_in)
359                 goto error;
360
361         ret = stream.total_out;
362 error:
363         return ret;
364 }
365
366 /* Compress the text from big_oops_buf into oops_buf. */
367 static int zip_oops(size_t text_len)
368 {
369         struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
370         int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
371                                                                 oops_data_sz);
372         if (zipped_len < 0) {
373                 pr_err("nvram: compression failed; returned %d\n", zipped_len);
374                 pr_err("nvram: logging uncompressed oops/panic report\n");
375                 return -1;
376         }
377         oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
378         oops_hdr->report_length = cpu_to_be16(zipped_len);
379         oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
380         return 0;
381 }
382
383 #ifdef CONFIG_PSTORE
384 static int nvram_pstore_open(struct pstore_info *psi)
385 {
386         /* Reset the iterator to start reading partitions again */
387         read_type = -1;
388         return 0;
389 }
390
391 /**
392  * nvram_pstore_write - pstore write callback for nvram
393  * @type:               Type of message logged
394  * @reason:             reason behind dump (oops/panic)
395  * @id:                 identifier to indicate the write performed
396  * @part:               pstore writes data to registered buffer in parts,
397  *                      part number will indicate the same.
398  * @count:              Indicates oops count
399  * @compressed:         Flag to indicate the log is compressed
400  * @size:               number of bytes written to the registered buffer
401  * @psi:                registered pstore_info structure
402  *
403  * Called by pstore_dump() when an oops or panic report is logged in the
404  * printk buffer.
405  * Returns 0 on successful write.
406  */
407 static int nvram_pstore_write(enum pstore_type_id type,
408                                 enum kmsg_dump_reason reason,
409                                 u64 *id, unsigned int part, int count,
410                                 bool compressed, size_t size,
411                                 struct pstore_info *psi)
412 {
413         int rc;
414         unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
415         struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
416
417         /* part 1 has the recent messages from printk buffer */
418         if (part > 1 || (type != PSTORE_TYPE_DMESG))
419                 return -1;
420
421         if (clobbering_unread_rtas_event())
422                 return -1;
423
424         oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
425         oops_hdr->report_length = cpu_to_be16(size);
426         oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
427
428         if (compressed)
429                 err_type = ERR_TYPE_KERNEL_PANIC_GZ;
430
431         rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
432                 (int) (sizeof(*oops_hdr) + size), err_type, count);
433
434         if (rc != 0)
435                 return rc;
436
437         *id = part;
438         return 0;
439 }
440
441 /*
442  * Reads the oops/panic report, rtas, of-config and common partition.
443  * Returns the length of the data we read from each partition.
444  * Returns 0 if we've been called before.
445  */
446 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
447                                 int *count, struct timespec *time, char **buf,
448                                 bool *compressed, struct pstore_info *psi)
449 {
450         struct oops_log_info *oops_hdr;
451         unsigned int err_type, id_no, size = 0;
452         struct nvram_os_partition *part = NULL;
453         char *buff = NULL;
454         int sig = 0;
455         loff_t p;
456
457         read_type++;
458
459         switch (nvram_type_ids[read_type]) {
460         case PSTORE_TYPE_DMESG:
461                 part = &oops_log_partition;
462                 *type = PSTORE_TYPE_DMESG;
463                 break;
464         case PSTORE_TYPE_PPC_COMMON:
465                 sig = NVRAM_SIG_SYS;
466                 part = &common_partition;
467                 *type = PSTORE_TYPE_PPC_COMMON;
468                 *id = PSTORE_TYPE_PPC_COMMON;
469                 time->tv_sec = 0;
470                 time->tv_nsec = 0;
471                 break;
472 #ifdef CONFIG_PPC_PSERIES
473         case PSTORE_TYPE_PPC_RTAS:
474                 part = &rtas_log_partition;
475                 *type = PSTORE_TYPE_PPC_RTAS;
476                 time->tv_sec = last_rtas_event;
477                 time->tv_nsec = 0;
478                 break;
479         case PSTORE_TYPE_PPC_OF:
480                 sig = NVRAM_SIG_OF;
481                 part = &of_config_partition;
482                 *type = PSTORE_TYPE_PPC_OF;
483                 *id = PSTORE_TYPE_PPC_OF;
484                 time->tv_sec = 0;
485                 time->tv_nsec = 0;
486                 break;
487 #endif
488 #ifdef CONFIG_PPC_POWERNV
489         case PSTORE_TYPE_PPC_OPAL:
490                 sig = NVRAM_SIG_FW;
491                 part = &skiboot_partition;
492                 *type = PSTORE_TYPE_PPC_OPAL;
493                 *id = PSTORE_TYPE_PPC_OPAL;
494                 time->tv_sec = 0;
495                 time->tv_nsec = 0;
496                 break;
497 #endif
498         default:
499                 return 0;
500         }
501
502         if (!part->os_partition) {
503                 p = nvram_find_partition(part->name, sig, &size);
504                 if (p <= 0) {
505                         pr_err("nvram: Failed to find partition %s, "
506                                 "err %d\n", part->name, (int)p);
507                         return 0;
508                 }
509                 part->index = p;
510                 part->size = size;
511         }
512
513         buff = kmalloc(part->size, GFP_KERNEL);
514
515         if (!buff)
516                 return -ENOMEM;
517
518         if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
519                 kfree(buff);
520                 return 0;
521         }
522
523         *count = 0;
524
525         if (part->os_partition)
526                 *id = id_no;
527
528         if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
529                 size_t length, hdr_size;
530
531                 oops_hdr = (struct oops_log_info *)buff;
532                 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
533                         /* Old format oops header had 2-byte record size */
534                         hdr_size = sizeof(u16);
535                         length = be16_to_cpu(oops_hdr->version);
536                         time->tv_sec = 0;
537                         time->tv_nsec = 0;
538                 } else {
539                         hdr_size = sizeof(*oops_hdr);
540                         length = be16_to_cpu(oops_hdr->report_length);
541                         time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
542                         time->tv_nsec = 0;
543                 }
544                 *buf = kmalloc(length, GFP_KERNEL);
545                 if (*buf == NULL)
546                         return -ENOMEM;
547                 memcpy(*buf, buff + hdr_size, length);
548                 kfree(buff);
549
550                 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
551                         *compressed = true;
552                 else
553                         *compressed = false;
554                 return length;
555         }
556
557         *buf = buff;
558         return part->size;
559 }
560
561 static struct pstore_info nvram_pstore_info = {
562         .owner = THIS_MODULE,
563         .name = "nvram",
564         .open = nvram_pstore_open,
565         .read = nvram_pstore_read,
566         .write = nvram_pstore_write,
567 };
568
569 static int nvram_pstore_init(void)
570 {
571         int rc = 0;
572
573         if (machine_is(pseries)) {
574                 nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
575                 nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
576         } else
577                 nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
578
579         nvram_pstore_info.buf = oops_data;
580         nvram_pstore_info.bufsize = oops_data_sz;
581
582         spin_lock_init(&nvram_pstore_info.buf_lock);
583
584         rc = pstore_register(&nvram_pstore_info);
585         if (rc != 0)
586                 pr_err("nvram: pstore_register() failed, defaults to "
587                                 "kmsg_dump; returned %d\n", rc);
588
589         return rc;
590 }
591 #else
592 static int nvram_pstore_init(void)
593 {
594         return -1;
595 }
596 #endif
597
598 void __init nvram_init_oops_partition(int rtas_partition_exists)
599 {
600         int rc;
601
602         rc = nvram_init_os_partition(&oops_log_partition);
603         if (rc != 0) {
604 #ifdef CONFIG_PPC_PSERIES
605                 if (!rtas_partition_exists) {
606                         pr_err("nvram: Failed to initialize oops partition!");
607                         return;
608                 }
609                 pr_notice("nvram: Using %s partition to log both"
610                         " RTAS errors and oops/panic reports\n",
611                         rtas_log_partition.name);
612                 memcpy(&oops_log_partition, &rtas_log_partition,
613                                                 sizeof(rtas_log_partition));
614 #else
615                 pr_err("nvram: Failed to initialize oops partition!");
616                 return;
617 #endif
618         }
619         oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
620         if (!oops_buf) {
621                 pr_err("nvram: No memory for %s partition\n",
622                                                 oops_log_partition.name);
623                 return;
624         }
625         oops_data = oops_buf + sizeof(struct oops_log_info);
626         oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
627
628         rc = nvram_pstore_init();
629
630         if (!rc)
631                 return;
632
633         /*
634          * Figure compression (preceded by elimination of each line's <n>
635          * severity prefix) will reduce the oops/panic report to at most
636          * 45% of its original size.
637          */
638         big_oops_buf_sz = (oops_data_sz * 100) / 45;
639         big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
640         if (big_oops_buf) {
641                 stream.workspace =  kmalloc(zlib_deflate_workspacesize(
642                                         WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
643                 if (!stream.workspace) {
644                         pr_err("nvram: No memory for compression workspace; "
645                                 "skipping compression of %s partition data\n",
646                                 oops_log_partition.name);
647                         kfree(big_oops_buf);
648                         big_oops_buf = NULL;
649                 }
650         } else {
651                 pr_err("No memory for uncompressed %s data; "
652                         "skipping compression\n", oops_log_partition.name);
653                 stream.workspace = NULL;
654         }
655
656         rc = kmsg_dump_register(&nvram_kmsg_dumper);
657         if (rc != 0) {
658                 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
659                 kfree(oops_buf);
660                 kfree(big_oops_buf);
661                 kfree(stream.workspace);
662         }
663 }
664
665 /*
666  * This is our kmsg_dump callback, called after an oops or panic report
667  * has been written to the printk buffer.  We want to capture as much
668  * of the printk buffer as possible.  First, capture as much as we can
669  * that we think will compress sufficiently to fit in the lnx,oops-log
670  * partition.  If that's too much, go back and capture uncompressed text.
671  */
672 static void oops_to_nvram(struct kmsg_dumper *dumper,
673                           enum kmsg_dump_reason reason)
674 {
675         struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
676         static unsigned int oops_count = 0;
677         static bool panicking = false;
678         static DEFINE_SPINLOCK(lock);
679         unsigned long flags;
680         size_t text_len;
681         unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
682         int rc = -1;
683
684         switch (reason) {
685         case KMSG_DUMP_RESTART:
686         case KMSG_DUMP_HALT:
687         case KMSG_DUMP_POWEROFF:
688                 /* These are almost always orderly shutdowns. */
689                 return;
690         case KMSG_DUMP_OOPS:
691                 break;
692         case KMSG_DUMP_PANIC:
693                 panicking = true;
694                 break;
695         case KMSG_DUMP_EMERG:
696                 if (panicking)
697                         /* Panic report already captured. */
698                         return;
699                 break;
700         default:
701                 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
702                        __func__, (int) reason);
703                 return;
704         }
705
706         if (clobbering_unread_rtas_event())
707                 return;
708
709         if (!spin_trylock_irqsave(&lock, flags))
710                 return;
711
712         if (big_oops_buf) {
713                 kmsg_dump_get_buffer(dumper, false,
714                                      big_oops_buf, big_oops_buf_sz, &text_len);
715                 rc = zip_oops(text_len);
716         }
717         if (rc != 0) {
718                 kmsg_dump_rewind(dumper);
719                 kmsg_dump_get_buffer(dumper, false,
720                                      oops_data, oops_data_sz, &text_len);
721                 err_type = ERR_TYPE_KERNEL_PANIC;
722                 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
723                 oops_hdr->report_length = cpu_to_be16(text_len);
724                 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
725         }
726
727         (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
728                 (int) (sizeof(*oops_hdr) + text_len), err_type,
729                 ++oops_count);
730
731         spin_unlock_irqrestore(&lock, flags);
732 }
733
734 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
735 {
736         int size;
737
738         if (ppc_md.nvram_size == NULL)
739                 return -ENODEV;
740         size = ppc_md.nvram_size();
741
742         switch (origin) {
743         case 1:
744                 offset += file->f_pos;
745                 break;
746         case 2:
747                 offset += size;
748                 break;
749         }
750         if (offset < 0)
751                 return -EINVAL;
752         file->f_pos = offset;
753         return file->f_pos;
754 }
755
756
757 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
758                           size_t count, loff_t *ppos)
759 {
760         ssize_t ret;
761         char *tmp = NULL;
762         ssize_t size;
763
764         if (!ppc_md.nvram_size) {
765                 ret = -ENODEV;
766                 goto out;
767         }
768
769         size = ppc_md.nvram_size();
770         if (size < 0) {
771                 ret = size;
772                 goto out;
773         }
774
775         if (*ppos >= size) {
776                 ret = 0;
777                 goto out;
778         }
779
780         count = min_t(size_t, count, size - *ppos);
781         count = min(count, PAGE_SIZE);
782
783         tmp = kmalloc(count, GFP_KERNEL);
784         if (!tmp) {
785                 ret = -ENOMEM;
786                 goto out;
787         }
788
789         ret = ppc_md.nvram_read(tmp, count, ppos);
790         if (ret <= 0)
791                 goto out;
792
793         if (copy_to_user(buf, tmp, ret))
794                 ret = -EFAULT;
795
796 out:
797         kfree(tmp);
798         return ret;
799
800 }
801
802 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
803                           size_t count, loff_t *ppos)
804 {
805         ssize_t ret;
806         char *tmp = NULL;
807         ssize_t size;
808
809         ret = -ENODEV;
810         if (!ppc_md.nvram_size)
811                 goto out;
812
813         ret = 0;
814         size = ppc_md.nvram_size();
815         if (*ppos >= size || size < 0)
816                 goto out;
817
818         count = min_t(size_t, count, size - *ppos);
819         count = min(count, PAGE_SIZE);
820
821         ret = -ENOMEM;
822         tmp = kmalloc(count, GFP_KERNEL);
823         if (!tmp)
824                 goto out;
825
826         ret = -EFAULT;
827         if (copy_from_user(tmp, buf, count))
828                 goto out;
829
830         ret = ppc_md.nvram_write(tmp, count, ppos);
831
832 out:
833         kfree(tmp);
834         return ret;
835
836 }
837
838 static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
839                             unsigned long arg)
840 {
841         switch(cmd) {
842 #ifdef CONFIG_PPC_PMAC
843         case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
844                 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
845         case IOC_NVRAM_GET_OFFSET: {
846                 int part, offset;
847
848                 if (!machine_is(powermac))
849                         return -EINVAL;
850                 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
851                         return -EFAULT;
852                 if (part < pmac_nvram_OF || part > pmac_nvram_NR)
853                         return -EINVAL;
854                 offset = pmac_get_partition(part);
855                 if (offset < 0)
856                         return offset;
857                 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
858                         return -EFAULT;
859                 return 0;
860         }
861 #endif /* CONFIG_PPC_PMAC */
862         default:
863                 return -EINVAL;
864         }
865 }
866
867 const struct file_operations nvram_fops = {
868         .owner          = THIS_MODULE,
869         .llseek         = dev_nvram_llseek,
870         .read           = dev_nvram_read,
871         .write          = dev_nvram_write,
872         .unlocked_ioctl = dev_nvram_ioctl,
873 };
874
875 static struct miscdevice nvram_dev = {
876         NVRAM_MINOR,
877         "nvram",
878         &nvram_fops
879 };
880
881
882 #ifdef DEBUG_NVRAM
883 static void __init nvram_print_partitions(char * label)
884 {
885         struct nvram_partition * tmp_part;
886         
887         printk(KERN_WARNING "--------%s---------\n", label);
888         printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
889         list_for_each_entry(tmp_part, &nvram_partitions, partition) {
890                 printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%12.12s\n",
891                        tmp_part->index, tmp_part->header.signature,
892                        tmp_part->header.checksum, tmp_part->header.length,
893                        tmp_part->header.name);
894         }
895 }
896 #endif
897
898
899 static int __init nvram_write_header(struct nvram_partition * part)
900 {
901         loff_t tmp_index;
902         int rc;
903         struct nvram_header phead;
904
905         memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
906         phead.length = cpu_to_be16(phead.length);
907
908         tmp_index = part->index;
909         rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
910
911         return rc;
912 }
913
914
915 static unsigned char __init nvram_checksum(struct nvram_header *p)
916 {
917         unsigned int c_sum, c_sum2;
918         unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
919         c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
920
921         /* The sum may have spilled into the 3rd byte.  Fold it back. */
922         c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
923         /* The sum cannot exceed 2 bytes.  Fold it into a checksum */
924         c_sum2 = (c_sum >> 8) + (c_sum << 8);
925         c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
926         return c_sum;
927 }
928
929 /*
930  * Per the criteria passed via nvram_remove_partition(), should this
931  * partition be removed?  1=remove, 0=keep
932  */
933 static int nvram_can_remove_partition(struct nvram_partition *part,
934                 const char *name, int sig, const char *exceptions[])
935 {
936         if (part->header.signature != sig)
937                 return 0;
938         if (name) {
939                 if (strncmp(name, part->header.name, 12))
940                         return 0;
941         } else if (exceptions) {
942                 const char **except;
943                 for (except = exceptions; *except; except++) {
944                         if (!strncmp(*except, part->header.name, 12))
945                                 return 0;
946                 }
947         }
948         return 1;
949 }
950
951 /**
952  * nvram_remove_partition - Remove one or more partitions in nvram
953  * @name: name of the partition to remove, or NULL for a
954  *        signature only match
955  * @sig: signature of the partition(s) to remove
956  * @exceptions: When removing all partitions with a matching signature,
957  *        leave these alone.
958  */
959
960 int __init nvram_remove_partition(const char *name, int sig,
961                                                 const char *exceptions[])
962 {
963         struct nvram_partition *part, *prev, *tmp;
964         int rc;
965
966         list_for_each_entry(part, &nvram_partitions, partition) {
967                 if (!nvram_can_remove_partition(part, name, sig, exceptions))
968                         continue;
969
970                 /* Make partition a free partition */
971                 part->header.signature = NVRAM_SIG_FREE;
972                 strncpy(part->header.name, "wwwwwwwwwwww", 12);
973                 part->header.checksum = nvram_checksum(&part->header);
974                 rc = nvram_write_header(part);
975                 if (rc <= 0) {
976                         printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
977                         return rc;
978                 }
979         }
980
981         /* Merge contiguous ones */
982         prev = NULL;
983         list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
984                 if (part->header.signature != NVRAM_SIG_FREE) {
985                         prev = NULL;
986                         continue;
987                 }
988                 if (prev) {
989                         prev->header.length += part->header.length;
990                         prev->header.checksum = nvram_checksum(&part->header);
991                         rc = nvram_write_header(part);
992                         if (rc <= 0) {
993                                 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
994                                 return rc;
995                         }
996                         list_del(&part->partition);
997                         kfree(part);
998                 } else
999                         prev = part;
1000         }
1001         
1002         return 0;
1003 }
1004
1005 /**
1006  * nvram_create_partition - Create a partition in nvram
1007  * @name: name of the partition to create
1008  * @sig: signature of the partition to create
1009  * @req_size: size of data to allocate in bytes
1010  * @min_size: minimum acceptable size (0 means req_size)
1011  *
1012  * Returns a negative error code or a positive nvram index
1013  * of the beginning of the data area of the newly created
1014  * partition. If you provided a min_size smaller than req_size
1015  * you need to query for the actual size yourself after the
1016  * call using nvram_partition_get_size().
1017  */
1018 loff_t __init nvram_create_partition(const char *name, int sig,
1019                                      int req_size, int min_size)
1020 {
1021         struct nvram_partition *part;
1022         struct nvram_partition *new_part;
1023         struct nvram_partition *free_part = NULL;
1024         static char nv_init_vals[16];
1025         loff_t tmp_index;
1026         long size = 0;
1027         int rc;
1028
1029         /* Convert sizes from bytes to blocks */
1030         req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1031         min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1032
1033         /* If no minimum size specified, make it the same as the
1034          * requested size
1035          */
1036         if (min_size == 0)
1037                 min_size = req_size;
1038         if (min_size > req_size)
1039                 return -EINVAL;
1040
1041         /* Now add one block to each for the header */
1042         req_size += 1;
1043         min_size += 1;
1044
1045         /* Find a free partition that will give us the maximum needed size 
1046            If can't find one that will give us the minimum size needed */
1047         list_for_each_entry(part, &nvram_partitions, partition) {
1048                 if (part->header.signature != NVRAM_SIG_FREE)
1049                         continue;
1050
1051                 if (part->header.length >= req_size) {
1052                         size = req_size;
1053                         free_part = part;
1054                         break;
1055                 }
1056                 if (part->header.length > size &&
1057                     part->header.length >= min_size) {
1058                         size = part->header.length;
1059                         free_part = part;
1060                 }
1061         }
1062         if (!size)
1063                 return -ENOSPC;
1064         
1065         /* Create our OS partition */
1066         new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1067         if (!new_part) {
1068                 pr_err("nvram_create_os_partition: kmalloc failed\n");
1069                 return -ENOMEM;
1070         }
1071
1072         new_part->index = free_part->index;
1073         new_part->header.signature = sig;
1074         new_part->header.length = size;
1075         strncpy(new_part->header.name, name, 12);
1076         new_part->header.checksum = nvram_checksum(&new_part->header);
1077
1078         rc = nvram_write_header(new_part);
1079         if (rc <= 0) {
1080                 pr_err("nvram_create_os_partition: nvram_write_header "
1081                        "failed (%d)\n", rc);
1082                 return rc;
1083         }
1084         list_add_tail(&new_part->partition, &free_part->partition);
1085
1086         /* Adjust or remove the partition we stole the space from */
1087         if (free_part->header.length > size) {
1088                 free_part->index += size * NVRAM_BLOCK_LEN;
1089                 free_part->header.length -= size;
1090                 free_part->header.checksum = nvram_checksum(&free_part->header);
1091                 rc = nvram_write_header(free_part);
1092                 if (rc <= 0) {
1093                         pr_err("nvram_create_os_partition: nvram_write_header "
1094                                "failed (%d)\n", rc);
1095                         return rc;
1096                 }
1097         } else {
1098                 list_del(&free_part->partition);
1099                 kfree(free_part);
1100         } 
1101
1102         /* Clear the new partition */
1103         for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1104              tmp_index <  ((size - 1) * NVRAM_BLOCK_LEN);
1105              tmp_index += NVRAM_BLOCK_LEN) {
1106                 rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1107                 if (rc <= 0) {
1108                         pr_err("nvram_create_partition: nvram_write failed (%d)\n", rc);
1109                         return rc;
1110                 }
1111         }
1112         
1113         return new_part->index + NVRAM_HEADER_LEN;
1114 }
1115
1116 /**
1117  * nvram_get_partition_size - Get the data size of an nvram partition
1118  * @data_index: This is the offset of the start of the data of
1119  *              the partition. The same value that is returned by
1120  *              nvram_create_partition().
1121  */
1122 int nvram_get_partition_size(loff_t data_index)
1123 {
1124         struct nvram_partition *part;
1125         
1126         list_for_each_entry(part, &nvram_partitions, partition) {
1127                 if (part->index + NVRAM_HEADER_LEN == data_index)
1128                         return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1129         }
1130         return -1;
1131 }
1132
1133
1134 /**
1135  * nvram_find_partition - Find an nvram partition by signature and name
1136  * @name: Name of the partition or NULL for any name
1137  * @sig: Signature to test against
1138  * @out_size: if non-NULL, returns the size of the data part of the partition
1139  */
1140 loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1141 {
1142         struct nvram_partition *p;
1143
1144         list_for_each_entry(p, &nvram_partitions, partition) {
1145                 if (p->header.signature == sig &&
1146                     (!name || !strncmp(p->header.name, name, 12))) {
1147                         if (out_size)
1148                                 *out_size = (p->header.length - 1) *
1149                                         NVRAM_BLOCK_LEN;
1150                         return p->index + NVRAM_HEADER_LEN;
1151                 }
1152         }
1153         return 0;
1154 }
1155
1156 int __init nvram_scan_partitions(void)
1157 {
1158         loff_t cur_index = 0;
1159         struct nvram_header phead;
1160         struct nvram_partition * tmp_part;
1161         unsigned char c_sum;
1162         char * header;
1163         int total_size;
1164         int err;
1165
1166         if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1167                 return -ENODEV;
1168         total_size = ppc_md.nvram_size();
1169         
1170         header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1171         if (!header) {
1172                 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1173                 return -ENOMEM;
1174         }
1175
1176         while (cur_index < total_size) {
1177
1178                 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1179                 if (err != NVRAM_HEADER_LEN) {
1180                         printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1181                                "nvram partitions\n");
1182                         goto out;
1183                 }
1184
1185                 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1186
1187                 memcpy(&phead, header, NVRAM_HEADER_LEN);
1188
1189                 phead.length = be16_to_cpu(phead.length);
1190
1191                 err = 0;
1192                 c_sum = nvram_checksum(&phead);
1193                 if (c_sum != phead.checksum) {
1194                         printk(KERN_WARNING "WARNING: nvram partition checksum"
1195                                " was %02x, should be %02x!\n",
1196                                phead.checksum, c_sum);
1197                         printk(KERN_WARNING "Terminating nvram partition scan\n");
1198                         goto out;
1199                 }
1200                 if (!phead.length) {
1201                         printk(KERN_WARNING "WARNING: nvram corruption "
1202                                "detected: 0-length partition\n");
1203                         goto out;
1204                 }
1205                 tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1206                 err = -ENOMEM;
1207                 if (!tmp_part) {
1208                         printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1209                         goto out;
1210                 }
1211                 
1212                 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1213                 tmp_part->index = cur_index;
1214                 list_add_tail(&tmp_part->partition, &nvram_partitions);
1215                 
1216                 cur_index += phead.length * NVRAM_BLOCK_LEN;
1217         }
1218         err = 0;
1219
1220 #ifdef DEBUG_NVRAM
1221         nvram_print_partitions("NVRAM Partitions");
1222 #endif
1223
1224  out:
1225         kfree(header);
1226         return err;
1227 }
1228
1229 static int __init nvram_init(void)
1230 {
1231         int rc;
1232         
1233         BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1234
1235         if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1236                 return  -ENODEV;
1237
1238         rc = misc_register(&nvram_dev);
1239         if (rc != 0) {
1240                 printk(KERN_ERR "nvram_init: failed to register device\n");
1241                 return rc;
1242         }
1243         
1244         return rc;
1245 }
1246
1247 static void __exit nvram_cleanup(void)
1248 {
1249         misc_deregister( &nvram_dev );
1250 }
1251
1252 module_init(nvram_init);
1253 module_exit(nvram_cleanup);
1254 MODULE_LICENSE("GPL");