Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "opcode.h"
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43         unsigned long instpc)
44 {
45         unsigned int dspcontrol;
46         union mips_instruction insn;
47         struct kvm_vcpu_arch *arch = &vcpu->arch;
48         long epc = instpc;
49         long nextpc = KVM_INVALID_INST;
50
51         if (epc & 3)
52                 goto unaligned;
53
54         /* Read the instruction */
55         insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57         if (insn.word == KVM_INVALID_INST)
58                 return KVM_INVALID_INST;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         /* Fall through */
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 }
71                 break;
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79                 switch (insn.i_format.rt) {
80                 case bltz_op:
81                 case bltzl_op:
82                         if ((long)arch->gprs[insn.i_format.rs] < 0)
83                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
84                         else
85                                 epc += 8;
86                         nextpc = epc;
87                         break;
88
89                 case bgez_op:
90                 case bgezl_op:
91                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
92                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
93                         else
94                                 epc += 8;
95                         nextpc = epc;
96                         break;
97
98                 case bltzal_op:
99                 case bltzall_op:
100                         arch->gprs[31] = epc + 8;
101                         if ((long)arch->gprs[insn.i_format.rs] < 0)
102                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
103                         else
104                                 epc += 8;
105                         nextpc = epc;
106                         break;
107
108                 case bgezal_op:
109                 case bgezall_op:
110                         arch->gprs[31] = epc + 8;
111                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
112                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
113                         else
114                                 epc += 8;
115                         nextpc = epc;
116                         break;
117                 case bposge32_op:
118                         if (!cpu_has_dsp)
119                                 goto sigill;
120
121                         dspcontrol = rddsp(0x01);
122
123                         if (dspcontrol >= 32)
124                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
125                         else
126                                 epc += 8;
127                         nextpc = epc;
128                         break;
129                 }
130                 break;
131
132                 /* These are unconditional and in j_format. */
133         case jal_op:
134                 arch->gprs[31] = instpc + 8;
135         case j_op:
136                 epc += 4;
137                 epc >>= 28;
138                 epc <<= 28;
139                 epc |= (insn.j_format.target << 2);
140                 nextpc = epc;
141                 break;
142
143                 /* These are conditional and in i_format. */
144         case beq_op:
145         case beql_op:
146                 if (arch->gprs[insn.i_format.rs] ==
147                     arch->gprs[insn.i_format.rt])
148                         epc = epc + 4 + (insn.i_format.simmediate << 2);
149                 else
150                         epc += 8;
151                 nextpc = epc;
152                 break;
153
154         case bne_op:
155         case bnel_op:
156                 if (arch->gprs[insn.i_format.rs] !=
157                     arch->gprs[insn.i_format.rt])
158                         epc = epc + 4 + (insn.i_format.simmediate << 2);
159                 else
160                         epc += 8;
161                 nextpc = epc;
162                 break;
163
164         case blez_op:           /* not really i_format */
165         case blezl_op:
166                 /* rt field assumed to be zero */
167                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168                         epc = epc + 4 + (insn.i_format.simmediate << 2);
169                 else
170                         epc += 8;
171                 nextpc = epc;
172                 break;
173
174         case bgtz_op:
175         case bgtzl_op:
176                 /* rt field assumed to be zero */
177                 if ((long)arch->gprs[insn.i_format.rs] > 0)
178                         epc = epc + 4 + (insn.i_format.simmediate << 2);
179                 else
180                         epc += 8;
181                 nextpc = epc;
182                 break;
183
184                 /* And now the FPA/cp1 branch instructions. */
185         case cop1_op:
186                 kvm_err("%s: unsupported cop1_op\n", __func__);
187                 break;
188         }
189
190         return nextpc;
191
192 unaligned:
193         kvm_err("%s: unaligned epc\n", __func__);
194         return nextpc;
195
196 sigill:
197         kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198         return nextpc;
199 }
200
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203         unsigned long branch_pc;
204         enum emulation_result er = EMULATE_DONE;
205
206         if (cause & CAUSEF_BD) {
207                 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208                 if (branch_pc == KVM_INVALID_INST) {
209                         er = EMULATE_FAIL;
210                 } else {
211                         vcpu->arch.pc = branch_pc;
212                         kvm_debug("BD update_pc(): New PC: %#lx\n",
213                                   vcpu->arch.pc);
214                 }
215         } else
216                 vcpu->arch.pc += 4;
217
218         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220         return er;
221 }
222
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:       Virtual CPU.
226  *
227  * Returns:     1 if the CP0_Count timer is disabled by either the guest
228  *              CP0_Cause.DC bit or the count_ctl.DC bit.
229  *              0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233         struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248         s64 now_ns, periods;
249         u64 delta;
250
251         now_ns = ktime_to_ns(now);
252         delta = now_ns + vcpu->arch.count_dyn_bias;
253
254         if (delta >= vcpu->arch.count_period) {
255                 /* If delta is out of safe range the bias needs adjusting */
256                 periods = div64_s64(now_ns, vcpu->arch.count_period);
257                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258                 /* Recalculate delta with new bias */
259                 delta = now_ns + vcpu->arch.count_dyn_bias;
260         }
261
262         /*
263          * We've ensured that:
264          *   delta < count_period
265          *
266          * Therefore the intermediate delta*count_hz will never overflow since
267          * at the boundary condition:
268          *   delta = count_period
269          *   delta = NSEC_PER_SEC * 2^32 / count_hz
270          *   delta * count_hz = NSEC_PER_SEC * 2^32
271          */
272         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:       Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:     Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288                 return vcpu->arch.count_resume;
289
290         return ktime_get();
291 }
292
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:       Virtual CPU.
296  * @now:        Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:     The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305         struct mips_coproc *cop0 = vcpu->arch.cop0;
306         ktime_t expires, threshold;
307         uint32_t count, compare;
308         int running;
309
310         /* Calculate the biased and scaled guest CP0_Count */
311         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312         compare = kvm_read_c0_guest_compare(cop0);
313
314         /*
315          * Find whether CP0_Count has reached the closest timer interrupt. If
316          * not, we shouldn't inject it.
317          */
318         if ((int32_t)(count - compare) < 0)
319                 return count;
320
321         /*
322          * The CP0_Count we're going to return has already reached the closest
323          * timer interrupt. Quickly check if it really is a new interrupt by
324          * looking at whether the interval until the hrtimer expiry time is
325          * less than 1/4 of the timer period.
326          */
327         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329         if (ktime_before(expires, threshold)) {
330                 /*
331                  * Cancel it while we handle it so there's no chance of
332                  * interference with the timeout handler.
333                  */
334                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335
336                 /* Nothing should be waiting on the timeout */
337                 kvm_mips_callbacks->queue_timer_int(vcpu);
338
339                 /*
340                  * Restart the timer if it was running based on the expiry time
341                  * we read, so that we don't push it back 2 periods.
342                  */
343                 if (running) {
344                         expires = ktime_add_ns(expires,
345                                                vcpu->arch.count_period);
346                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347                                       HRTIMER_MODE_ABS);
348                 }
349         }
350
351         return count;
352 }
353
354 /**
355  * kvm_mips_read_count() - Read the current count value.
356  * @vcpu:       Virtual CPU.
357  *
358  * Read the current guest CP0_Count value, taking into account whether the timer
359  * is stopped.
360  *
361  * Returns:     The current guest CP0_Count value.
362  */
363 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
364 {
365         struct mips_coproc *cop0 = vcpu->arch.cop0;
366
367         /* If count disabled just read static copy of count */
368         if (kvm_mips_count_disabled(vcpu))
369                 return kvm_read_c0_guest_count(cop0);
370
371         return kvm_mips_read_count_running(vcpu, ktime_get());
372 }
373
374 /**
375  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376  * @vcpu:       Virtual CPU.
377  * @count:      Output pointer for CP0_Count value at point of freeze.
378  *
379  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380  * at the point it was frozen. It is guaranteed that any pending interrupts at
381  * the point it was frozen are handled, and none after that point.
382  *
383  * This is useful where the time/CP0_Count is needed in the calculation of the
384  * new parameters.
385  *
386  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387  *
388  * Returns:     The ktime at the point of freeze.
389  */
390 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
391                                        uint32_t *count)
392 {
393         ktime_t now;
394
395         /* stop hrtimer before finding time */
396         hrtimer_cancel(&vcpu->arch.comparecount_timer);
397         now = ktime_get();
398
399         /* find count at this point and handle pending hrtimer */
400         *count = kvm_mips_read_count_running(vcpu, now);
401
402         return now;
403 }
404
405 /**
406  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
407  * @vcpu:       Virtual CPU.
408  * @now:        ktime at point of resume.
409  * @count:      CP0_Count at point of resume.
410  *
411  * Resumes the timer and updates the timer expiry based on @now and @count.
412  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
413  * parameters need to be changed.
414  *
415  * It is guaranteed that a timer interrupt immediately after resume will be
416  * handled, but not if CP_Compare is exactly at @count. That case is already
417  * handled by kvm_mips_freeze_timer().
418  *
419  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
420  */
421 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
422                                     ktime_t now, uint32_t count)
423 {
424         struct mips_coproc *cop0 = vcpu->arch.cop0;
425         uint32_t compare;
426         u64 delta;
427         ktime_t expire;
428
429         /* Calculate timeout (wrap 0 to 2^32) */
430         compare = kvm_read_c0_guest_compare(cop0);
431         delta = (u64)(uint32_t)(compare - count - 1) + 1;
432         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
433         expire = ktime_add_ns(now, delta);
434
435         /* Update hrtimer to use new timeout */
436         hrtimer_cancel(&vcpu->arch.comparecount_timer);
437         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
438 }
439
440 /**
441  * kvm_mips_write_count() - Modify the count and update timer.
442  * @vcpu:       Virtual CPU.
443  * @count:      Guest CP0_Count value to set.
444  *
445  * Sets the CP0_Count value and updates the timer accordingly.
446  */
447 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
448 {
449         struct mips_coproc *cop0 = vcpu->arch.cop0;
450         ktime_t now;
451
452         /* Calculate bias */
453         now = kvm_mips_count_time(vcpu);
454         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
455
456         if (kvm_mips_count_disabled(vcpu))
457                 /* The timer's disabled, adjust the static count */
458                 kvm_write_c0_guest_count(cop0, count);
459         else
460                 /* Update timeout */
461                 kvm_mips_resume_hrtimer(vcpu, now, count);
462 }
463
464 /**
465  * kvm_mips_init_count() - Initialise timer.
466  * @vcpu:       Virtual CPU.
467  *
468  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
469  * it going if it's enabled.
470  */
471 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
472 {
473         /* 100 MHz */
474         vcpu->arch.count_hz = 100*1000*1000;
475         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
476                                           vcpu->arch.count_hz);
477         vcpu->arch.count_dyn_bias = 0;
478
479         /* Starting at 0 */
480         kvm_mips_write_count(vcpu, 0);
481 }
482
483 /**
484  * kvm_mips_set_count_hz() - Update the frequency of the timer.
485  * @vcpu:       Virtual CPU.
486  * @count_hz:   Frequency of CP0_Count timer in Hz.
487  *
488  * Change the frequency of the CP0_Count timer. This is done atomically so that
489  * CP0_Count is continuous and no timer interrupt is lost.
490  *
491  * Returns:     -EINVAL if @count_hz is out of range.
492  *              0 on success.
493  */
494 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
495 {
496         struct mips_coproc *cop0 = vcpu->arch.cop0;
497         int dc;
498         ktime_t now;
499         u32 count;
500
501         /* ensure the frequency is in a sensible range... */
502         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
503                 return -EINVAL;
504         /* ... and has actually changed */
505         if (vcpu->arch.count_hz == count_hz)
506                 return 0;
507
508         /* Safely freeze timer so we can keep it continuous */
509         dc = kvm_mips_count_disabled(vcpu);
510         if (dc) {
511                 now = kvm_mips_count_time(vcpu);
512                 count = kvm_read_c0_guest_count(cop0);
513         } else {
514                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
515         }
516
517         /* Update the frequency */
518         vcpu->arch.count_hz = count_hz;
519         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
520         vcpu->arch.count_dyn_bias = 0;
521
522         /* Calculate adjusted bias so dynamic count is unchanged */
523         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
524
525         /* Update and resume hrtimer */
526         if (!dc)
527                 kvm_mips_resume_hrtimer(vcpu, now, count);
528         return 0;
529 }
530
531 /**
532  * kvm_mips_write_compare() - Modify compare and update timer.
533  * @vcpu:       Virtual CPU.
534  * @compare:    New CP0_Compare value.
535  * @ack:        Whether to acknowledge timer interrupt.
536  *
537  * Update CP0_Compare to a new value and update the timeout.
538  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
539  * any pending timer interrupt is preserved.
540  */
541 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare, bool ack)
542 {
543         struct mips_coproc *cop0 = vcpu->arch.cop0;
544         int dc;
545         u32 old_compare = kvm_read_c0_guest_compare(cop0);
546         ktime_t now;
547         uint32_t count;
548
549         /* if unchanged, must just be an ack */
550         if (old_compare == compare) {
551                 if (!ack)
552                         return;
553                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
554                 kvm_write_c0_guest_compare(cop0, compare);
555                 return;
556         }
557
558         /* freeze_hrtimer() takes care of timer interrupts <= count */
559         dc = kvm_mips_count_disabled(vcpu);
560         if (!dc)
561                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
562
563         if (ack)
564                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
565
566         kvm_write_c0_guest_compare(cop0, compare);
567
568         /* resume_hrtimer() takes care of timer interrupts > count */
569         if (!dc)
570                 kvm_mips_resume_hrtimer(vcpu, now, count);
571 }
572
573 /**
574  * kvm_mips_count_disable() - Disable count.
575  * @vcpu:       Virtual CPU.
576  *
577  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
578  * time will be handled but not after.
579  *
580  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
581  * count_ctl.DC has been set (count disabled).
582  *
583  * Returns:     The time that the timer was stopped.
584  */
585 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
586 {
587         struct mips_coproc *cop0 = vcpu->arch.cop0;
588         uint32_t count;
589         ktime_t now;
590
591         /* Stop hrtimer */
592         hrtimer_cancel(&vcpu->arch.comparecount_timer);
593
594         /* Set the static count from the dynamic count, handling pending TI */
595         now = ktime_get();
596         count = kvm_mips_read_count_running(vcpu, now);
597         kvm_write_c0_guest_count(cop0, count);
598
599         return now;
600 }
601
602 /**
603  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
604  * @vcpu:       Virtual CPU.
605  *
606  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
607  * before the final stop time will be handled if the timer isn't disabled by
608  * count_ctl.DC, but not after.
609  *
610  * Assumes CP0_Cause.DC is clear (count enabled).
611  */
612 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
613 {
614         struct mips_coproc *cop0 = vcpu->arch.cop0;
615
616         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
617         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
618                 kvm_mips_count_disable(vcpu);
619 }
620
621 /**
622  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
623  * @vcpu:       Virtual CPU.
624  *
625  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
626  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
627  * potentially before even returning, so the caller should be careful with
628  * ordering of CP0_Cause modifications so as not to lose it.
629  *
630  * Assumes CP0_Cause.DC is set (count disabled).
631  */
632 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
633 {
634         struct mips_coproc *cop0 = vcpu->arch.cop0;
635         uint32_t count;
636
637         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
638
639         /*
640          * Set the dynamic count to match the static count.
641          * This starts the hrtimer if count_ctl.DC allows it.
642          * Otherwise it conveniently updates the biases.
643          */
644         count = kvm_read_c0_guest_count(cop0);
645         kvm_mips_write_count(vcpu, count);
646 }
647
648 /**
649  * kvm_mips_set_count_ctl() - Update the count control KVM register.
650  * @vcpu:       Virtual CPU.
651  * @count_ctl:  Count control register new value.
652  *
653  * Set the count control KVM register. The timer is updated accordingly.
654  *
655  * Returns:     -EINVAL if reserved bits are set.
656  *              0 on success.
657  */
658 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
659 {
660         struct mips_coproc *cop0 = vcpu->arch.cop0;
661         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
662         s64 delta;
663         ktime_t expire, now;
664         uint32_t count, compare;
665
666         /* Only allow defined bits to be changed */
667         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
668                 return -EINVAL;
669
670         /* Apply new value */
671         vcpu->arch.count_ctl = count_ctl;
672
673         /* Master CP0_Count disable */
674         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
675                 /* Is CP0_Cause.DC already disabling CP0_Count? */
676                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
677                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
678                                 /* Just record the current time */
679                                 vcpu->arch.count_resume = ktime_get();
680                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
681                         /* disable timer and record current time */
682                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
683                 } else {
684                         /*
685                          * Calculate timeout relative to static count at resume
686                          * time (wrap 0 to 2^32).
687                          */
688                         count = kvm_read_c0_guest_count(cop0);
689                         compare = kvm_read_c0_guest_compare(cop0);
690                         delta = (u64)(uint32_t)(compare - count - 1) + 1;
691                         delta = div_u64(delta * NSEC_PER_SEC,
692                                         vcpu->arch.count_hz);
693                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
694
695                         /* Handle pending interrupt */
696                         now = ktime_get();
697                         if (ktime_compare(now, expire) >= 0)
698                                 /* Nothing should be waiting on the timeout */
699                                 kvm_mips_callbacks->queue_timer_int(vcpu);
700
701                         /* Resume hrtimer without changing bias */
702                         count = kvm_mips_read_count_running(vcpu, now);
703                         kvm_mips_resume_hrtimer(vcpu, now, count);
704                 }
705         }
706
707         return 0;
708 }
709
710 /**
711  * kvm_mips_set_count_resume() - Update the count resume KVM register.
712  * @vcpu:               Virtual CPU.
713  * @count_resume:       Count resume register new value.
714  *
715  * Set the count resume KVM register.
716  *
717  * Returns:     -EINVAL if out of valid range (0..now).
718  *              0 on success.
719  */
720 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
721 {
722         /*
723          * It doesn't make sense for the resume time to be in the future, as it
724          * would be possible for the next interrupt to be more than a full
725          * period in the future.
726          */
727         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
728                 return -EINVAL;
729
730         vcpu->arch.count_resume = ns_to_ktime(count_resume);
731         return 0;
732 }
733
734 /**
735  * kvm_mips_count_timeout() - Push timer forward on timeout.
736  * @vcpu:       Virtual CPU.
737  *
738  * Handle an hrtimer event by push the hrtimer forward a period.
739  *
740  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
741  */
742 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
743 {
744         /* Add the Count period to the current expiry time */
745         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
746                                vcpu->arch.count_period);
747         return HRTIMER_RESTART;
748 }
749
750 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
751 {
752         struct mips_coproc *cop0 = vcpu->arch.cop0;
753         enum emulation_result er = EMULATE_DONE;
754
755         if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
756                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
757                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
758         } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
759                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
760                           kvm_read_c0_guest_epc(cop0));
761                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
762                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
763
764         } else {
765                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
766                         vcpu->arch.pc);
767                 er = EMULATE_FAIL;
768         }
769
770         return er;
771 }
772
773 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
774 {
775         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
776                   vcpu->arch.pending_exceptions);
777
778         ++vcpu->stat.wait_exits;
779         trace_kvm_exit(vcpu, WAIT_EXITS);
780         if (!vcpu->arch.pending_exceptions) {
781                 vcpu->arch.wait = 1;
782                 kvm_vcpu_block(vcpu);
783
784                 /*
785                  * We we are runnable, then definitely go off to user space to
786                  * check if any I/O interrupts are pending.
787                  */
788                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
789                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
790                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
791                 }
792         }
793
794         return EMULATE_DONE;
795 }
796
797 /*
798  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
799  * we can catch this, if things ever change
800  */
801 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
802 {
803         struct mips_coproc *cop0 = vcpu->arch.cop0;
804         uint32_t pc = vcpu->arch.pc;
805
806         kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
807         return EMULATE_FAIL;
808 }
809
810 /**
811  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
812  * @vcpu:       VCPU with changed mappings.
813  * @tlb:        TLB entry being removed.
814  *
815  * This is called to indicate a single change in guest MMU mappings, so that we
816  * can arrange TLB flushes on this and other CPUs.
817  */
818 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
819                                           struct kvm_mips_tlb *tlb)
820 {
821         int cpu, i;
822         bool user;
823
824         /* No need to flush for entries which are already invalid */
825         if (!((tlb->tlb_lo0 | tlb->tlb_lo1) & MIPS3_PG_V))
826                 return;
827         /* User address space doesn't need flushing for KSeg2/3 changes */
828         user = tlb->tlb_hi < KVM_GUEST_KSEG0;
829
830         preempt_disable();
831
832         /*
833          * Probe the shadow host TLB for the entry being overwritten, if one
834          * matches, invalidate it
835          */
836         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
837
838         /* Invalidate the whole ASID on other CPUs */
839         cpu = smp_processor_id();
840         for_each_possible_cpu(i) {
841                 if (i == cpu)
842                         continue;
843                 if (user)
844                         vcpu->arch.guest_user_asid[i] = 0;
845                 vcpu->arch.guest_kernel_asid[i] = 0;
846         }
847
848         preempt_enable();
849 }
850
851 /* Write Guest TLB Entry @ Index */
852 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
853 {
854         struct mips_coproc *cop0 = vcpu->arch.cop0;
855         int index = kvm_read_c0_guest_index(cop0);
856         struct kvm_mips_tlb *tlb = NULL;
857         uint32_t pc = vcpu->arch.pc;
858
859         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
860                 kvm_debug("%s: illegal index: %d\n", __func__, index);
861                 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
862                           pc, index, kvm_read_c0_guest_entryhi(cop0),
863                           kvm_read_c0_guest_entrylo0(cop0),
864                           kvm_read_c0_guest_entrylo1(cop0),
865                           kvm_read_c0_guest_pagemask(cop0));
866                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
867         }
868
869         tlb = &vcpu->arch.guest_tlb[index];
870
871         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
872
873         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
874         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
875         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
876         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
877
878         kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
879                   pc, index, kvm_read_c0_guest_entryhi(cop0),
880                   kvm_read_c0_guest_entrylo0(cop0),
881                   kvm_read_c0_guest_entrylo1(cop0),
882                   kvm_read_c0_guest_pagemask(cop0));
883
884         return EMULATE_DONE;
885 }
886
887 /* Write Guest TLB Entry @ Random Index */
888 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
889 {
890         struct mips_coproc *cop0 = vcpu->arch.cop0;
891         struct kvm_mips_tlb *tlb = NULL;
892         uint32_t pc = vcpu->arch.pc;
893         int index;
894
895         get_random_bytes(&index, sizeof(index));
896         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
897
898         tlb = &vcpu->arch.guest_tlb[index];
899
900         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
901
902         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
903         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
904         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
905         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
906
907         kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
908                   pc, index, kvm_read_c0_guest_entryhi(cop0),
909                   kvm_read_c0_guest_entrylo0(cop0),
910                   kvm_read_c0_guest_entrylo1(cop0));
911
912         return EMULATE_DONE;
913 }
914
915 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
916 {
917         struct mips_coproc *cop0 = vcpu->arch.cop0;
918         long entryhi = kvm_read_c0_guest_entryhi(cop0);
919         uint32_t pc = vcpu->arch.pc;
920         int index = -1;
921
922         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
923
924         kvm_write_c0_guest_index(cop0, index);
925
926         kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
927                   index);
928
929         return EMULATE_DONE;
930 }
931
932 /**
933  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
934  * @vcpu:       Virtual CPU.
935  *
936  * Finds the mask of bits which are writable in the guest's Config1 CP0
937  * register, by userland (currently read-only to the guest).
938  */
939 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
940 {
941         unsigned int mask = 0;
942
943         /* Permit FPU to be present if FPU is supported */
944         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
945                 mask |= MIPS_CONF1_FP;
946
947         return mask;
948 }
949
950 /**
951  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
952  * @vcpu:       Virtual CPU.
953  *
954  * Finds the mask of bits which are writable in the guest's Config3 CP0
955  * register, by userland (currently read-only to the guest).
956  */
957 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
958 {
959         /* Config4 is optional */
960         unsigned int mask = MIPS_CONF_M;
961
962         /* Permit MSA to be present if MSA is supported */
963         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
964                 mask |= MIPS_CONF3_MSA;
965
966         return mask;
967 }
968
969 /**
970  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
971  * @vcpu:       Virtual CPU.
972  *
973  * Finds the mask of bits which are writable in the guest's Config4 CP0
974  * register, by userland (currently read-only to the guest).
975  */
976 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
977 {
978         /* Config5 is optional */
979         return MIPS_CONF_M;
980 }
981
982 /**
983  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
984  * @vcpu:       Virtual CPU.
985  *
986  * Finds the mask of bits which are writable in the guest's Config5 CP0
987  * register, by the guest itself.
988  */
989 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
990 {
991         unsigned int mask = 0;
992
993         /* Permit MSAEn changes if MSA supported and enabled */
994         if (kvm_mips_guest_has_msa(&vcpu->arch))
995                 mask |= MIPS_CONF5_MSAEN;
996
997         /*
998          * Permit guest FPU mode changes if FPU is enabled and the relevant
999          * feature exists according to FIR register.
1000          */
1001         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1002                 if (cpu_has_fre)
1003                         mask |= MIPS_CONF5_FRE;
1004                 /* We don't support UFR or UFE */
1005         }
1006
1007         return mask;
1008 }
1009
1010 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
1011                                            uint32_t cause, struct kvm_run *run,
1012                                            struct kvm_vcpu *vcpu)
1013 {
1014         struct mips_coproc *cop0 = vcpu->arch.cop0;
1015         enum emulation_result er = EMULATE_DONE;
1016         int32_t rt, rd, copz, sel, co_bit, op;
1017         uint32_t pc = vcpu->arch.pc;
1018         unsigned long curr_pc;
1019         int cpu, i;
1020
1021         /*
1022          * Update PC and hold onto current PC in case there is
1023          * an error and we want to rollback the PC
1024          */
1025         curr_pc = vcpu->arch.pc;
1026         er = update_pc(vcpu, cause);
1027         if (er == EMULATE_FAIL)
1028                 return er;
1029
1030         copz = (inst >> 21) & 0x1f;
1031         rt = (inst >> 16) & 0x1f;
1032         rd = (inst >> 11) & 0x1f;
1033         sel = inst & 0x7;
1034         co_bit = (inst >> 25) & 1;
1035
1036         if (co_bit) {
1037                 op = (inst) & 0xff;
1038
1039                 switch (op) {
1040                 case tlbr_op:   /*  Read indexed TLB entry  */
1041                         er = kvm_mips_emul_tlbr(vcpu);
1042                         break;
1043                 case tlbwi_op:  /*  Write indexed  */
1044                         er = kvm_mips_emul_tlbwi(vcpu);
1045                         break;
1046                 case tlbwr_op:  /*  Write random  */
1047                         er = kvm_mips_emul_tlbwr(vcpu);
1048                         break;
1049                 case tlbp_op:   /* TLB Probe */
1050                         er = kvm_mips_emul_tlbp(vcpu);
1051                         break;
1052                 case rfe_op:
1053                         kvm_err("!!!COP0_RFE!!!\n");
1054                         break;
1055                 case eret_op:
1056                         er = kvm_mips_emul_eret(vcpu);
1057                         goto dont_update_pc;
1058                         break;
1059                 case wait_op:
1060                         er = kvm_mips_emul_wait(vcpu);
1061                         break;
1062                 }
1063         } else {
1064                 switch (copz) {
1065                 case mfc_op:
1066 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1067                         cop0->stat[rd][sel]++;
1068 #endif
1069                         /* Get reg */
1070                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1071                                 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1072                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1073                                 vcpu->arch.gprs[rt] = 0x0;
1074 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1075                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1076 #endif
1077                         } else {
1078                                 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1079
1080 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1081                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1082 #endif
1083                         }
1084
1085                         kvm_debug
1086                             ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1087                              pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1088
1089                         break;
1090
1091                 case dmfc_op:
1092                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1093                         break;
1094
1095                 case mtc_op:
1096 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1097                         cop0->stat[rd][sel]++;
1098 #endif
1099                         if ((rd == MIPS_CP0_TLB_INDEX)
1100                             && (vcpu->arch.gprs[rt] >=
1101                                 KVM_MIPS_GUEST_TLB_SIZE)) {
1102                                 kvm_err("Invalid TLB Index: %ld",
1103                                         vcpu->arch.gprs[rt]);
1104                                 er = EMULATE_FAIL;
1105                                 break;
1106                         }
1107 #define C0_EBASE_CORE_MASK 0xff
1108                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1109                                 /* Preserve CORE number */
1110                                 kvm_change_c0_guest_ebase(cop0,
1111                                                           ~(C0_EBASE_CORE_MASK),
1112                                                           vcpu->arch.gprs[rt]);
1113                                 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1114                                         kvm_read_c0_guest_ebase(cop0));
1115                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1116                                 uint32_t nasid =
1117                                         vcpu->arch.gprs[rt] & ASID_MASK;
1118                                 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1119                                     ((kvm_read_c0_guest_entryhi(cop0) &
1120                                       ASID_MASK) != nasid)) {
1121                                         kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1122                                                 kvm_read_c0_guest_entryhi(cop0)
1123                                                 & ASID_MASK,
1124                                                 vcpu->arch.gprs[rt]
1125                                                 & ASID_MASK);
1126
1127                                         preempt_disable();
1128                                         /* Blow away the shadow host TLBs */
1129                                         kvm_mips_flush_host_tlb(1);
1130                                         cpu = smp_processor_id();
1131                                         for_each_possible_cpu(i)
1132                                                 if (i != cpu) {
1133                                                         vcpu->arch.guest_user_asid[i] = 0;
1134                                                         vcpu->arch.guest_kernel_asid[i] = 0;
1135                                                 }
1136                                         preempt_enable();
1137                                 }
1138                                 kvm_write_c0_guest_entryhi(cop0,
1139                                                            vcpu->arch.gprs[rt]);
1140                         }
1141                         /* Are we writing to COUNT */
1142                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1143                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1144                                 goto done;
1145                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1146                                 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1147                                           pc, kvm_read_c0_guest_compare(cop0),
1148                                           vcpu->arch.gprs[rt]);
1149
1150                                 /* If we are writing to COMPARE */
1151                                 /* Clear pending timer interrupt, if any */
1152                                 kvm_mips_write_compare(vcpu,
1153                                                        vcpu->arch.gprs[rt],
1154                                                        true);
1155                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1156                                 unsigned int old_val, val, change;
1157
1158                                 old_val = kvm_read_c0_guest_status(cop0);
1159                                 val = vcpu->arch.gprs[rt];
1160                                 change = val ^ old_val;
1161
1162                                 /* Make sure that the NMI bit is never set */
1163                                 val &= ~ST0_NMI;
1164
1165                                 /*
1166                                  * Don't allow CU1 or FR to be set unless FPU
1167                                  * capability enabled and exists in guest
1168                                  * configuration.
1169                                  */
1170                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1171                                         val &= ~(ST0_CU1 | ST0_FR);
1172
1173                                 /*
1174                                  * Also don't allow FR to be set if host doesn't
1175                                  * support it.
1176                                  */
1177                                 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1178                                         val &= ~ST0_FR;
1179
1180
1181                                 /* Handle changes in FPU mode */
1182                                 preempt_disable();
1183
1184                                 /*
1185                                  * FPU and Vector register state is made
1186                                  * UNPREDICTABLE by a change of FR, so don't
1187                                  * even bother saving it.
1188                                  */
1189                                 if (change & ST0_FR)
1190                                         kvm_drop_fpu(vcpu);
1191
1192                                 /*
1193                                  * If MSA state is already live, it is undefined
1194                                  * how it interacts with FR=0 FPU state, and we
1195                                  * don't want to hit reserved instruction
1196                                  * exceptions trying to save the MSA state later
1197                                  * when CU=1 && FR=1, so play it safe and save
1198                                  * it first.
1199                                  */
1200                                 if (change & ST0_CU1 && !(val & ST0_FR) &&
1201                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1202                                         kvm_lose_fpu(vcpu);
1203
1204                                 /*
1205                                  * Propagate CU1 (FPU enable) changes
1206                                  * immediately if the FPU context is already
1207                                  * loaded. When disabling we leave the context
1208                                  * loaded so it can be quickly enabled again in
1209                                  * the near future.
1210                                  */
1211                                 if (change & ST0_CU1 &&
1212                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1213                                         change_c0_status(ST0_CU1, val);
1214
1215                                 preempt_enable();
1216
1217                                 kvm_write_c0_guest_status(cop0, val);
1218
1219 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1220                                 /*
1221                                  * If FPU present, we need CU1/FR bits to take
1222                                  * effect fairly soon.
1223                                  */
1224                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1225                                         kvm_mips_trans_mtc0(inst, opc, vcpu);
1226 #endif
1227                         } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1228                                 unsigned int old_val, val, change, wrmask;
1229
1230                                 old_val = kvm_read_c0_guest_config5(cop0);
1231                                 val = vcpu->arch.gprs[rt];
1232
1233                                 /* Only a few bits are writable in Config5 */
1234                                 wrmask = kvm_mips_config5_wrmask(vcpu);
1235                                 change = (val ^ old_val) & wrmask;
1236                                 val = old_val ^ change;
1237
1238
1239                                 /* Handle changes in FPU/MSA modes */
1240                                 preempt_disable();
1241
1242                                 /*
1243                                  * Propagate FRE changes immediately if the FPU
1244                                  * context is already loaded.
1245                                  */
1246                                 if (change & MIPS_CONF5_FRE &&
1247                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1248                                         change_c0_config5(MIPS_CONF5_FRE, val);
1249
1250                                 /*
1251                                  * Propagate MSAEn changes immediately if the
1252                                  * MSA context is already loaded. When disabling
1253                                  * we leave the context loaded so it can be
1254                                  * quickly enabled again in the near future.
1255                                  */
1256                                 if (change & MIPS_CONF5_MSAEN &&
1257                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1258                                         change_c0_config5(MIPS_CONF5_MSAEN,
1259                                                           val);
1260
1261                                 preempt_enable();
1262
1263                                 kvm_write_c0_guest_config5(cop0, val);
1264                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1265                                 uint32_t old_cause, new_cause;
1266
1267                                 old_cause = kvm_read_c0_guest_cause(cop0);
1268                                 new_cause = vcpu->arch.gprs[rt];
1269                                 /* Update R/W bits */
1270                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1271                                                           new_cause);
1272                                 /* DC bit enabling/disabling timer? */
1273                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1274                                         if (new_cause & CAUSEF_DC)
1275                                                 kvm_mips_count_disable_cause(vcpu);
1276                                         else
1277                                                 kvm_mips_count_enable_cause(vcpu);
1278                                 }
1279                         } else {
1280                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1281 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1282                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1283 #endif
1284                         }
1285
1286                         kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1287                                   rd, sel, cop0->reg[rd][sel]);
1288                         break;
1289
1290                 case dmtc_op:
1291                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1292                                 vcpu->arch.pc, rt, rd, sel);
1293                         er = EMULATE_FAIL;
1294                         break;
1295
1296                 case mfmcz_op:
1297 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1298                         cop0->stat[MIPS_CP0_STATUS][0]++;
1299 #endif
1300                         if (rt != 0) {
1301                                 vcpu->arch.gprs[rt] =
1302                                     kvm_read_c0_guest_status(cop0);
1303                         }
1304                         /* EI */
1305                         if (inst & 0x20) {
1306                                 kvm_debug("[%#lx] mfmcz_op: EI\n",
1307                                           vcpu->arch.pc);
1308                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1309                         } else {
1310                                 kvm_debug("[%#lx] mfmcz_op: DI\n",
1311                                           vcpu->arch.pc);
1312                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1313                         }
1314
1315                         break;
1316
1317                 case wrpgpr_op:
1318                         {
1319                                 uint32_t css =
1320                                     cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1321                                 uint32_t pss =
1322                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1323                                 /*
1324                                  * We don't support any shadow register sets, so
1325                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1326                                  */
1327                                 if (css || pss) {
1328                                         er = EMULATE_FAIL;
1329                                         break;
1330                                 }
1331                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1332                                           vcpu->arch.gprs[rt]);
1333                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1334                         }
1335                         break;
1336                 default:
1337                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1338                                 vcpu->arch.pc, copz);
1339                         er = EMULATE_FAIL;
1340                         break;
1341                 }
1342         }
1343
1344 done:
1345         /* Rollback PC only if emulation was unsuccessful */
1346         if (er == EMULATE_FAIL)
1347                 vcpu->arch.pc = curr_pc;
1348
1349 dont_update_pc:
1350         /*
1351          * This is for special instructions whose emulation
1352          * updates the PC, so do not overwrite the PC under
1353          * any circumstances
1354          */
1355
1356         return er;
1357 }
1358
1359 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1360                                              struct kvm_run *run,
1361                                              struct kvm_vcpu *vcpu)
1362 {
1363         enum emulation_result er = EMULATE_DO_MMIO;
1364         int32_t op, base, rt, offset;
1365         uint32_t bytes;
1366         void *data = run->mmio.data;
1367         unsigned long curr_pc;
1368
1369         /*
1370          * Update PC and hold onto current PC in case there is
1371          * an error and we want to rollback the PC
1372          */
1373         curr_pc = vcpu->arch.pc;
1374         er = update_pc(vcpu, cause);
1375         if (er == EMULATE_FAIL)
1376                 return er;
1377
1378         rt = (inst >> 16) & 0x1f;
1379         base = (inst >> 21) & 0x1f;
1380         offset = inst & 0xffff;
1381         op = (inst >> 26) & 0x3f;
1382
1383         switch (op) {
1384         case sb_op:
1385                 bytes = 1;
1386                 if (bytes > sizeof(run->mmio.data)) {
1387                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1388                                run->mmio.len);
1389                 }
1390                 run->mmio.phys_addr =
1391                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1392                                                    host_cp0_badvaddr);
1393                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1394                         er = EMULATE_FAIL;
1395                         break;
1396                 }
1397                 run->mmio.len = bytes;
1398                 run->mmio.is_write = 1;
1399                 vcpu->mmio_needed = 1;
1400                 vcpu->mmio_is_write = 1;
1401                 *(u8 *) data = vcpu->arch.gprs[rt];
1402                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1403                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1404                           *(uint8_t *) data);
1405
1406                 break;
1407
1408         case sw_op:
1409                 bytes = 4;
1410                 if (bytes > sizeof(run->mmio.data)) {
1411                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1412                                run->mmio.len);
1413                 }
1414                 run->mmio.phys_addr =
1415                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1416                                                    host_cp0_badvaddr);
1417                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1418                         er = EMULATE_FAIL;
1419                         break;
1420                 }
1421
1422                 run->mmio.len = bytes;
1423                 run->mmio.is_write = 1;
1424                 vcpu->mmio_needed = 1;
1425                 vcpu->mmio_is_write = 1;
1426                 *(uint32_t *) data = vcpu->arch.gprs[rt];
1427
1428                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1429                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1430                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1431                 break;
1432
1433         case sh_op:
1434                 bytes = 2;
1435                 if (bytes > sizeof(run->mmio.data)) {
1436                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1437                                run->mmio.len);
1438                 }
1439                 run->mmio.phys_addr =
1440                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1441                                                    host_cp0_badvaddr);
1442                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1443                         er = EMULATE_FAIL;
1444                         break;
1445                 }
1446
1447                 run->mmio.len = bytes;
1448                 run->mmio.is_write = 1;
1449                 vcpu->mmio_needed = 1;
1450                 vcpu->mmio_is_write = 1;
1451                 *(uint16_t *) data = vcpu->arch.gprs[rt];
1452
1453                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1454                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1455                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1456                 break;
1457
1458         default:
1459                 kvm_err("Store not yet supported");
1460                 er = EMULATE_FAIL;
1461                 break;
1462         }
1463
1464         /* Rollback PC if emulation was unsuccessful */
1465         if (er == EMULATE_FAIL)
1466                 vcpu->arch.pc = curr_pc;
1467
1468         return er;
1469 }
1470
1471 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1472                                             struct kvm_run *run,
1473                                             struct kvm_vcpu *vcpu)
1474 {
1475         enum emulation_result er = EMULATE_DO_MMIO;
1476         unsigned long curr_pc;
1477         int32_t op, base, rt, offset;
1478         uint32_t bytes;
1479
1480         rt = (inst >> 16) & 0x1f;
1481         base = (inst >> 21) & 0x1f;
1482         offset = inst & 0xffff;
1483         op = (inst >> 26) & 0x3f;
1484
1485         /*
1486          * Find the resume PC now while we have safe and easy access to the
1487          * prior branch instruction, and save it for
1488          * kvm_mips_complete_mmio_load() to restore later.
1489          */
1490         curr_pc = vcpu->arch.pc;
1491         er = update_pc(vcpu, cause);
1492         if (er == EMULATE_FAIL)
1493                 return er;
1494         vcpu->arch.io_pc = vcpu->arch.pc;
1495         vcpu->arch.pc = curr_pc;
1496
1497         vcpu->arch.io_gpr = rt;
1498
1499         switch (op) {
1500         case lw_op:
1501                 bytes = 4;
1502                 if (bytes > sizeof(run->mmio.data)) {
1503                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1504                                run->mmio.len);
1505                         er = EMULATE_FAIL;
1506                         break;
1507                 }
1508                 run->mmio.phys_addr =
1509                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1510                                                    host_cp0_badvaddr);
1511                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1512                         er = EMULATE_FAIL;
1513                         break;
1514                 }
1515
1516                 run->mmio.len = bytes;
1517                 run->mmio.is_write = 0;
1518                 vcpu->mmio_needed = 1;
1519                 vcpu->mmio_is_write = 0;
1520                 break;
1521
1522         case lh_op:
1523         case lhu_op:
1524                 bytes = 2;
1525                 if (bytes > sizeof(run->mmio.data)) {
1526                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1527                                run->mmio.len);
1528                         er = EMULATE_FAIL;
1529                         break;
1530                 }
1531                 run->mmio.phys_addr =
1532                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1533                                                    host_cp0_badvaddr);
1534                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1535                         er = EMULATE_FAIL;
1536                         break;
1537                 }
1538
1539                 run->mmio.len = bytes;
1540                 run->mmio.is_write = 0;
1541                 vcpu->mmio_needed = 1;
1542                 vcpu->mmio_is_write = 0;
1543
1544                 if (op == lh_op)
1545                         vcpu->mmio_needed = 2;
1546                 else
1547                         vcpu->mmio_needed = 1;
1548
1549                 break;
1550
1551         case lbu_op:
1552         case lb_op:
1553                 bytes = 1;
1554                 if (bytes > sizeof(run->mmio.data)) {
1555                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1556                                run->mmio.len);
1557                         er = EMULATE_FAIL;
1558                         break;
1559                 }
1560                 run->mmio.phys_addr =
1561                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1562                                                    host_cp0_badvaddr);
1563                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1564                         er = EMULATE_FAIL;
1565                         break;
1566                 }
1567
1568                 run->mmio.len = bytes;
1569                 run->mmio.is_write = 0;
1570                 vcpu->mmio_is_write = 0;
1571
1572                 if (op == lb_op)
1573                         vcpu->mmio_needed = 2;
1574                 else
1575                         vcpu->mmio_needed = 1;
1576
1577                 break;
1578
1579         default:
1580                 kvm_err("Load not yet supported");
1581                 er = EMULATE_FAIL;
1582                 break;
1583         }
1584
1585         return er;
1586 }
1587
1588 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1589 {
1590         unsigned long offset = (va & ~PAGE_MASK);
1591         struct kvm *kvm = vcpu->kvm;
1592         unsigned long pa;
1593         gfn_t gfn;
1594         pfn_t pfn;
1595
1596         gfn = va >> PAGE_SHIFT;
1597
1598         if (gfn >= kvm->arch.guest_pmap_npages) {
1599                 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1600                 kvm_mips_dump_host_tlbs();
1601                 kvm_arch_vcpu_dump_regs(vcpu);
1602                 return -1;
1603         }
1604         pfn = kvm->arch.guest_pmap[gfn];
1605         pa = (pfn << PAGE_SHIFT) | offset;
1606
1607         kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1608                   CKSEG0ADDR(pa));
1609
1610         local_flush_icache_range(CKSEG0ADDR(pa), 32);
1611         return 0;
1612 }
1613
1614 #define MIPS_CACHE_OP_INDEX_INV         0x0
1615 #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1616 #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1617 #define MIPS_CACHE_OP_IMP               0x3
1618 #define MIPS_CACHE_OP_HIT_INV           0x4
1619 #define MIPS_CACHE_OP_FILL_WB_INV       0x5
1620 #define MIPS_CACHE_OP_HIT_HB            0x6
1621 #define MIPS_CACHE_OP_FETCH_LOCK        0x7
1622
1623 #define MIPS_CACHE_ICACHE               0x0
1624 #define MIPS_CACHE_DCACHE               0x1
1625 #define MIPS_CACHE_SEC                  0x3
1626
1627 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1628                                              uint32_t cause,
1629                                              struct kvm_run *run,
1630                                              struct kvm_vcpu *vcpu)
1631 {
1632         struct mips_coproc *cop0 = vcpu->arch.cop0;
1633         enum emulation_result er = EMULATE_DONE;
1634         int32_t offset, cache, op_inst, op, base;
1635         struct kvm_vcpu_arch *arch = &vcpu->arch;
1636         unsigned long va;
1637         unsigned long curr_pc;
1638
1639         /*
1640          * Update PC and hold onto current PC in case there is
1641          * an error and we want to rollback the PC
1642          */
1643         curr_pc = vcpu->arch.pc;
1644         er = update_pc(vcpu, cause);
1645         if (er == EMULATE_FAIL)
1646                 return er;
1647
1648         base = (inst >> 21) & 0x1f;
1649         op_inst = (inst >> 16) & 0x1f;
1650         offset = (int16_t)inst;
1651         cache = (inst >> 16) & 0x3;
1652         op = (inst >> 18) & 0x7;
1653
1654         va = arch->gprs[base] + offset;
1655
1656         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1657                   cache, op, base, arch->gprs[base], offset);
1658
1659         /*
1660          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1661          * invalidate the caches entirely by stepping through all the
1662          * ways/indexes
1663          */
1664         if (op == MIPS_CACHE_OP_INDEX_INV) {
1665                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1666                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1667                           arch->gprs[base], offset);
1668
1669                 if (cache == MIPS_CACHE_DCACHE)
1670                         r4k_blast_dcache();
1671                 else if (cache == MIPS_CACHE_ICACHE)
1672                         r4k_blast_icache();
1673                 else {
1674                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1675                                 __func__);
1676                         return EMULATE_FAIL;
1677                 }
1678
1679 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1680                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1681 #endif
1682                 goto done;
1683         }
1684
1685         preempt_disable();
1686         if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1687                 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0 &&
1688                     kvm_mips_handle_kseg0_tlb_fault(va, vcpu)) {
1689                         kvm_err("%s: handling mapped kseg0 tlb fault for %lx, vcpu: %p, ASID: %#lx\n",
1690                                 __func__, va, vcpu, read_c0_entryhi());
1691                         er = EMULATE_FAIL;
1692                         preempt_enable();
1693                         goto done;
1694                 }
1695         } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1696                    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1697                 int index;
1698
1699                 /* If an entry already exists then skip */
1700                 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1701                         goto skip_fault;
1702
1703                 /*
1704                  * If address not in the guest TLB, then give the guest a fault,
1705                  * the resulting handler will do the right thing
1706                  */
1707                 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1708                                                   (kvm_read_c0_guest_entryhi
1709                                                    (cop0) & ASID_MASK));
1710
1711                 if (index < 0) {
1712                         vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1713                         vcpu->arch.host_cp0_badvaddr = va;
1714                         er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1715                                                          vcpu);
1716                         preempt_enable();
1717                         goto dont_update_pc;
1718                 } else {
1719                         struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1720                         /*
1721                          * Check if the entry is valid, if not then setup a TLB
1722                          * invalid exception to the guest
1723                          */
1724                         if (!TLB_IS_VALID(*tlb, va)) {
1725                                 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1726                                                                 run, vcpu);
1727                                 preempt_enable();
1728                                 goto dont_update_pc;
1729                         }
1730                         /*
1731                          * We fault an entry from the guest tlb to the
1732                          * shadow host TLB
1733                          */
1734                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1735                                                                  NULL, NULL)) {
1736                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
1737                                         __func__, va, index, vcpu,
1738                                         read_c0_entryhi());
1739                                 er = EMULATE_FAIL;
1740                                 preempt_enable();
1741                                 goto done;
1742                         }
1743                 }
1744         } else {
1745                 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1746                         cache, op, base, arch->gprs[base], offset);
1747                 er = EMULATE_FAIL;
1748                 preempt_enable();
1749                 goto dont_update_pc;
1750
1751         }
1752
1753 skip_fault:
1754         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1755         if (cache == MIPS_CACHE_DCACHE
1756             && (op == MIPS_CACHE_OP_FILL_WB_INV
1757                 || op == MIPS_CACHE_OP_HIT_INV)) {
1758                 flush_dcache_line(va);
1759
1760 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1761                 /*
1762                  * Replace the CACHE instruction, with a SYNCI, not the same,
1763                  * but avoids a trap
1764                  */
1765                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1766 #endif
1767         } else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1768                 flush_dcache_line(va);
1769                 flush_icache_line(va);
1770
1771 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1772                 /* Replace the CACHE instruction, with a SYNCI */
1773                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1774 #endif
1775         } else {
1776                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1777                         cache, op, base, arch->gprs[base], offset);
1778                 er = EMULATE_FAIL;
1779                 preempt_enable();
1780                 goto dont_update_pc;
1781         }
1782
1783         preempt_enable();
1784
1785 dont_update_pc:
1786         /* Rollback PC */
1787         vcpu->arch.pc = curr_pc;
1788 done:
1789         return er;
1790 }
1791
1792 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1793                                             struct kvm_run *run,
1794                                             struct kvm_vcpu *vcpu)
1795 {
1796         enum emulation_result er = EMULATE_DONE;
1797         uint32_t inst;
1798
1799         /* Fetch the instruction. */
1800         if (cause & CAUSEF_BD)
1801                 opc += 1;
1802
1803         inst = kvm_get_inst(opc, vcpu);
1804
1805         switch (((union mips_instruction)inst).r_format.opcode) {
1806         case cop0_op:
1807                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1808                 break;
1809         case sb_op:
1810         case sh_op:
1811         case sw_op:
1812                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1813                 break;
1814         case lb_op:
1815         case lbu_op:
1816         case lhu_op:
1817         case lh_op:
1818         case lw_op:
1819                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1820                 break;
1821
1822         case cache_op:
1823                 ++vcpu->stat.cache_exits;
1824                 trace_kvm_exit(vcpu, CACHE_EXITS);
1825                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1826                 break;
1827
1828         default:
1829                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1830                         inst);
1831                 kvm_arch_vcpu_dump_regs(vcpu);
1832                 er = EMULATE_FAIL;
1833                 break;
1834         }
1835
1836         return er;
1837 }
1838
1839 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1840                                                uint32_t *opc,
1841                                                struct kvm_run *run,
1842                                                struct kvm_vcpu *vcpu)
1843 {
1844         struct mips_coproc *cop0 = vcpu->arch.cop0;
1845         struct kvm_vcpu_arch *arch = &vcpu->arch;
1846         enum emulation_result er = EMULATE_DONE;
1847
1848         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1849                 /* save old pc */
1850                 kvm_write_c0_guest_epc(cop0, arch->pc);
1851                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1852
1853                 if (cause & CAUSEF_BD)
1854                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1855                 else
1856                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1857
1858                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1859
1860                 kvm_change_c0_guest_cause(cop0, (0xff),
1861                                           (T_SYSCALL << CAUSEB_EXCCODE));
1862
1863                 /* Set PC to the exception entry point */
1864                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1865
1866         } else {
1867                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1868                 er = EMULATE_FAIL;
1869         }
1870
1871         return er;
1872 }
1873
1874 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1875                                                   uint32_t *opc,
1876                                                   struct kvm_run *run,
1877                                                   struct kvm_vcpu *vcpu)
1878 {
1879         struct mips_coproc *cop0 = vcpu->arch.cop0;
1880         struct kvm_vcpu_arch *arch = &vcpu->arch;
1881         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1882                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1883
1884         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1885                 /* save old pc */
1886                 kvm_write_c0_guest_epc(cop0, arch->pc);
1887                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1888
1889                 if (cause & CAUSEF_BD)
1890                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1891                 else
1892                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1893
1894                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1895                           arch->pc);
1896
1897                 /* set pc to the exception entry point */
1898                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1899
1900         } else {
1901                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1902                           arch->pc);
1903
1904                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1905         }
1906
1907         kvm_change_c0_guest_cause(cop0, (0xff),
1908                                   (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1909
1910         /* setup badvaddr, context and entryhi registers for the guest */
1911         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1912         /* XXXKYMA: is the context register used by linux??? */
1913         kvm_write_c0_guest_entryhi(cop0, entryhi);
1914         /* Blow away the shadow host TLBs */
1915         kvm_mips_flush_host_tlb(1);
1916
1917         return EMULATE_DONE;
1918 }
1919
1920 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1921                                                  uint32_t *opc,
1922                                                  struct kvm_run *run,
1923                                                  struct kvm_vcpu *vcpu)
1924 {
1925         struct mips_coproc *cop0 = vcpu->arch.cop0;
1926         struct kvm_vcpu_arch *arch = &vcpu->arch;
1927         unsigned long entryhi =
1928                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1929                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1930
1931         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1932                 /* save old pc */
1933                 kvm_write_c0_guest_epc(cop0, arch->pc);
1934                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1935
1936                 if (cause & CAUSEF_BD)
1937                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1938                 else
1939                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1940
1941                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1942                           arch->pc);
1943
1944                 /* set pc to the exception entry point */
1945                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1946
1947         } else {
1948                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1949                           arch->pc);
1950                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1951         }
1952
1953         kvm_change_c0_guest_cause(cop0, (0xff),
1954                                   (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1955
1956         /* setup badvaddr, context and entryhi registers for the guest */
1957         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1958         /* XXXKYMA: is the context register used by linux??? */
1959         kvm_write_c0_guest_entryhi(cop0, entryhi);
1960         /* Blow away the shadow host TLBs */
1961         kvm_mips_flush_host_tlb(1);
1962
1963         return EMULATE_DONE;
1964 }
1965
1966 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1967                                                   uint32_t *opc,
1968                                                   struct kvm_run *run,
1969                                                   struct kvm_vcpu *vcpu)
1970 {
1971         struct mips_coproc *cop0 = vcpu->arch.cop0;
1972         struct kvm_vcpu_arch *arch = &vcpu->arch;
1973         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1974                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1975
1976         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1977                 /* save old pc */
1978                 kvm_write_c0_guest_epc(cop0, arch->pc);
1979                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1980
1981                 if (cause & CAUSEF_BD)
1982                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1983                 else
1984                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1985
1986                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1987                           arch->pc);
1988
1989                 /* Set PC to the exception entry point */
1990                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1991         } else {
1992                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1993                           arch->pc);
1994                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1995         }
1996
1997         kvm_change_c0_guest_cause(cop0, (0xff),
1998                                   (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1999
2000         /* setup badvaddr, context and entryhi registers for the guest */
2001         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2002         /* XXXKYMA: is the context register used by linux??? */
2003         kvm_write_c0_guest_entryhi(cop0, entryhi);
2004         /* Blow away the shadow host TLBs */
2005         kvm_mips_flush_host_tlb(1);
2006
2007         return EMULATE_DONE;
2008 }
2009
2010 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
2011                                                  uint32_t *opc,
2012                                                  struct kvm_run *run,
2013                                                  struct kvm_vcpu *vcpu)
2014 {
2015         struct mips_coproc *cop0 = vcpu->arch.cop0;
2016         struct kvm_vcpu_arch *arch = &vcpu->arch;
2017         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2018                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2019
2020         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2021                 /* save old pc */
2022                 kvm_write_c0_guest_epc(cop0, arch->pc);
2023                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2024
2025                 if (cause & CAUSEF_BD)
2026                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2027                 else
2028                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2029
2030                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2031                           arch->pc);
2032
2033                 /* Set PC to the exception entry point */
2034                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2035         } else {
2036                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2037                           arch->pc);
2038                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2039         }
2040
2041         kvm_change_c0_guest_cause(cop0, (0xff),
2042                                   (T_TLB_ST_MISS << CAUSEB_EXCCODE));
2043
2044         /* setup badvaddr, context and entryhi registers for the guest */
2045         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2046         /* XXXKYMA: is the context register used by linux??? */
2047         kvm_write_c0_guest_entryhi(cop0, entryhi);
2048         /* Blow away the shadow host TLBs */
2049         kvm_mips_flush_host_tlb(1);
2050
2051         return EMULATE_DONE;
2052 }
2053
2054 /* TLBMOD: store into address matching TLB with Dirty bit off */
2055 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
2056                                              struct kvm_run *run,
2057                                              struct kvm_vcpu *vcpu)
2058 {
2059         enum emulation_result er = EMULATE_DONE;
2060 #ifdef DEBUG
2061         struct mips_coproc *cop0 = vcpu->arch.cop0;
2062         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2063                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2064         int index;
2065
2066         /* If address not in the guest TLB, then we are in trouble */
2067         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2068         if (index < 0) {
2069                 /* XXXKYMA Invalidate and retry */
2070                 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2071                 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2072                      __func__, entryhi);
2073                 kvm_mips_dump_guest_tlbs(vcpu);
2074                 kvm_mips_dump_host_tlbs();
2075                 return EMULATE_FAIL;
2076         }
2077 #endif
2078
2079         er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2080         return er;
2081 }
2082
2083 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2084                                               uint32_t *opc,
2085                                               struct kvm_run *run,
2086                                               struct kvm_vcpu *vcpu)
2087 {
2088         struct mips_coproc *cop0 = vcpu->arch.cop0;
2089         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2090                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2091         struct kvm_vcpu_arch *arch = &vcpu->arch;
2092
2093         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2094                 /* save old pc */
2095                 kvm_write_c0_guest_epc(cop0, arch->pc);
2096                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2097
2098                 if (cause & CAUSEF_BD)
2099                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2100                 else
2101                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2102
2103                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2104                           arch->pc);
2105
2106                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2107         } else {
2108                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2109                           arch->pc);
2110                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2111         }
2112
2113         kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
2114
2115         /* setup badvaddr, context and entryhi registers for the guest */
2116         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2117         /* XXXKYMA: is the context register used by linux??? */
2118         kvm_write_c0_guest_entryhi(cop0, entryhi);
2119         /* Blow away the shadow host TLBs */
2120         kvm_mips_flush_host_tlb(1);
2121
2122         return EMULATE_DONE;
2123 }
2124
2125 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2126                                                uint32_t *opc,
2127                                                struct kvm_run *run,
2128                                                struct kvm_vcpu *vcpu)
2129 {
2130         struct mips_coproc *cop0 = vcpu->arch.cop0;
2131         struct kvm_vcpu_arch *arch = &vcpu->arch;
2132
2133         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2134                 /* save old pc */
2135                 kvm_write_c0_guest_epc(cop0, arch->pc);
2136                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2137
2138                 if (cause & CAUSEF_BD)
2139                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2140                 else
2141                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2142
2143         }
2144
2145         arch->pc = KVM_GUEST_KSEG0 + 0x180;
2146
2147         kvm_change_c0_guest_cause(cop0, (0xff),
2148                                   (T_COP_UNUSABLE << CAUSEB_EXCCODE));
2149         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2150
2151         return EMULATE_DONE;
2152 }
2153
2154 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2155                                               uint32_t *opc,
2156                                               struct kvm_run *run,
2157                                               struct kvm_vcpu *vcpu)
2158 {
2159         struct mips_coproc *cop0 = vcpu->arch.cop0;
2160         struct kvm_vcpu_arch *arch = &vcpu->arch;
2161         enum emulation_result er = EMULATE_DONE;
2162
2163         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2164                 /* save old pc */
2165                 kvm_write_c0_guest_epc(cop0, arch->pc);
2166                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2167
2168                 if (cause & CAUSEF_BD)
2169                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2170                 else
2171                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2172
2173                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2174
2175                 kvm_change_c0_guest_cause(cop0, (0xff),
2176                                           (T_RES_INST << CAUSEB_EXCCODE));
2177
2178                 /* Set PC to the exception entry point */
2179                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2180
2181         } else {
2182                 kvm_err("Trying to deliver RI when EXL is already set\n");
2183                 er = EMULATE_FAIL;
2184         }
2185
2186         return er;
2187 }
2188
2189 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2190                                               uint32_t *opc,
2191                                               struct kvm_run *run,
2192                                               struct kvm_vcpu *vcpu)
2193 {
2194         struct mips_coproc *cop0 = vcpu->arch.cop0;
2195         struct kvm_vcpu_arch *arch = &vcpu->arch;
2196         enum emulation_result er = EMULATE_DONE;
2197
2198         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2199                 /* save old pc */
2200                 kvm_write_c0_guest_epc(cop0, arch->pc);
2201                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2202
2203                 if (cause & CAUSEF_BD)
2204                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2205                 else
2206                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2207
2208                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2209
2210                 kvm_change_c0_guest_cause(cop0, (0xff),
2211                                           (T_BREAK << CAUSEB_EXCCODE));
2212
2213                 /* Set PC to the exception entry point */
2214                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2215
2216         } else {
2217                 kvm_err("Trying to deliver BP when EXL is already set\n");
2218                 er = EMULATE_FAIL;
2219         }
2220
2221         return er;
2222 }
2223
2224 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2225                                                 uint32_t *opc,
2226                                                 struct kvm_run *run,
2227                                                 struct kvm_vcpu *vcpu)
2228 {
2229         struct mips_coproc *cop0 = vcpu->arch.cop0;
2230         struct kvm_vcpu_arch *arch = &vcpu->arch;
2231         enum emulation_result er = EMULATE_DONE;
2232
2233         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2234                 /* save old pc */
2235                 kvm_write_c0_guest_epc(cop0, arch->pc);
2236                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2237
2238                 if (cause & CAUSEF_BD)
2239                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2240                 else
2241                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2242
2243                 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2244
2245                 kvm_change_c0_guest_cause(cop0, (0xff),
2246                                           (T_TRAP << CAUSEB_EXCCODE));
2247
2248                 /* Set PC to the exception entry point */
2249                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2250
2251         } else {
2252                 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2253                 er = EMULATE_FAIL;
2254         }
2255
2256         return er;
2257 }
2258
2259 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2260                                                   uint32_t *opc,
2261                                                   struct kvm_run *run,
2262                                                   struct kvm_vcpu *vcpu)
2263 {
2264         struct mips_coproc *cop0 = vcpu->arch.cop0;
2265         struct kvm_vcpu_arch *arch = &vcpu->arch;
2266         enum emulation_result er = EMULATE_DONE;
2267
2268         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2269                 /* save old pc */
2270                 kvm_write_c0_guest_epc(cop0, arch->pc);
2271                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2272
2273                 if (cause & CAUSEF_BD)
2274                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2275                 else
2276                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2277
2278                 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2279
2280                 kvm_change_c0_guest_cause(cop0, (0xff),
2281                                           (T_MSAFPE << CAUSEB_EXCCODE));
2282
2283                 /* Set PC to the exception entry point */
2284                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2285
2286         } else {
2287                 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2288                 er = EMULATE_FAIL;
2289         }
2290
2291         return er;
2292 }
2293
2294 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2295                                                uint32_t *opc,
2296                                                struct kvm_run *run,
2297                                                struct kvm_vcpu *vcpu)
2298 {
2299         struct mips_coproc *cop0 = vcpu->arch.cop0;
2300         struct kvm_vcpu_arch *arch = &vcpu->arch;
2301         enum emulation_result er = EMULATE_DONE;
2302
2303         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2304                 /* save old pc */
2305                 kvm_write_c0_guest_epc(cop0, arch->pc);
2306                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2307
2308                 if (cause & CAUSEF_BD)
2309                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2310                 else
2311                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2312
2313                 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2314
2315                 kvm_change_c0_guest_cause(cop0, (0xff),
2316                                           (T_FPE << CAUSEB_EXCCODE));
2317
2318                 /* Set PC to the exception entry point */
2319                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2320
2321         } else {
2322                 kvm_err("Trying to deliver FPE when EXL is already set\n");
2323                 er = EMULATE_FAIL;
2324         }
2325
2326         return er;
2327 }
2328
2329 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2330                                                   uint32_t *opc,
2331                                                   struct kvm_run *run,
2332                                                   struct kvm_vcpu *vcpu)
2333 {
2334         struct mips_coproc *cop0 = vcpu->arch.cop0;
2335         struct kvm_vcpu_arch *arch = &vcpu->arch;
2336         enum emulation_result er = EMULATE_DONE;
2337
2338         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2339                 /* save old pc */
2340                 kvm_write_c0_guest_epc(cop0, arch->pc);
2341                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2342
2343                 if (cause & CAUSEF_BD)
2344                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2345                 else
2346                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2347
2348                 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2349
2350                 kvm_change_c0_guest_cause(cop0, (0xff),
2351                                           (T_MSADIS << CAUSEB_EXCCODE));
2352
2353                 /* Set PC to the exception entry point */
2354                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2355
2356         } else {
2357                 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2358                 er = EMULATE_FAIL;
2359         }
2360
2361         return er;
2362 }
2363
2364 /* ll/sc, rdhwr, sync emulation */
2365
2366 #define OPCODE 0xfc000000
2367 #define BASE   0x03e00000
2368 #define RT     0x001f0000
2369 #define OFFSET 0x0000ffff
2370 #define LL     0xc0000000
2371 #define SC     0xe0000000
2372 #define SPEC0  0x00000000
2373 #define SPEC3  0x7c000000
2374 #define RD     0x0000f800
2375 #define FUNC   0x0000003f
2376 #define SYNC   0x0000000f
2377 #define RDHWR  0x0000003b
2378
2379 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2380                                          struct kvm_run *run,
2381                                          struct kvm_vcpu *vcpu)
2382 {
2383         struct mips_coproc *cop0 = vcpu->arch.cop0;
2384         struct kvm_vcpu_arch *arch = &vcpu->arch;
2385         enum emulation_result er = EMULATE_DONE;
2386         unsigned long curr_pc;
2387         uint32_t inst;
2388
2389         /*
2390          * Update PC and hold onto current PC in case there is
2391          * an error and we want to rollback the PC
2392          */
2393         curr_pc = vcpu->arch.pc;
2394         er = update_pc(vcpu, cause);
2395         if (er == EMULATE_FAIL)
2396                 return er;
2397
2398         /* Fetch the instruction. */
2399         if (cause & CAUSEF_BD)
2400                 opc += 1;
2401
2402         inst = kvm_get_inst(opc, vcpu);
2403
2404         if (inst == KVM_INVALID_INST) {
2405                 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2406                 return EMULATE_FAIL;
2407         }
2408
2409         if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2410                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2411                 int rd = (inst & RD) >> 11;
2412                 int rt = (inst & RT) >> 16;
2413                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2414                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2415                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2416                                   rd, opc);
2417                         goto emulate_ri;
2418                 }
2419                 switch (rd) {
2420                 case 0: /* CPU number */
2421                         arch->gprs[rt] = 0;
2422                         break;
2423                 case 1: /* SYNCI length */
2424                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2425                                              current_cpu_data.icache.linesz);
2426                         break;
2427                 case 2: /* Read count register */
2428                         arch->gprs[rt] = kvm_mips_read_count(vcpu);
2429                         break;
2430                 case 3: /* Count register resolution */
2431                         switch (current_cpu_data.cputype) {
2432                         case CPU_20KC:
2433                         case CPU_25KF:
2434                                 arch->gprs[rt] = 1;
2435                                 break;
2436                         default:
2437                                 arch->gprs[rt] = 2;
2438                         }
2439                         break;
2440                 case 29:
2441                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2442                         break;
2443
2444                 default:
2445                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2446                         goto emulate_ri;
2447                 }
2448         } else {
2449                 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2450                 goto emulate_ri;
2451         }
2452
2453         return EMULATE_DONE;
2454
2455 emulate_ri:
2456         /*
2457          * Rollback PC (if in branch delay slot then the PC already points to
2458          * branch target), and pass the RI exception to the guest OS.
2459          */
2460         vcpu->arch.pc = curr_pc;
2461         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2462 }
2463
2464 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2465                                                   struct kvm_run *run)
2466 {
2467         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2468         enum emulation_result er = EMULATE_DONE;
2469
2470         if (run->mmio.len > sizeof(*gpr)) {
2471                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2472                 er = EMULATE_FAIL;
2473                 goto done;
2474         }
2475
2476         /* Restore saved resume PC */
2477         vcpu->arch.pc = vcpu->arch.io_pc;
2478
2479         switch (run->mmio.len) {
2480         case 4:
2481                 *gpr = *(int32_t *) run->mmio.data;
2482                 break;
2483
2484         case 2:
2485                 if (vcpu->mmio_needed == 2)
2486                         *gpr = *(int16_t *) run->mmio.data;
2487                 else
2488                         *gpr = *(uint16_t *)run->mmio.data;
2489
2490                 break;
2491         case 1:
2492                 if (vcpu->mmio_needed == 2)
2493                         *gpr = *(int8_t *) run->mmio.data;
2494                 else
2495                         *gpr = *(u8 *) run->mmio.data;
2496                 break;
2497         }
2498
2499 done:
2500         return er;
2501 }
2502
2503 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2504                                                   uint32_t *opc,
2505                                                   struct kvm_run *run,
2506                                                   struct kvm_vcpu *vcpu)
2507 {
2508         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2509         struct mips_coproc *cop0 = vcpu->arch.cop0;
2510         struct kvm_vcpu_arch *arch = &vcpu->arch;
2511         enum emulation_result er = EMULATE_DONE;
2512
2513         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2514                 /* save old pc */
2515                 kvm_write_c0_guest_epc(cop0, arch->pc);
2516                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2517
2518                 if (cause & CAUSEF_BD)
2519                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2520                 else
2521                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2522
2523                 kvm_change_c0_guest_cause(cop0, (0xff),
2524                                           (exccode << CAUSEB_EXCCODE));
2525
2526                 /* Set PC to the exception entry point */
2527                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2528                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2529
2530                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2531                           exccode, kvm_read_c0_guest_epc(cop0),
2532                           kvm_read_c0_guest_badvaddr(cop0));
2533         } else {
2534                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2535                 er = EMULATE_FAIL;
2536         }
2537
2538         return er;
2539 }
2540
2541 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2542                                                uint32_t *opc,
2543                                                struct kvm_run *run,
2544                                                struct kvm_vcpu *vcpu)
2545 {
2546         enum emulation_result er = EMULATE_DONE;
2547         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2548         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2549
2550         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2551
2552         if (usermode) {
2553                 switch (exccode) {
2554                 case T_INT:
2555                 case T_SYSCALL:
2556                 case T_BREAK:
2557                 case T_RES_INST:
2558                 case T_TRAP:
2559                 case T_MSAFPE:
2560                 case T_FPE:
2561                 case T_MSADIS:
2562                         break;
2563
2564                 case T_COP_UNUSABLE:
2565                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2566                                 er = EMULATE_PRIV_FAIL;
2567                         break;
2568
2569                 case T_TLB_MOD:
2570                         break;
2571
2572                 case T_TLB_LD_MISS:
2573                         /*
2574                          * We we are accessing Guest kernel space, then send an
2575                          * address error exception to the guest
2576                          */
2577                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2578                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2579                                           badvaddr);
2580                                 cause &= ~0xff;
2581                                 cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
2582                                 er = EMULATE_PRIV_FAIL;
2583                         }
2584                         break;
2585
2586                 case T_TLB_ST_MISS:
2587                         /*
2588                          * We we are accessing Guest kernel space, then send an
2589                          * address error exception to the guest
2590                          */
2591                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2592                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2593                                           badvaddr);
2594                                 cause &= ~0xff;
2595                                 cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
2596                                 er = EMULATE_PRIV_FAIL;
2597                         }
2598                         break;
2599
2600                 case T_ADDR_ERR_ST:
2601                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2602                                   badvaddr);
2603                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2604                                 cause &= ~0xff;
2605                                 cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
2606                         }
2607                         er = EMULATE_PRIV_FAIL;
2608                         break;
2609                 case T_ADDR_ERR_LD:
2610                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2611                                   badvaddr);
2612                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2613                                 cause &= ~0xff;
2614                                 cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
2615                         }
2616                         er = EMULATE_PRIV_FAIL;
2617                         break;
2618                 default:
2619                         er = EMULATE_PRIV_FAIL;
2620                         break;
2621                 }
2622         }
2623
2624         if (er == EMULATE_PRIV_FAIL)
2625                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2626
2627         return er;
2628 }
2629
2630 /*
2631  * User Address (UA) fault, this could happen if
2632  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2633  *     case we pass on the fault to the guest kernel and let it handle it.
2634  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2635  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2636  */
2637 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2638                                               uint32_t *opc,
2639                                               struct kvm_run *run,
2640                                               struct kvm_vcpu *vcpu)
2641 {
2642         enum emulation_result er = EMULATE_DONE;
2643         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2644         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2645         int index;
2646
2647         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2648                   vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2649
2650         /*
2651          * KVM would not have got the exception if this entry was valid in the
2652          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2653          * send the guest an exception. The guest exc handler should then inject
2654          * an entry into the guest TLB.
2655          */
2656         index = kvm_mips_guest_tlb_lookup(vcpu,
2657                                           (va & VPN2_MASK) |
2658                                           (kvm_read_c0_guest_entryhi
2659                                            (vcpu->arch.cop0) & ASID_MASK));
2660         if (index < 0) {
2661                 if (exccode == T_TLB_LD_MISS) {
2662                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2663                 } else if (exccode == T_TLB_ST_MISS) {
2664                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2665                 } else {
2666                         kvm_err("%s: invalid exc code: %d\n", __func__,
2667                                 exccode);
2668                         er = EMULATE_FAIL;
2669                 }
2670         } else {
2671                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2672
2673                 /*
2674                  * Check if the entry is valid, if not then setup a TLB invalid
2675                  * exception to the guest
2676                  */
2677                 if (!TLB_IS_VALID(*tlb, va)) {
2678                         if (exccode == T_TLB_LD_MISS) {
2679                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2680                                                                 vcpu);
2681                         } else if (exccode == T_TLB_ST_MISS) {
2682                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2683                                                                 vcpu);
2684                         } else {
2685                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2686                                         exccode);
2687                                 er = EMULATE_FAIL;
2688                         }
2689                 } else {
2690                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2691                                   tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2692                         /*
2693                          * OK we have a Guest TLB entry, now inject it into the
2694                          * shadow host TLB
2695                          */
2696                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
2697                                                                  NULL, NULL)) {
2698                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2699                                         __func__, va, index, vcpu,
2700                                         read_c0_entryhi());
2701                                 er = EMULATE_FAIL;
2702                         }
2703                 }
2704         }
2705
2706         return er;
2707 }