Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100     /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
40         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
41         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
42         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
43         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
45         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
46         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
47         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
49         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
50         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
51         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
52         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
53         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
54         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
55         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
59         {NULL}
60 };
61
62 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
63 {
64         int i;
65
66         for_each_possible_cpu(i) {
67                 vcpu->arch.guest_kernel_asid[i] = 0;
68                 vcpu->arch.guest_user_asid[i] = 0;
69         }
70
71         return 0;
72 }
73
74 /*
75  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
76  * Config7, so we are "runnable" if interrupts are pending
77  */
78 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
79 {
80         return !!(vcpu->arch.pending_exceptions);
81 }
82
83 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
84 {
85         return 1;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_hardware_setup(void)
94 {
95         return 0;
96 }
97
98 void kvm_arch_check_processor_compat(void *rtn)
99 {
100         *(int *)rtn = 0;
101 }
102
103 static void kvm_mips_init_tlbs(struct kvm *kvm)
104 {
105         unsigned long wired;
106
107         /*
108          * Add a wired entry to the TLB, it is used to map the commpage to
109          * the Guest kernel
110          */
111         wired = read_c0_wired();
112         write_c0_wired(wired + 1);
113         mtc0_tlbw_hazard();
114         kvm->arch.commpage_tlb = wired;
115
116         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
117                   kvm->arch.commpage_tlb);
118 }
119
120 static void kvm_mips_init_vm_percpu(void *arg)
121 {
122         struct kvm *kvm = (struct kvm *)arg;
123
124         kvm_mips_init_tlbs(kvm);
125         kvm_mips_callbacks->vm_init(kvm);
126
127 }
128
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131         if (atomic_inc_return(&kvm_mips_instance) == 1) {
132                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
133                           __func__);
134                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
135         }
136
137         return 0;
138 }
139
140 void kvm_mips_free_vcpus(struct kvm *kvm)
141 {
142         unsigned int i;
143         struct kvm_vcpu *vcpu;
144
145         /* Put the pages we reserved for the guest pmap */
146         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
147                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
148                         kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
149         }
150         kfree(kvm->arch.guest_pmap);
151
152         kvm_for_each_vcpu(i, vcpu, kvm) {
153                 kvm_arch_vcpu_free(vcpu);
154         }
155
156         mutex_lock(&kvm->lock);
157
158         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
159                 kvm->vcpus[i] = NULL;
160
161         atomic_set(&kvm->online_vcpus, 0);
162
163         mutex_unlock(&kvm->lock);
164 }
165
166 static void kvm_mips_uninit_tlbs(void *arg)
167 {
168         /* Restore wired count */
169         write_c0_wired(0);
170         mtc0_tlbw_hazard();
171         /* Clear out all the TLBs */
172         kvm_local_flush_tlb_all();
173 }
174
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177         kvm_mips_free_vcpus(kvm);
178
179         /* If this is the last instance, restore wired count */
180         if (atomic_dec_return(&kvm_mips_instance) == 0) {
181                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
182                           __func__);
183                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
184         }
185 }
186
187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188                         unsigned long arg)
189 {
190         return -ENOIOCTLCMD;
191 }
192
193 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
194                             unsigned long npages)
195 {
196         return 0;
197 }
198
199 int kvm_arch_prepare_memory_region(struct kvm *kvm,
200                                    struct kvm_memory_slot *memslot,
201                                    struct kvm_userspace_memory_region *mem,
202                                    enum kvm_mr_change change)
203 {
204         return 0;
205 }
206
207 void kvm_arch_commit_memory_region(struct kvm *kvm,
208                                    struct kvm_userspace_memory_region *mem,
209                                    const struct kvm_memory_slot *old,
210                                    enum kvm_mr_change change)
211 {
212         unsigned long npages = 0;
213         int i;
214
215         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
216                   __func__, kvm, mem->slot, mem->guest_phys_addr,
217                   mem->memory_size, mem->userspace_addr);
218
219         /* Setup Guest PMAP table */
220         if (!kvm->arch.guest_pmap) {
221                 if (mem->slot == 0)
222                         npages = mem->memory_size >> PAGE_SHIFT;
223
224                 if (npages) {
225                         kvm->arch.guest_pmap_npages = npages;
226                         kvm->arch.guest_pmap =
227                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
228
229                         if (!kvm->arch.guest_pmap) {
230                                 kvm_err("Failed to allocate guest PMAP");
231                                 return;
232                         }
233
234                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
235                                   npages, kvm->arch.guest_pmap);
236
237                         /* Now setup the page table */
238                         for (i = 0; i < npages; i++)
239                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
240                 }
241         }
242 }
243
244 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
245 {
246         int err, size, offset;
247         void *gebase;
248         int i;
249
250         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
251
252         if (!vcpu) {
253                 err = -ENOMEM;
254                 goto out;
255         }
256
257         err = kvm_vcpu_init(vcpu, kvm, id);
258
259         if (err)
260                 goto out_free_cpu;
261
262         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
263
264         /*
265          * Allocate space for host mode exception handlers that handle
266          * guest mode exits
267          */
268         if (cpu_has_veic || cpu_has_vint)
269                 size = 0x200 + VECTORSPACING * 64;
270         else
271                 size = 0x4000;
272
273         /* Save Linux EBASE */
274         vcpu->arch.host_ebase = (void *)read_c0_ebase();
275
276         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
277
278         if (!gebase) {
279                 err = -ENOMEM;
280                 goto out_free_cpu;
281         }
282         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
283                   ALIGN(size, PAGE_SIZE), gebase);
284
285         /* Save new ebase */
286         vcpu->arch.guest_ebase = gebase;
287
288         /* Copy L1 Guest Exception handler to correct offset */
289
290         /* TLB Refill, EXL = 0 */
291         memcpy(gebase, mips32_exception,
292                mips32_exceptionEnd - mips32_exception);
293
294         /* General Exception Entry point */
295         memcpy(gebase + 0x180, mips32_exception,
296                mips32_exceptionEnd - mips32_exception);
297
298         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
299         for (i = 0; i < 8; i++) {
300                 kvm_debug("L1 Vectored handler @ %p\n",
301                           gebase + 0x200 + (i * VECTORSPACING));
302                 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
303                        mips32_exceptionEnd - mips32_exception);
304         }
305
306         /* General handler, relocate to unmapped space for sanity's sake */
307         offset = 0x2000;
308         kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
309                   gebase + offset,
310                   mips32_GuestExceptionEnd - mips32_GuestException);
311
312         memcpy(gebase + offset, mips32_GuestException,
313                mips32_GuestExceptionEnd - mips32_GuestException);
314
315         /* Invalidate the icache for these ranges */
316         local_flush_icache_range((unsigned long)gebase,
317                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
318
319         /*
320          * Allocate comm page for guest kernel, a TLB will be reserved for
321          * mapping GVA @ 0xFFFF8000 to this page
322          */
323         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
324
325         if (!vcpu->arch.kseg0_commpage) {
326                 err = -ENOMEM;
327                 goto out_free_gebase;
328         }
329
330         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
331         kvm_mips_commpage_init(vcpu);
332
333         /* Init */
334         vcpu->arch.last_sched_cpu = -1;
335
336         /* Start off the timer */
337         kvm_mips_init_count(vcpu);
338
339         return vcpu;
340
341 out_free_gebase:
342         kfree(gebase);
343
344 out_free_cpu:
345         kfree(vcpu);
346
347 out:
348         return ERR_PTR(err);
349 }
350
351 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
352 {
353         hrtimer_cancel(&vcpu->arch.comparecount_timer);
354
355         kvm_vcpu_uninit(vcpu);
356
357         kvm_mips_dump_stats(vcpu);
358
359         kfree(vcpu->arch.guest_ebase);
360         kfree(vcpu->arch.kseg0_commpage);
361         kfree(vcpu);
362 }
363
364 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
365 {
366         kvm_arch_vcpu_free(vcpu);
367 }
368
369 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
370                                         struct kvm_guest_debug *dbg)
371 {
372         return -ENOIOCTLCMD;
373 }
374
375 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
376 {
377         int r = 0;
378         sigset_t sigsaved;
379
380         if (vcpu->sigset_active)
381                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
382
383         if (vcpu->mmio_needed) {
384                 if (!vcpu->mmio_is_write)
385                         kvm_mips_complete_mmio_load(vcpu, run);
386                 vcpu->mmio_needed = 0;
387         }
388
389         lose_fpu(1);
390
391         local_irq_disable();
392         /* Check if we have any exceptions/interrupts pending */
393         kvm_mips_deliver_interrupts(vcpu,
394                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
395
396         kvm_guest_enter();
397
398         /* Disable hardware page table walking while in guest */
399         htw_stop();
400
401         r = __kvm_mips_vcpu_run(run, vcpu);
402
403         /* Re-enable HTW before enabling interrupts */
404         htw_start();
405
406         kvm_guest_exit();
407         local_irq_enable();
408
409         if (vcpu->sigset_active)
410                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
411
412         return r;
413 }
414
415 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
416                              struct kvm_mips_interrupt *irq)
417 {
418         int intr = (int)irq->irq;
419         struct kvm_vcpu *dvcpu = NULL;
420
421         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
422                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
423                           (int)intr);
424
425         if (irq->cpu == -1)
426                 dvcpu = vcpu;
427         else
428                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
429
430         if (intr == 2 || intr == 3 || intr == 4) {
431                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
432
433         } else if (intr == -2 || intr == -3 || intr == -4) {
434                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
435         } else {
436                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
437                         irq->cpu, irq->irq);
438                 return -EINVAL;
439         }
440
441         dvcpu->arch.wait = 0;
442
443         if (waitqueue_active(&dvcpu->wq))
444                 wake_up_interruptible(&dvcpu->wq);
445
446         return 0;
447 }
448
449 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
450                                     struct kvm_mp_state *mp_state)
451 {
452         return -ENOIOCTLCMD;
453 }
454
455 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
456                                     struct kvm_mp_state *mp_state)
457 {
458         return -ENOIOCTLCMD;
459 }
460
461 static u64 kvm_mips_get_one_regs[] = {
462         KVM_REG_MIPS_R0,
463         KVM_REG_MIPS_R1,
464         KVM_REG_MIPS_R2,
465         KVM_REG_MIPS_R3,
466         KVM_REG_MIPS_R4,
467         KVM_REG_MIPS_R5,
468         KVM_REG_MIPS_R6,
469         KVM_REG_MIPS_R7,
470         KVM_REG_MIPS_R8,
471         KVM_REG_MIPS_R9,
472         KVM_REG_MIPS_R10,
473         KVM_REG_MIPS_R11,
474         KVM_REG_MIPS_R12,
475         KVM_REG_MIPS_R13,
476         KVM_REG_MIPS_R14,
477         KVM_REG_MIPS_R15,
478         KVM_REG_MIPS_R16,
479         KVM_REG_MIPS_R17,
480         KVM_REG_MIPS_R18,
481         KVM_REG_MIPS_R19,
482         KVM_REG_MIPS_R20,
483         KVM_REG_MIPS_R21,
484         KVM_REG_MIPS_R22,
485         KVM_REG_MIPS_R23,
486         KVM_REG_MIPS_R24,
487         KVM_REG_MIPS_R25,
488         KVM_REG_MIPS_R26,
489         KVM_REG_MIPS_R27,
490         KVM_REG_MIPS_R28,
491         KVM_REG_MIPS_R29,
492         KVM_REG_MIPS_R30,
493         KVM_REG_MIPS_R31,
494
495         KVM_REG_MIPS_HI,
496         KVM_REG_MIPS_LO,
497         KVM_REG_MIPS_PC,
498
499         KVM_REG_MIPS_CP0_INDEX,
500         KVM_REG_MIPS_CP0_CONTEXT,
501         KVM_REG_MIPS_CP0_USERLOCAL,
502         KVM_REG_MIPS_CP0_PAGEMASK,
503         KVM_REG_MIPS_CP0_WIRED,
504         KVM_REG_MIPS_CP0_HWRENA,
505         KVM_REG_MIPS_CP0_BADVADDR,
506         KVM_REG_MIPS_CP0_COUNT,
507         KVM_REG_MIPS_CP0_ENTRYHI,
508         KVM_REG_MIPS_CP0_COMPARE,
509         KVM_REG_MIPS_CP0_STATUS,
510         KVM_REG_MIPS_CP0_CAUSE,
511         KVM_REG_MIPS_CP0_EPC,
512         KVM_REG_MIPS_CP0_PRID,
513         KVM_REG_MIPS_CP0_CONFIG,
514         KVM_REG_MIPS_CP0_CONFIG1,
515         KVM_REG_MIPS_CP0_CONFIG2,
516         KVM_REG_MIPS_CP0_CONFIG3,
517         KVM_REG_MIPS_CP0_CONFIG4,
518         KVM_REG_MIPS_CP0_CONFIG5,
519         KVM_REG_MIPS_CP0_CONFIG7,
520         KVM_REG_MIPS_CP0_ERROREPC,
521
522         KVM_REG_MIPS_COUNT_CTL,
523         KVM_REG_MIPS_COUNT_RESUME,
524         KVM_REG_MIPS_COUNT_HZ,
525 };
526
527 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
528                             const struct kvm_one_reg *reg)
529 {
530         struct mips_coproc *cop0 = vcpu->arch.cop0;
531         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
532         int ret;
533         s64 v;
534         s64 vs[2];
535         unsigned int idx;
536
537         switch (reg->id) {
538         /* General purpose registers */
539         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
540                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
541                 break;
542         case KVM_REG_MIPS_HI:
543                 v = (long)vcpu->arch.hi;
544                 break;
545         case KVM_REG_MIPS_LO:
546                 v = (long)vcpu->arch.lo;
547                 break;
548         case KVM_REG_MIPS_PC:
549                 v = (long)vcpu->arch.pc;
550                 break;
551
552         /* Floating point registers */
553         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
554                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
555                         return -EINVAL;
556                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
557                 /* Odd singles in top of even double when FR=0 */
558                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
559                         v = get_fpr32(&fpu->fpr[idx], 0);
560                 else
561                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
562                 break;
563         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
564                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
565                         return -EINVAL;
566                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
567                 /* Can't access odd doubles in FR=0 mode */
568                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
569                         return -EINVAL;
570                 v = get_fpr64(&fpu->fpr[idx], 0);
571                 break;
572         case KVM_REG_MIPS_FCR_IR:
573                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
574                         return -EINVAL;
575                 v = boot_cpu_data.fpu_id;
576                 break;
577         case KVM_REG_MIPS_FCR_CSR:
578                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
579                         return -EINVAL;
580                 v = fpu->fcr31;
581                 break;
582
583         /* MIPS SIMD Architecture (MSA) registers */
584         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
585                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
586                         return -EINVAL;
587                 /* Can't access MSA registers in FR=0 mode */
588                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
589                         return -EINVAL;
590                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
591 #ifdef CONFIG_CPU_LITTLE_ENDIAN
592                 /* least significant byte first */
593                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
594                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
595 #else
596                 /* most significant byte first */
597                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
598                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
599 #endif
600                 break;
601         case KVM_REG_MIPS_MSA_IR:
602                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
603                         return -EINVAL;
604                 v = boot_cpu_data.msa_id;
605                 break;
606         case KVM_REG_MIPS_MSA_CSR:
607                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
608                         return -EINVAL;
609                 v = fpu->msacsr;
610                 break;
611
612         /* Co-processor 0 registers */
613         case KVM_REG_MIPS_CP0_INDEX:
614                 v = (long)kvm_read_c0_guest_index(cop0);
615                 break;
616         case KVM_REG_MIPS_CP0_CONTEXT:
617                 v = (long)kvm_read_c0_guest_context(cop0);
618                 break;
619         case KVM_REG_MIPS_CP0_USERLOCAL:
620                 v = (long)kvm_read_c0_guest_userlocal(cop0);
621                 break;
622         case KVM_REG_MIPS_CP0_PAGEMASK:
623                 v = (long)kvm_read_c0_guest_pagemask(cop0);
624                 break;
625         case KVM_REG_MIPS_CP0_WIRED:
626                 v = (long)kvm_read_c0_guest_wired(cop0);
627                 break;
628         case KVM_REG_MIPS_CP0_HWRENA:
629                 v = (long)kvm_read_c0_guest_hwrena(cop0);
630                 break;
631         case KVM_REG_MIPS_CP0_BADVADDR:
632                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
633                 break;
634         case KVM_REG_MIPS_CP0_ENTRYHI:
635                 v = (long)kvm_read_c0_guest_entryhi(cop0);
636                 break;
637         case KVM_REG_MIPS_CP0_COMPARE:
638                 v = (long)kvm_read_c0_guest_compare(cop0);
639                 break;
640         case KVM_REG_MIPS_CP0_STATUS:
641                 v = (long)kvm_read_c0_guest_status(cop0);
642                 break;
643         case KVM_REG_MIPS_CP0_CAUSE:
644                 v = (long)kvm_read_c0_guest_cause(cop0);
645                 break;
646         case KVM_REG_MIPS_CP0_EPC:
647                 v = (long)kvm_read_c0_guest_epc(cop0);
648                 break;
649         case KVM_REG_MIPS_CP0_PRID:
650                 v = (long)kvm_read_c0_guest_prid(cop0);
651                 break;
652         case KVM_REG_MIPS_CP0_CONFIG:
653                 v = (long)kvm_read_c0_guest_config(cop0);
654                 break;
655         case KVM_REG_MIPS_CP0_CONFIG1:
656                 v = (long)kvm_read_c0_guest_config1(cop0);
657                 break;
658         case KVM_REG_MIPS_CP0_CONFIG2:
659                 v = (long)kvm_read_c0_guest_config2(cop0);
660                 break;
661         case KVM_REG_MIPS_CP0_CONFIG3:
662                 v = (long)kvm_read_c0_guest_config3(cop0);
663                 break;
664         case KVM_REG_MIPS_CP0_CONFIG4:
665                 v = (long)kvm_read_c0_guest_config4(cop0);
666                 break;
667         case KVM_REG_MIPS_CP0_CONFIG5:
668                 v = (long)kvm_read_c0_guest_config5(cop0);
669                 break;
670         case KVM_REG_MIPS_CP0_CONFIG7:
671                 v = (long)kvm_read_c0_guest_config7(cop0);
672                 break;
673         case KVM_REG_MIPS_CP0_ERROREPC:
674                 v = (long)kvm_read_c0_guest_errorepc(cop0);
675                 break;
676         /* registers to be handled specially */
677         case KVM_REG_MIPS_CP0_COUNT:
678         case KVM_REG_MIPS_COUNT_CTL:
679         case KVM_REG_MIPS_COUNT_RESUME:
680         case KVM_REG_MIPS_COUNT_HZ:
681                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
682                 if (ret)
683                         return ret;
684                 break;
685         default:
686                 return -EINVAL;
687         }
688         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
689                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
690
691                 return put_user(v, uaddr64);
692         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
693                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
694                 u32 v32 = (u32)v;
695
696                 return put_user(v32, uaddr32);
697         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
698                 void __user *uaddr = (void __user *)(long)reg->addr;
699
700                 return copy_to_user(uaddr, vs, 16);
701         } else {
702                 return -EINVAL;
703         }
704 }
705
706 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
707                             const struct kvm_one_reg *reg)
708 {
709         struct mips_coproc *cop0 = vcpu->arch.cop0;
710         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
711         s64 v;
712         s64 vs[2];
713         unsigned int idx;
714
715         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
716                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
717
718                 if (get_user(v, uaddr64) != 0)
719                         return -EFAULT;
720         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
721                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
722                 s32 v32;
723
724                 if (get_user(v32, uaddr32) != 0)
725                         return -EFAULT;
726                 v = (s64)v32;
727         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
728                 void __user *uaddr = (void __user *)(long)reg->addr;
729
730                 return copy_from_user(vs, uaddr, 16);
731         } else {
732                 return -EINVAL;
733         }
734
735         switch (reg->id) {
736         /* General purpose registers */
737         case KVM_REG_MIPS_R0:
738                 /* Silently ignore requests to set $0 */
739                 break;
740         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
741                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
742                 break;
743         case KVM_REG_MIPS_HI:
744                 vcpu->arch.hi = v;
745                 break;
746         case KVM_REG_MIPS_LO:
747                 vcpu->arch.lo = v;
748                 break;
749         case KVM_REG_MIPS_PC:
750                 vcpu->arch.pc = v;
751                 break;
752
753         /* Floating point registers */
754         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
755                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
756                         return -EINVAL;
757                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
758                 /* Odd singles in top of even double when FR=0 */
759                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
760                         set_fpr32(&fpu->fpr[idx], 0, v);
761                 else
762                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
763                 break;
764         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
765                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
766                         return -EINVAL;
767                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
768                 /* Can't access odd doubles in FR=0 mode */
769                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
770                         return -EINVAL;
771                 set_fpr64(&fpu->fpr[idx], 0, v);
772                 break;
773         case KVM_REG_MIPS_FCR_IR:
774                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
775                         return -EINVAL;
776                 /* Read-only */
777                 break;
778         case KVM_REG_MIPS_FCR_CSR:
779                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
780                         return -EINVAL;
781                 fpu->fcr31 = v;
782                 break;
783
784         /* MIPS SIMD Architecture (MSA) registers */
785         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
786                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
787                         return -EINVAL;
788                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
789 #ifdef CONFIG_CPU_LITTLE_ENDIAN
790                 /* least significant byte first */
791                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
792                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
793 #else
794                 /* most significant byte first */
795                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
796                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
797 #endif
798                 break;
799         case KVM_REG_MIPS_MSA_IR:
800                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
801                         return -EINVAL;
802                 /* Read-only */
803                 break;
804         case KVM_REG_MIPS_MSA_CSR:
805                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
806                         return -EINVAL;
807                 fpu->msacsr = v;
808                 break;
809
810         /* Co-processor 0 registers */
811         case KVM_REG_MIPS_CP0_INDEX:
812                 kvm_write_c0_guest_index(cop0, v);
813                 break;
814         case KVM_REG_MIPS_CP0_CONTEXT:
815                 kvm_write_c0_guest_context(cop0, v);
816                 break;
817         case KVM_REG_MIPS_CP0_USERLOCAL:
818                 kvm_write_c0_guest_userlocal(cop0, v);
819                 break;
820         case KVM_REG_MIPS_CP0_PAGEMASK:
821                 kvm_write_c0_guest_pagemask(cop0, v);
822                 break;
823         case KVM_REG_MIPS_CP0_WIRED:
824                 kvm_write_c0_guest_wired(cop0, v);
825                 break;
826         case KVM_REG_MIPS_CP0_HWRENA:
827                 kvm_write_c0_guest_hwrena(cop0, v);
828                 break;
829         case KVM_REG_MIPS_CP0_BADVADDR:
830                 kvm_write_c0_guest_badvaddr(cop0, v);
831                 break;
832         case KVM_REG_MIPS_CP0_ENTRYHI:
833                 kvm_write_c0_guest_entryhi(cop0, v);
834                 break;
835         case KVM_REG_MIPS_CP0_STATUS:
836                 kvm_write_c0_guest_status(cop0, v);
837                 break;
838         case KVM_REG_MIPS_CP0_EPC:
839                 kvm_write_c0_guest_epc(cop0, v);
840                 break;
841         case KVM_REG_MIPS_CP0_PRID:
842                 kvm_write_c0_guest_prid(cop0, v);
843                 break;
844         case KVM_REG_MIPS_CP0_ERROREPC:
845                 kvm_write_c0_guest_errorepc(cop0, v);
846                 break;
847         /* registers to be handled specially */
848         case KVM_REG_MIPS_CP0_COUNT:
849         case KVM_REG_MIPS_CP0_COMPARE:
850         case KVM_REG_MIPS_CP0_CAUSE:
851         case KVM_REG_MIPS_CP0_CONFIG:
852         case KVM_REG_MIPS_CP0_CONFIG1:
853         case KVM_REG_MIPS_CP0_CONFIG2:
854         case KVM_REG_MIPS_CP0_CONFIG3:
855         case KVM_REG_MIPS_CP0_CONFIG4:
856         case KVM_REG_MIPS_CP0_CONFIG5:
857         case KVM_REG_MIPS_COUNT_CTL:
858         case KVM_REG_MIPS_COUNT_RESUME:
859         case KVM_REG_MIPS_COUNT_HZ:
860                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
861         default:
862                 return -EINVAL;
863         }
864         return 0;
865 }
866
867 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
868                                      struct kvm_enable_cap *cap)
869 {
870         int r = 0;
871
872         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
873                 return -EINVAL;
874         if (cap->flags)
875                 return -EINVAL;
876         if (cap->args[0])
877                 return -EINVAL;
878
879         switch (cap->cap) {
880         case KVM_CAP_MIPS_FPU:
881                 vcpu->arch.fpu_enabled = true;
882                 break;
883         case KVM_CAP_MIPS_MSA:
884                 vcpu->arch.msa_enabled = true;
885                 break;
886         default:
887                 r = -EINVAL;
888                 break;
889         }
890
891         return r;
892 }
893
894 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
895                          unsigned long arg)
896 {
897         struct kvm_vcpu *vcpu = filp->private_data;
898         void __user *argp = (void __user *)arg;
899         long r;
900
901         switch (ioctl) {
902         case KVM_SET_ONE_REG:
903         case KVM_GET_ONE_REG: {
904                 struct kvm_one_reg reg;
905
906                 if (copy_from_user(&reg, argp, sizeof(reg)))
907                         return -EFAULT;
908                 if (ioctl == KVM_SET_ONE_REG)
909                         return kvm_mips_set_reg(vcpu, &reg);
910                 else
911                         return kvm_mips_get_reg(vcpu, &reg);
912         }
913         case KVM_GET_REG_LIST: {
914                 struct kvm_reg_list __user *user_list = argp;
915                 u64 __user *reg_dest;
916                 struct kvm_reg_list reg_list;
917                 unsigned n;
918
919                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
920                         return -EFAULT;
921                 n = reg_list.n;
922                 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
923                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
924                         return -EFAULT;
925                 if (n < reg_list.n)
926                         return -E2BIG;
927                 reg_dest = user_list->reg;
928                 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
929                                  sizeof(kvm_mips_get_one_regs)))
930                         return -EFAULT;
931                 return 0;
932         }
933         case KVM_NMI:
934                 /* Treat the NMI as a CPU reset */
935                 r = kvm_mips_reset_vcpu(vcpu);
936                 break;
937         case KVM_INTERRUPT:
938                 {
939                         struct kvm_mips_interrupt irq;
940
941                         r = -EFAULT;
942                         if (copy_from_user(&irq, argp, sizeof(irq)))
943                                 goto out;
944
945                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
946                                   irq.irq);
947
948                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
949                         break;
950                 }
951         case KVM_ENABLE_CAP: {
952                 struct kvm_enable_cap cap;
953
954                 r = -EFAULT;
955                 if (copy_from_user(&cap, argp, sizeof(cap)))
956                         goto out;
957                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
958                 break;
959         }
960         default:
961                 r = -ENOIOCTLCMD;
962         }
963
964 out:
965         return r;
966 }
967
968 /* Get (and clear) the dirty memory log for a memory slot. */
969 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
970 {
971         struct kvm_memory_slot *memslot;
972         unsigned long ga, ga_end;
973         int is_dirty = 0;
974         int r;
975         unsigned long n;
976
977         mutex_lock(&kvm->slots_lock);
978
979         r = kvm_get_dirty_log(kvm, log, &is_dirty);
980         if (r)
981                 goto out;
982
983         /* If nothing is dirty, don't bother messing with page tables. */
984         if (is_dirty) {
985                 memslot = id_to_memslot(kvm->memslots, log->slot);
986
987                 ga = memslot->base_gfn << PAGE_SHIFT;
988                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
989
990                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
991                          ga_end);
992
993                 n = kvm_dirty_bitmap_bytes(memslot);
994                 memset(memslot->dirty_bitmap, 0, n);
995         }
996
997         r = 0;
998 out:
999         mutex_unlock(&kvm->slots_lock);
1000         return r;
1001
1002 }
1003
1004 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1005 {
1006         long r;
1007
1008         switch (ioctl) {
1009         default:
1010                 r = -ENOIOCTLCMD;
1011         }
1012
1013         return r;
1014 }
1015
1016 int kvm_arch_init(void *opaque)
1017 {
1018         if (kvm_mips_callbacks) {
1019                 kvm_err("kvm: module already exists\n");
1020                 return -EEXIST;
1021         }
1022
1023         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1024 }
1025
1026 void kvm_arch_exit(void)
1027 {
1028         kvm_mips_callbacks = NULL;
1029 }
1030
1031 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1032                                   struct kvm_sregs *sregs)
1033 {
1034         return -ENOIOCTLCMD;
1035 }
1036
1037 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1038                                   struct kvm_sregs *sregs)
1039 {
1040         return -ENOIOCTLCMD;
1041 }
1042
1043 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1044 {
1045 }
1046
1047 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1048 {
1049         return -ENOIOCTLCMD;
1050 }
1051
1052 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1053 {
1054         return -ENOIOCTLCMD;
1055 }
1056
1057 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1058 {
1059         return VM_FAULT_SIGBUS;
1060 }
1061
1062 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1063 {
1064         int r;
1065
1066         switch (ext) {
1067         case KVM_CAP_ONE_REG:
1068         case KVM_CAP_ENABLE_CAP:
1069                 r = 1;
1070                 break;
1071         case KVM_CAP_COALESCED_MMIO:
1072                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1073                 break;
1074         case KVM_CAP_MIPS_FPU:
1075                 r = !!cpu_has_fpu;
1076                 break;
1077         case KVM_CAP_MIPS_MSA:
1078                 /*
1079                  * We don't support MSA vector partitioning yet:
1080                  * 1) It would require explicit support which can't be tested
1081                  *    yet due to lack of support in current hardware.
1082                  * 2) It extends the state that would need to be saved/restored
1083                  *    by e.g. QEMU for migration.
1084                  *
1085                  * When vector partitioning hardware becomes available, support
1086                  * could be added by requiring a flag when enabling
1087                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1088                  * to save/restore the appropriate extra state.
1089                  */
1090                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1091                 break;
1092         default:
1093                 r = 0;
1094                 break;
1095         }
1096         return r;
1097 }
1098
1099 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1100 {
1101         return kvm_mips_pending_timer(vcpu);
1102 }
1103
1104 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1105 {
1106         int i;
1107         struct mips_coproc *cop0;
1108
1109         if (!vcpu)
1110                 return -1;
1111
1112         kvm_debug("VCPU Register Dump:\n");
1113         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1114         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1115
1116         for (i = 0; i < 32; i += 4) {
1117                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1118                        vcpu->arch.gprs[i],
1119                        vcpu->arch.gprs[i + 1],
1120                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1121         }
1122         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1123         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1124
1125         cop0 = vcpu->arch.cop0;
1126         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1127                   kvm_read_c0_guest_status(cop0),
1128                   kvm_read_c0_guest_cause(cop0));
1129
1130         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1131
1132         return 0;
1133 }
1134
1135 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1136 {
1137         int i;
1138
1139         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1140                 vcpu->arch.gprs[i] = regs->gpr[i];
1141         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1142         vcpu->arch.hi = regs->hi;
1143         vcpu->arch.lo = regs->lo;
1144         vcpu->arch.pc = regs->pc;
1145
1146         return 0;
1147 }
1148
1149 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1150 {
1151         int i;
1152
1153         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1154                 regs->gpr[i] = vcpu->arch.gprs[i];
1155
1156         regs->hi = vcpu->arch.hi;
1157         regs->lo = vcpu->arch.lo;
1158         regs->pc = vcpu->arch.pc;
1159
1160         return 0;
1161 }
1162
1163 static void kvm_mips_comparecount_func(unsigned long data)
1164 {
1165         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1166
1167         kvm_mips_callbacks->queue_timer_int(vcpu);
1168
1169         vcpu->arch.wait = 0;
1170         if (waitqueue_active(&vcpu->wq))
1171                 wake_up_interruptible(&vcpu->wq);
1172 }
1173
1174 /* low level hrtimer wake routine */
1175 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1176 {
1177         struct kvm_vcpu *vcpu;
1178
1179         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1180         kvm_mips_comparecount_func((unsigned long) vcpu);
1181         return kvm_mips_count_timeout(vcpu);
1182 }
1183
1184 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1185 {
1186         kvm_mips_callbacks->vcpu_init(vcpu);
1187         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1188                      HRTIMER_MODE_REL);
1189         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1190         return 0;
1191 }
1192
1193 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1194                                   struct kvm_translation *tr)
1195 {
1196         return 0;
1197 }
1198
1199 /* Initial guest state */
1200 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1201 {
1202         return kvm_mips_callbacks->vcpu_setup(vcpu);
1203 }
1204
1205 static void kvm_mips_set_c0_status(void)
1206 {
1207         uint32_t status = read_c0_status();
1208
1209         if (cpu_has_dsp)
1210                 status |= (ST0_MX);
1211
1212         write_c0_status(status);
1213         ehb();
1214 }
1215
1216 /*
1217  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1218  */
1219 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1220 {
1221         uint32_t cause = vcpu->arch.host_cp0_cause;
1222         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1223         uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1224         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1225         enum emulation_result er = EMULATE_DONE;
1226         int ret = RESUME_GUEST;
1227
1228         /* re-enable HTW before enabling interrupts */
1229         htw_start();
1230
1231         /* Set a default exit reason */
1232         run->exit_reason = KVM_EXIT_UNKNOWN;
1233         run->ready_for_interrupt_injection = 1;
1234
1235         /*
1236          * Set the appropriate status bits based on host CPU features,
1237          * before we hit the scheduler
1238          */
1239         kvm_mips_set_c0_status();
1240
1241         local_irq_enable();
1242
1243         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1244                         cause, opc, run, vcpu);
1245
1246         /*
1247          * Do a privilege check, if in UM most of these exit conditions end up
1248          * causing an exception to be delivered to the Guest Kernel
1249          */
1250         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1251         if (er == EMULATE_PRIV_FAIL) {
1252                 goto skip_emul;
1253         } else if (er == EMULATE_FAIL) {
1254                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1255                 ret = RESUME_HOST;
1256                 goto skip_emul;
1257         }
1258
1259         switch (exccode) {
1260         case T_INT:
1261                 kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1262
1263                 ++vcpu->stat.int_exits;
1264                 trace_kvm_exit(vcpu, INT_EXITS);
1265
1266                 if (need_resched())
1267                         cond_resched();
1268
1269                 ret = RESUME_GUEST;
1270                 break;
1271
1272         case T_COP_UNUSABLE:
1273                 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1274
1275                 ++vcpu->stat.cop_unusable_exits;
1276                 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1277                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1278                 /* XXXKYMA: Might need to return to user space */
1279                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1280                         ret = RESUME_HOST;
1281                 break;
1282
1283         case T_TLB_MOD:
1284                 ++vcpu->stat.tlbmod_exits;
1285                 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1286                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1287                 break;
1288
1289         case T_TLB_ST_MISS:
1290                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1291                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1292                           badvaddr);
1293
1294                 ++vcpu->stat.tlbmiss_st_exits;
1295                 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1296                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1297                 break;
1298
1299         case T_TLB_LD_MISS:
1300                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1301                           cause, opc, badvaddr);
1302
1303                 ++vcpu->stat.tlbmiss_ld_exits;
1304                 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1305                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1306                 break;
1307
1308         case T_ADDR_ERR_ST:
1309                 ++vcpu->stat.addrerr_st_exits;
1310                 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1311                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1312                 break;
1313
1314         case T_ADDR_ERR_LD:
1315                 ++vcpu->stat.addrerr_ld_exits;
1316                 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1317                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1318                 break;
1319
1320         case T_SYSCALL:
1321                 ++vcpu->stat.syscall_exits;
1322                 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1323                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1324                 break;
1325
1326         case T_RES_INST:
1327                 ++vcpu->stat.resvd_inst_exits;
1328                 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1329                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1330                 break;
1331
1332         case T_BREAK:
1333                 ++vcpu->stat.break_inst_exits;
1334                 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1335                 ret = kvm_mips_callbacks->handle_break(vcpu);
1336                 break;
1337
1338         case T_TRAP:
1339                 ++vcpu->stat.trap_inst_exits;
1340                 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1341                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1342                 break;
1343
1344         case T_MSAFPE:
1345                 ++vcpu->stat.msa_fpe_exits;
1346                 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1347                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1348                 break;
1349
1350         case T_FPE:
1351                 ++vcpu->stat.fpe_exits;
1352                 trace_kvm_exit(vcpu, FPE_EXITS);
1353                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1354                 break;
1355
1356         case T_MSADIS:
1357                 ++vcpu->stat.msa_disabled_exits;
1358                 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1359                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1360                 break;
1361
1362         default:
1363                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1364                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1365                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1366                 kvm_arch_vcpu_dump_regs(vcpu);
1367                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1368                 ret = RESUME_HOST;
1369                 break;
1370
1371         }
1372
1373 skip_emul:
1374         local_irq_disable();
1375
1376         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1377                 kvm_mips_deliver_interrupts(vcpu, cause);
1378
1379         if (!(ret & RESUME_HOST)) {
1380                 /* Only check for signals if not already exiting to userspace */
1381                 if (signal_pending(current)) {
1382                         run->exit_reason = KVM_EXIT_INTR;
1383                         ret = (-EINTR << 2) | RESUME_HOST;
1384                         ++vcpu->stat.signal_exits;
1385                         trace_kvm_exit(vcpu, SIGNAL_EXITS);
1386                 }
1387         }
1388
1389         if (ret == RESUME_GUEST) {
1390                 /*
1391                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1392                  * is live), restore FCR31 / MSACSR.
1393                  *
1394                  * This should be before returning to the guest exception
1395                  * vector, as it may well cause an [MSA] FP exception if there
1396                  * are pending exception bits unmasked. (see
1397                  * kvm_mips_csr_die_notifier() for how that is handled).
1398                  */
1399                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1400                     read_c0_status() & ST0_CU1)
1401                         __kvm_restore_fcsr(&vcpu->arch);
1402
1403                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1404                     read_c0_config5() & MIPS_CONF5_MSAEN)
1405                         __kvm_restore_msacsr(&vcpu->arch);
1406         }
1407
1408         /* Disable HTW before returning to guest or host */
1409         htw_stop();
1410
1411         return ret;
1412 }
1413
1414 /* Enable FPU for guest and restore context */
1415 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1416 {
1417         struct mips_coproc *cop0 = vcpu->arch.cop0;
1418         unsigned int sr, cfg5;
1419
1420         preempt_disable();
1421
1422         sr = kvm_read_c0_guest_status(cop0);
1423
1424         /*
1425          * If MSA state is already live, it is undefined how it interacts with
1426          * FR=0 FPU state, and we don't want to hit reserved instruction
1427          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1428          * play it safe and save it first.
1429          *
1430          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1431          * get called when guest CU1 is set, however we can't trust the guest
1432          * not to clobber the status register directly via the commpage.
1433          */
1434         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1435             vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1436                 kvm_lose_fpu(vcpu);
1437
1438         /*
1439          * Enable FPU for guest
1440          * We set FR and FRE according to guest context
1441          */
1442         change_c0_status(ST0_CU1 | ST0_FR, sr);
1443         if (cpu_has_fre) {
1444                 cfg5 = kvm_read_c0_guest_config5(cop0);
1445                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1446         }
1447         enable_fpu_hazard();
1448
1449         /* If guest FPU state not active, restore it now */
1450         if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1451                 __kvm_restore_fpu(&vcpu->arch);
1452                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1453         }
1454
1455         preempt_enable();
1456 }
1457
1458 #ifdef CONFIG_CPU_HAS_MSA
1459 /* Enable MSA for guest and restore context */
1460 void kvm_own_msa(struct kvm_vcpu *vcpu)
1461 {
1462         struct mips_coproc *cop0 = vcpu->arch.cop0;
1463         unsigned int sr, cfg5;
1464
1465         preempt_disable();
1466
1467         /*
1468          * Enable FPU if enabled in guest, since we're restoring FPU context
1469          * anyway. We set FR and FRE according to guest context.
1470          */
1471         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1472                 sr = kvm_read_c0_guest_status(cop0);
1473
1474                 /*
1475                  * If FR=0 FPU state is already live, it is undefined how it
1476                  * interacts with MSA state, so play it safe and save it first.
1477                  */
1478                 if (!(sr & ST0_FR) &&
1479                     (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1480                                 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1481                         kvm_lose_fpu(vcpu);
1482
1483                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1484                 if (sr & ST0_CU1 && cpu_has_fre) {
1485                         cfg5 = kvm_read_c0_guest_config5(cop0);
1486                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1487                 }
1488         }
1489
1490         /* Enable MSA for guest */
1491         set_c0_config5(MIPS_CONF5_MSAEN);
1492         enable_fpu_hazard();
1493
1494         switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1495         case KVM_MIPS_FPU_FPU:
1496                 /*
1497                  * Guest FPU state already loaded, only restore upper MSA state
1498                  */
1499                 __kvm_restore_msa_upper(&vcpu->arch);
1500                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1501                 break;
1502         case 0:
1503                 /* Neither FPU or MSA already active, restore full MSA state */
1504                 __kvm_restore_msa(&vcpu->arch);
1505                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1506                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1507                         vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1508                 break;
1509         default:
1510                 break;
1511         }
1512
1513         preempt_enable();
1514 }
1515 #endif
1516
1517 /* Drop FPU & MSA without saving it */
1518 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1519 {
1520         preempt_disable();
1521         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1522                 disable_msa();
1523                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1524         }
1525         if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1526                 clear_c0_status(ST0_CU1 | ST0_FR);
1527                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1528         }
1529         preempt_enable();
1530 }
1531
1532 /* Save and disable FPU & MSA */
1533 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1534 {
1535         /*
1536          * FPU & MSA get disabled in root context (hardware) when it is disabled
1537          * in guest context (software), but the register state in the hardware
1538          * may still be in use. This is why we explicitly re-enable the hardware
1539          * before saving.
1540          */
1541
1542         preempt_disable();
1543         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1544                 set_c0_config5(MIPS_CONF5_MSAEN);
1545                 enable_fpu_hazard();
1546
1547                 __kvm_save_msa(&vcpu->arch);
1548
1549                 /* Disable MSA & FPU */
1550                 disable_msa();
1551                 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1552                         clear_c0_status(ST0_CU1 | ST0_FR);
1553                 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1554         } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1555                 set_c0_status(ST0_CU1);
1556                 enable_fpu_hazard();
1557
1558                 __kvm_save_fpu(&vcpu->arch);
1559                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1560
1561                 /* Disable FPU */
1562                 clear_c0_status(ST0_CU1 | ST0_FR);
1563         }
1564         preempt_enable();
1565 }
1566
1567 /*
1568  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1569  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1570  * exception if cause bits are set in the value being written.
1571  */
1572 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1573                                    unsigned long cmd, void *ptr)
1574 {
1575         struct die_args *args = (struct die_args *)ptr;
1576         struct pt_regs *regs = args->regs;
1577         unsigned long pc;
1578
1579         /* Only interested in FPE and MSAFPE */
1580         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1581                 return NOTIFY_DONE;
1582
1583         /* Return immediately if guest context isn't active */
1584         if (!(current->flags & PF_VCPU))
1585                 return NOTIFY_DONE;
1586
1587         /* Should never get here from user mode */
1588         BUG_ON(user_mode(regs));
1589
1590         pc = instruction_pointer(regs);
1591         switch (cmd) {
1592         case DIE_FP:
1593                 /* match 2nd instruction in __kvm_restore_fcsr */
1594                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1595                         return NOTIFY_DONE;
1596                 break;
1597         case DIE_MSAFP:
1598                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1599                 if (!cpu_has_msa ||
1600                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1601                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1602                         return NOTIFY_DONE;
1603                 break;
1604         }
1605
1606         /* Move PC forward a little and continue executing */
1607         instruction_pointer(regs) += 4;
1608
1609         return NOTIFY_STOP;
1610 }
1611
1612 static struct notifier_block kvm_mips_csr_die_notifier = {
1613         .notifier_call = kvm_mips_csr_die_notify,
1614 };
1615
1616 int __init kvm_mips_init(void)
1617 {
1618         int ret;
1619
1620         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1621
1622         if (ret)
1623                 return ret;
1624
1625         register_die_notifier(&kvm_mips_csr_die_notifier);
1626
1627         /*
1628          * On MIPS, kernel modules are executed from "mapped space", which
1629          * requires TLBs. The TLB handling code is statically linked with
1630          * the rest of the kernel (tlb.c) to avoid the possibility of
1631          * double faulting. The issue is that the TLB code references
1632          * routines that are part of the the KVM module, which are only
1633          * available once the module is loaded.
1634          */
1635         kvm_mips_gfn_to_pfn = gfn_to_pfn;
1636         kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1637         kvm_mips_is_error_pfn = is_error_pfn;
1638
1639         return 0;
1640 }
1641
1642 void __exit kvm_mips_exit(void)
1643 {
1644         kvm_exit();
1645
1646         kvm_mips_gfn_to_pfn = NULL;
1647         kvm_mips_release_pfn_clean = NULL;
1648         kvm_mips_is_error_pfn = NULL;
1649
1650         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1651 }
1652
1653 module_init(kvm_mips_init);
1654 module_exit(kvm_mips_exit);
1655
1656 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);