Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / arch / mips / kernel / smp.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/idle.h>
41 #include <asm/r4k-timer.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 #include <asm/setup.h>
45
46 cpumask_t cpu_callin_map;               /* Bitmask of started secondaries */
47
48 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
49 EXPORT_SYMBOL(__cpu_number_map);
50
51 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
52 EXPORT_SYMBOL(__cpu_logical_map);
53
54 /* Number of TCs (or siblings in Intel speak) per CPU core */
55 int smp_num_siblings = 1;
56 EXPORT_SYMBOL(smp_num_siblings);
57
58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_sibling_map);
61
62 /* representing the core map of multi-core chips of each logical CPU */
63 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_core_map);
65
66 /*
67  * A logcal cpu mask containing only one VPE per core to
68  * reduce the number of IPIs on large MT systems.
69  */
70 cpumask_t cpu_foreign_map __read_mostly;
71 EXPORT_SYMBOL(cpu_foreign_map);
72
73 /* representing cpus for which sibling maps can be computed */
74 static cpumask_t cpu_sibling_setup_map;
75
76 /* representing cpus for which core maps can be computed */
77 static cpumask_t cpu_core_setup_map;
78
79 cpumask_t cpu_coherent_mask;
80
81 static inline void set_cpu_sibling_map(int cpu)
82 {
83         int i;
84
85         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86
87         if (smp_num_siblings > 1) {
88                 for_each_cpu(i, &cpu_sibling_setup_map) {
89                         if (cpu_data[cpu].package == cpu_data[i].package &&
90                                     cpu_data[cpu].core == cpu_data[i].core) {
91                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
92                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
93                         }
94                 }
95         } else
96                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
97 }
98
99 static inline void set_cpu_core_map(int cpu)
100 {
101         int i;
102
103         cpumask_set_cpu(cpu, &cpu_core_setup_map);
104
105         for_each_cpu(i, &cpu_core_setup_map) {
106                 if (cpu_data[cpu].package == cpu_data[i].package) {
107                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
108                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
109                 }
110         }
111 }
112
113 /*
114  * Calculate a new cpu_foreign_map mask whenever a
115  * new cpu appears or disappears.
116  */
117 static inline void calculate_cpu_foreign_map(void)
118 {
119         int i, k, core_present;
120         cpumask_t temp_foreign_map;
121
122         /* Re-calculate the mask */
123         for_each_online_cpu(i) {
124                 core_present = 0;
125                 for_each_cpu(k, &temp_foreign_map)
126                         if (cpu_data[i].package == cpu_data[k].package &&
127                             cpu_data[i].core == cpu_data[k].core)
128                                 core_present = 1;
129                 if (!core_present)
130                         cpumask_set_cpu(i, &temp_foreign_map);
131         }
132
133         cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
134 }
135
136 struct plat_smp_ops *mp_ops;
137 EXPORT_SYMBOL(mp_ops);
138
139 void register_smp_ops(struct plat_smp_ops *ops)
140 {
141         if (mp_ops)
142                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
143
144         mp_ops = ops;
145 }
146
147 /*
148  * First C code run on the secondary CPUs after being started up by
149  * the master.
150  */
151 asmlinkage void start_secondary(void)
152 {
153         unsigned int cpu;
154
155         cpu_probe();
156         per_cpu_trap_init(false);
157         mips_clockevent_init();
158         mp_ops->init_secondary();
159         cpu_report();
160
161         /*
162          * XXX parity protection should be folded in here when it's converted
163          * to an option instead of something based on .cputype
164          */
165
166         calibrate_delay();
167         preempt_disable();
168         cpu = smp_processor_id();
169         cpu_data[cpu].udelay_val = loops_per_jiffy;
170
171         cpumask_set_cpu(cpu, &cpu_coherent_mask);
172         notify_cpu_starting(cpu);
173
174         set_cpu_online(cpu, true);
175
176         set_cpu_sibling_map(cpu);
177         set_cpu_core_map(cpu);
178
179         calculate_cpu_foreign_map();
180
181         cpumask_set_cpu(cpu, &cpu_callin_map);
182
183         synchronise_count_slave(cpu);
184
185         /*
186          * irq will be enabled in ->smp_finish(), enabling it too early
187          * is dangerous.
188          */
189         WARN_ON_ONCE(!irqs_disabled());
190         mp_ops->smp_finish();
191
192         cpu_startup_entry(CPUHP_ONLINE);
193 }
194
195 /*
196  * Call into both interrupt handlers, as we share the IPI for them
197  */
198 void __irq_entry smp_call_function_interrupt(void)
199 {
200         irq_enter();
201         generic_smp_call_function_interrupt();
202         irq_exit();
203 }
204
205 static void stop_this_cpu(void *dummy)
206 {
207         /*
208          * Remove this CPU. Be a bit slow here and
209          * set the bits for every online CPU so we don't miss
210          * any IPI whilst taking this VPE down.
211          */
212
213         cpumask_copy(&cpu_foreign_map, cpu_online_mask);
214
215         /* Make it visible to every other CPU */
216         smp_mb();
217
218         set_cpu_online(smp_processor_id(), false);
219         calculate_cpu_foreign_map();
220         local_irq_disable();
221         while (1);
222 }
223
224 void smp_send_stop(void)
225 {
226         smp_call_function(stop_this_cpu, NULL, 0);
227 }
228
229 void __init smp_cpus_done(unsigned int max_cpus)
230 {
231 }
232
233 /* called from main before smp_init() */
234 void __init smp_prepare_cpus(unsigned int max_cpus)
235 {
236         init_new_context(current, &init_mm);
237         current_thread_info()->cpu = 0;
238         mp_ops->prepare_cpus(max_cpus);
239         set_cpu_sibling_map(0);
240         set_cpu_core_map(0);
241         calculate_cpu_foreign_map();
242 #ifndef CONFIG_HOTPLUG_CPU
243         init_cpu_present(cpu_possible_mask);
244 #endif
245         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
246 }
247
248 /* preload SMP state for boot cpu */
249 void smp_prepare_boot_cpu(void)
250 {
251         set_cpu_possible(0, true);
252         set_cpu_online(0, true);
253         cpumask_set_cpu(0, &cpu_callin_map);
254 }
255
256 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
257 {
258         mp_ops->boot_secondary(cpu, tidle);
259
260         /*
261          * Trust is futile.  We should really have timeouts ...
262          */
263         while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
264                 udelay(100);
265                 schedule();
266         }
267
268         synchronise_count_master(cpu);
269         return 0;
270 }
271
272 /* Not really SMP stuff ... */
273 int setup_profiling_timer(unsigned int multiplier)
274 {
275         return 0;
276 }
277
278 static void flush_tlb_all_ipi(void *info)
279 {
280         local_flush_tlb_all();
281 }
282
283 void flush_tlb_all(void)
284 {
285         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
286 }
287
288 static void flush_tlb_mm_ipi(void *mm)
289 {
290         local_flush_tlb_mm((struct mm_struct *)mm);
291 }
292
293 /*
294  * Special Variant of smp_call_function for use by TLB functions:
295  *
296  *  o No return value
297  *  o collapses to normal function call on UP kernels
298  *  o collapses to normal function call on systems with a single shared
299  *    primary cache.
300  */
301 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
302 {
303         smp_call_function(func, info, 1);
304 }
305
306 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
307 {
308         preempt_disable();
309
310         smp_on_other_tlbs(func, info);
311         func(info);
312
313         preempt_enable();
314 }
315
316 /*
317  * The following tlb flush calls are invoked when old translations are
318  * being torn down, or pte attributes are changing. For single threaded
319  * address spaces, a new context is obtained on the current cpu, and tlb
320  * context on other cpus are invalidated to force a new context allocation
321  * at switch_mm time, should the mm ever be used on other cpus. For
322  * multithreaded address spaces, intercpu interrupts have to be sent.
323  * Another case where intercpu interrupts are required is when the target
324  * mm might be active on another cpu (eg debuggers doing the flushes on
325  * behalf of debugees, kswapd stealing pages from another process etc).
326  * Kanoj 07/00.
327  */
328
329 void flush_tlb_mm(struct mm_struct *mm)
330 {
331         preempt_disable();
332
333         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
334                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
335         } else {
336                 unsigned int cpu;
337
338                 for_each_online_cpu(cpu) {
339                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
340                                 cpu_context(cpu, mm) = 0;
341                 }
342         }
343         local_flush_tlb_mm(mm);
344
345         preempt_enable();
346 }
347
348 struct flush_tlb_data {
349         struct vm_area_struct *vma;
350         unsigned long addr1;
351         unsigned long addr2;
352 };
353
354 static void flush_tlb_range_ipi(void *info)
355 {
356         struct flush_tlb_data *fd = info;
357
358         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
359 }
360
361 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
362 {
363         struct mm_struct *mm = vma->vm_mm;
364
365         preempt_disable();
366         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
367                 struct flush_tlb_data fd = {
368                         .vma = vma,
369                         .addr1 = start,
370                         .addr2 = end,
371                 };
372
373                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
374         } else {
375                 unsigned int cpu;
376
377                 for_each_online_cpu(cpu) {
378                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
379                                 cpu_context(cpu, mm) = 0;
380                 }
381         }
382         local_flush_tlb_range(vma, start, end);
383         preempt_enable();
384 }
385
386 static void flush_tlb_kernel_range_ipi(void *info)
387 {
388         struct flush_tlb_data *fd = info;
389
390         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
391 }
392
393 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
394 {
395         struct flush_tlb_data fd = {
396                 .addr1 = start,
397                 .addr2 = end,
398         };
399
400         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
401 }
402
403 static void flush_tlb_page_ipi(void *info)
404 {
405         struct flush_tlb_data *fd = info;
406
407         local_flush_tlb_page(fd->vma, fd->addr1);
408 }
409
410 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
411 {
412         preempt_disable();
413         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
414                 struct flush_tlb_data fd = {
415                         .vma = vma,
416                         .addr1 = page,
417                 };
418
419                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
420         } else {
421                 unsigned int cpu;
422
423                 for_each_online_cpu(cpu) {
424                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
425                                 cpu_context(cpu, vma->vm_mm) = 0;
426                 }
427         }
428         local_flush_tlb_page(vma, page);
429         preempt_enable();
430 }
431
432 static void flush_tlb_one_ipi(void *info)
433 {
434         unsigned long vaddr = (unsigned long) info;
435
436         local_flush_tlb_one(vaddr);
437 }
438
439 void flush_tlb_one(unsigned long vaddr)
440 {
441         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
442 }
443
444 EXPORT_SYMBOL(flush_tlb_page);
445 EXPORT_SYMBOL(flush_tlb_one);
446
447 #if defined(CONFIG_KEXEC)
448 void (*dump_ipi_function_ptr)(void *) = NULL;
449 void dump_send_ipi(void (*dump_ipi_callback)(void *))
450 {
451         int i;
452         int cpu = smp_processor_id();
453
454         dump_ipi_function_ptr = dump_ipi_callback;
455         smp_mb();
456         for_each_online_cpu(i)
457                 if (i != cpu)
458                         mp_ops->send_ipi_single(i, SMP_DUMP);
459
460 }
461 EXPORT_SYMBOL(dump_send_ipi);
462 #endif
463
464 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
465
466 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
467 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
468
469 void tick_broadcast(const struct cpumask *mask)
470 {
471         atomic_t *count;
472         struct call_single_data *csd;
473         int cpu;
474
475         for_each_cpu(cpu, mask) {
476                 count = &per_cpu(tick_broadcast_count, cpu);
477                 csd = &per_cpu(tick_broadcast_csd, cpu);
478
479                 if (atomic_inc_return(count) == 1)
480                         smp_call_function_single_async(cpu, csd);
481         }
482 }
483
484 static void tick_broadcast_callee(void *info)
485 {
486         int cpu = smp_processor_id();
487         tick_receive_broadcast();
488         atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
489 }
490
491 static int __init tick_broadcast_init(void)
492 {
493         struct call_single_data *csd;
494         int cpu;
495
496         for (cpu = 0; cpu < NR_CPUS; cpu++) {
497                 csd = &per_cpu(tick_broadcast_csd, cpu);
498                 csd->func = tick_broadcast_callee;
499         }
500
501         return 0;
502 }
503 early_initcall(tick_broadcast_init);
504
505 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */