Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / include / asm / dma.h
1 #ifndef _ASM_POWERPC_DMA_H
2 #define _ASM_POWERPC_DMA_H
3 #ifdef __KERNEL__
4
5 /*
6  * Defines for using and allocating dma channels.
7  * Written by Hennus Bergman, 1992.
8  * High DMA channel support & info by Hannu Savolainen
9  * and John Boyd, Nov. 1992.
10  * Changes for ppc sound by Christoph Nadig
11  */
12
13 /*
14  * Note: Adapted for PowerPC by Gary Thomas
15  * Modified by Cort Dougan <cort@cs.nmt.edu>
16  *
17  * None of this really applies for Power Macintoshes.  There is
18  * basically just enough here to get kernel/dma.c to compile.
19  */
20
21 #include <asm/io.h>
22 #include <linux/spinlock.h>
23
24 #ifndef MAX_DMA_CHANNELS
25 #define MAX_DMA_CHANNELS        8
26 #endif
27
28 /* The maximum address that we can perform a DMA transfer to on this platform */
29 /* Doesn't really apply... */
30 #define MAX_DMA_ADDRESS         (~0UL)
31
32 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
33 #define dma_outb        outb_p
34 #else
35 #define dma_outb        outb
36 #endif
37
38 #define dma_inb         inb
39
40 /*
41  * NOTES about DMA transfers:
42  *
43  *  controller 1: channels 0-3, byte operations, ports 00-1F
44  *  controller 2: channels 4-7, word operations, ports C0-DF
45  *
46  *  - ALL registers are 8 bits only, regardless of transfer size
47  *  - channel 4 is not used - cascades 1 into 2.
48  *  - channels 0-3 are byte - addresses/counts are for physical bytes
49  *  - channels 5-7 are word - addresses/counts are for physical words
50  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
51  *  - transfer count loaded to registers is 1 less than actual count
52  *  - controller 2 offsets are all even (2x offsets for controller 1)
53  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
54  *  - page registers for 0-3 use bit 0, represent 64K pages
55  *
56  * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
57  * Note that addresses loaded into registers must be _physical_ addresses,
58  * not logical addresses (which may differ if paging is active).
59  *
60  *  Address mapping for channels 0-3:
61  *
62  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
63  *    |  ...  |   |  ... |   |  ... |
64  *    |  ...  |   |  ... |   |  ... |
65  *    |  ...  |   |  ... |   |  ... |
66  *   P7  ...  P0  A7 ... A0  A7 ... A0
67  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
68  *
69  *  Address mapping for channels 5-7:
70  *
71  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
72  *    |  ...  |   \   \   ... \  \  \  ... \  \
73  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
74  *    |  ...  |     \   \   ... \  \  \  ... \
75  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
76  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
77  *
78  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
79  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
80  * the hardware level, so odd-byte transfers aren't possible).
81  *
82  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
83  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
84  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
85  *
86  */
87
88 /* 8237 DMA controllers */
89 #define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
90 #define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
91
92 /* DMA controller registers */
93 #define DMA1_CMD_REG            0x08    /* command register (w) */
94 #define DMA1_STAT_REG           0x08    /* status register (r) */
95 #define DMA1_REQ_REG            0x09    /* request register (w) */
96 #define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
97 #define DMA1_MODE_REG           0x0B    /* mode register (w) */
98 #define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
99 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
100 #define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
101 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
102 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
103
104 #define DMA2_CMD_REG            0xD0    /* command register (w) */
105 #define DMA2_STAT_REG           0xD0    /* status register (r) */
106 #define DMA2_REQ_REG            0xD2    /* request register (w) */
107 #define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
108 #define DMA2_MODE_REG           0xD6    /* mode register (w) */
109 #define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
110 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
111 #define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
112 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
113 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
114
115 #define DMA_ADDR_0              0x00    /* DMA address registers */
116 #define DMA_ADDR_1              0x02
117 #define DMA_ADDR_2              0x04
118 #define DMA_ADDR_3              0x06
119 #define DMA_ADDR_4              0xC0
120 #define DMA_ADDR_5              0xC4
121 #define DMA_ADDR_6              0xC8
122 #define DMA_ADDR_7              0xCC
123
124 #define DMA_CNT_0               0x01    /* DMA count registers */
125 #define DMA_CNT_1               0x03
126 #define DMA_CNT_2               0x05
127 #define DMA_CNT_3               0x07
128 #define DMA_CNT_4               0xC2
129 #define DMA_CNT_5               0xC6
130 #define DMA_CNT_6               0xCA
131 #define DMA_CNT_7               0xCE
132
133 #define DMA_LO_PAGE_0           0x87    /* DMA page registers */
134 #define DMA_LO_PAGE_1           0x83
135 #define DMA_LO_PAGE_2           0x81
136 #define DMA_LO_PAGE_3           0x82
137 #define DMA_LO_PAGE_5           0x8B
138 #define DMA_LO_PAGE_6           0x89
139 #define DMA_LO_PAGE_7           0x8A
140
141 #define DMA_HI_PAGE_0           0x487   /* DMA page registers */
142 #define DMA_HI_PAGE_1           0x483
143 #define DMA_HI_PAGE_2           0x481
144 #define DMA_HI_PAGE_3           0x482
145 #define DMA_HI_PAGE_5           0x48B
146 #define DMA_HI_PAGE_6           0x489
147 #define DMA_HI_PAGE_7           0x48A
148
149 #define DMA1_EXT_REG            0x40B
150 #define DMA2_EXT_REG            0x4D6
151
152 #ifndef __powerpc64__
153     /* in arch/ppc/kernel/setup.c -- Cort */
154     extern unsigned int DMA_MODE_WRITE;
155     extern unsigned int DMA_MODE_READ;
156     extern unsigned long ISA_DMA_THRESHOLD;
157 #else
158     #define DMA_MODE_READ       0x44    /* I/O to memory, no autoinit, increment, single mode */
159     #define DMA_MODE_WRITE      0x48    /* memory to I/O, no autoinit, increment, single mode */
160 #endif
161
162 #define DMA_MODE_CASCADE        0xC0    /* pass thru DREQ->HRQ, DACK<-HLDA only */
163
164 #define DMA_AUTOINIT            0x10
165
166 extern spinlock_t dma_spin_lock;
167
168 static __inline__ unsigned long claim_dma_lock(void)
169 {
170         unsigned long flags;
171         spin_lock_irqsave(&dma_spin_lock, flags);
172         return flags;
173 }
174
175 static __inline__ void release_dma_lock(unsigned long flags)
176 {
177         spin_unlock_irqrestore(&dma_spin_lock, flags);
178 }
179
180 /* enable/disable a specific DMA channel */
181 static __inline__ void enable_dma(unsigned int dmanr)
182 {
183         unsigned char ucDmaCmd = 0x00;
184
185         if (dmanr != 4) {
186                 dma_outb(0, DMA2_MASK_REG);     /* This may not be enabled */
187                 dma_outb(ucDmaCmd, DMA2_CMD_REG);       /* Enable group */
188         }
189         if (dmanr <= 3) {
190                 dma_outb(dmanr, DMA1_MASK_REG);
191                 dma_outb(ucDmaCmd, DMA1_CMD_REG);       /* Enable group */
192         } else {
193                 dma_outb(dmanr & 3, DMA2_MASK_REG);
194         }
195 }
196
197 static __inline__ void disable_dma(unsigned int dmanr)
198 {
199         if (dmanr <= 3)
200                 dma_outb(dmanr | 4, DMA1_MASK_REG);
201         else
202                 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
203 }
204
205 /* Clear the 'DMA Pointer Flip Flop'.
206  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
207  * Use this once to initialize the FF to a known state.
208  * After that, keep track of it. :-)
209  * --- In order to do that, the DMA routines below should ---
210  * --- only be used while interrupts are disabled! ---
211  */
212 static __inline__ void clear_dma_ff(unsigned int dmanr)
213 {
214         if (dmanr <= 3)
215                 dma_outb(0, DMA1_CLEAR_FF_REG);
216         else
217                 dma_outb(0, DMA2_CLEAR_FF_REG);
218 }
219
220 /* set mode (above) for a specific DMA channel */
221 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
222 {
223         if (dmanr <= 3)
224                 dma_outb(mode | dmanr, DMA1_MODE_REG);
225         else
226                 dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
227 }
228
229 /* Set only the page register bits of the transfer address.
230  * This is used for successive transfers when we know the contents of
231  * the lower 16 bits of the DMA current address register, but a 64k boundary
232  * may have been crossed.
233  */
234 static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
235 {
236         switch (dmanr) {
237         case 0:
238                 dma_outb(pagenr, DMA_LO_PAGE_0);
239                 dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
240                 break;
241         case 1:
242                 dma_outb(pagenr, DMA_LO_PAGE_1);
243                 dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
244                 break;
245         case 2:
246                 dma_outb(pagenr, DMA_LO_PAGE_2);
247                 dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
248                 break;
249         case 3:
250                 dma_outb(pagenr, DMA_LO_PAGE_3);
251                 dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
252                 break;
253         case 5:
254                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
255                 dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
256                 break;
257         case 6:
258                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
259                 dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
260                 break;
261         case 7:
262                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
263                 dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
264                 break;
265         }
266 }
267
268 /* Set transfer address & page bits for specific DMA channel.
269  * Assumes dma flipflop is clear.
270  */
271 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
272 {
273         if (dmanr <= 3) {
274                 dma_outb(phys & 0xff,
275                          ((dmanr & 3) << 1) + IO_DMA1_BASE);
276                 dma_outb((phys >> 8) & 0xff,
277                          ((dmanr & 3) << 1) + IO_DMA1_BASE);
278         } else {
279                 dma_outb((phys >> 1) & 0xff,
280                          ((dmanr & 3) << 2) + IO_DMA2_BASE);
281                 dma_outb((phys >> 9) & 0xff,
282                          ((dmanr & 3) << 2) + IO_DMA2_BASE);
283         }
284         set_dma_page(dmanr, phys >> 16);
285 }
286
287
288 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
289  * a specific DMA channel.
290  * You must ensure the parameters are valid.
291  * NOTE: from a manual: "the number of transfers is one more
292  * than the initial word count"! This is taken into account.
293  * Assumes dma flip-flop is clear.
294  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
295  */
296 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
297 {
298         count--;
299         if (dmanr <= 3) {
300                 dma_outb(count & 0xff,
301                          ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
302                 dma_outb((count >> 8) & 0xff,
303                          ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
304         } else {
305                 dma_outb((count >> 1) & 0xff,
306                          ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
307                 dma_outb((count >> 9) & 0xff,
308                          ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
309         }
310 }
311
312
313 /* Get DMA residue count. After a DMA transfer, this
314  * should return zero. Reading this while a DMA transfer is
315  * still in progress will return unpredictable results.
316  * If called before the channel has been used, it may return 1.
317  * Otherwise, it returns the number of _bytes_ left to transfer.
318  *
319  * Assumes DMA flip-flop is clear.
320  */
321 static __inline__ int get_dma_residue(unsigned int dmanr)
322 {
323         unsigned int io_port = (dmanr <= 3)
324             ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
325             : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
326
327         /* using short to get 16-bit wrap around */
328         unsigned short count;
329
330         count = 1 + dma_inb(io_port);
331         count += dma_inb(io_port) << 8;
332
333         return (dmanr <= 3) ? count : (count << 1);
334 }
335
336 /* These are in kernel/dma.c: */
337
338 /* reserve a DMA channel */
339 extern int request_dma(unsigned int dmanr, const char *device_id);
340 /* release it again */
341 extern void free_dma(unsigned int dmanr);
342
343 #ifdef CONFIG_PCI
344 extern int isa_dma_bridge_buggy;
345 #else
346 #define isa_dma_bridge_buggy    (0)
347 #endif
348
349 #endif /* __KERNEL__ */
350 #endif  /* _ASM_POWERPC_DMA_H */